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BER Analysis of Arbitrary QAM for MRC Diversity
With Imperfect Channel Estimation in
Generalized Ricean Fading Channels

Laleh Najafizadeh, Student Member, IEEE, and Chintha Tellambura, Senior Member, IEEE

Abstract—Imperfect channel estimation (ICE) can severely
degrade the bit error rate (BER) of digital modulations with
maximum ratio combining (MRC) diversity reception. The re-
sulting performance analysis problem in its most general set-
ting has not been addressed before. In this paper, the effect of
ICE on the BER of an arbitrary square/rectangular Gray-coded
quadratic amplitude modulation (QAM) in generalized Ricean
fading channels when MRC reception is employed is analyzed. A
general expression for the bit error probability of an arbitrary
square/rectangular QAM scheme is first derived. This general
formula requires a number of conditional probabilities, which is
derived in closed form for independent and nonidentically dis-
tributed (i.n.d.) Rayleigh-fading channels with MRC and ICE.
An efficient numerical method is also presented to compute the
conditional probabilities for i.n.d. and correlated Ricean fading. In
addition, extensive Monte Carlo simulations that agree excellently
with the analytical results are presented.

Index Terms—Channel estimation, maximum ratio combining
(MRC), quadratic amplitude modulation (QAM), Ricean fading.

I. INTRODUCTION

QUADRATURE amplitude modulation (QAM), a highly
spectrally efficient modulation scheme, is widely used in

wireless-communication systems [1]. The bit error rate (BER)
performance of M -ary QAM has been investigated by several
authors. The exact BER for 16-QAM and 64-QAM in an ad-
ditive white Gaussian noise (AWGN) channel is derived in [2].
Approximate expressions for the BER of an arbitrary M -ary
square QAM using signal space concepts and recursive algo-
rithms are given in [3] and [4], respectively. Cho and Yoon [5]
derive a general expression for the BER of an arbitrary
square/rectangular QAM in AWGN. In all these papers, the
analysis assumes a perfectly known channel at the receiver.

For imperfect channel estimation (ICE), less work is avail-
able in the literature. Tang et al. [6] derive an approximate
expression for the BER of 16-QAM and 64-QAM with ICE
over Rayleigh-fading channels. In [7], a probability density
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function (pdf) is introduced to determine the BER of maximum
ratio combining (MRC) QAM with channel estimation error.
However, the closed-form integrals are obtained only for a
16-QAM constellation with one and two diversity branches
for Rayleigh fading and for one branch for Ricean fading.
Cao and Beaulieu [8], [9] provide exact BER expressions for a
16-QAM MRC receiver in Rayleigh and Ricean fading chan-
nels with any number of diversity branches. Their results are
only valid for independent and identically distributed (i.i.d.)
fading channels. Furthermore, the results in [6]–[9] are pre-
sented only for a specific square QAM constellation.

Previously, the performance of M -ary phase shift keying
(M-PSK) with MRC and ICE in generalized Ricean fading
channels [10] and with general selection combining (GSC)
and equal gain combining (EGC) receivers with Gaussian
weighting errors for several types of i.i.d. fading channels [11]
was investigated. In [12], we analyzed the BER performance
of square/rectangular QAM with MRC and ICE in Rayleigh-
fading channels. The results in [12] are extended here for
the computation of the BER of an arbitrary square/rectangular
QAM in generalized Ricean fading channels.

In this paper, we present a general expression for the BER
of an arbitrary square/rectangular QAM. First, by analyzing the
BER performance of 16 QAM, we observe a regular pattern for
the bit error probability of the kth in-phase bit. From this pat-
tern, we develop a general expression for the BER performance
of an arbitrary M -ary square QAM receiver. This general
expression is then extended to an arbitrary I × J-ary rectan-
gular QAM.

The general expressions obtained in this paper require a
number of conditional probabilities, which depend on the chan-
nel statistics and the decision variable. For MRC with ICE
in i.i.d. fading channels, our several conditional probabilities
reduce to the formula provided in [13, Appendix B]. A special
case (16 QAM) is considered in [9]. For MRC with ICE in
independent and nonidentically distributed (i.n.d.) Rayleigh-
fading channels, no BER expression is available in literature.
Therefore, we derive a closed-form expression for the BER of
an arbitrary square/rectangular QAM constellation with MRC
and ICE in i.n.d. Rayleigh-fading channels. We also present an
efficient numerical technique for the computation of the BER
of any square/rectangular QAM in i.n.d. and correlated Ricean
fading channels. This technique is based on a classic result due
to Imhof [14], which provides a numerical algorithm for the
distribution of a quadratic form in normal variables.
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This paper is organized as follows. The system and QAM
signaling models and assumptions are described in Section II.
In Section III, we derive a regular pattern for the BER of an
arbitrary square QAM in terms of conditional error probabili-
ties, and, in Section IV, the pattern is extended to an arbitrary
rectangular QAM. A closed-form error-rate expression for an
arbitrary square/rectangular QAM in i.n.d. Rayleigh-fading
channels as well as a numerical technique for computing its
BER in i.n.d. and correlated Ricean fading channels, all cases
with MRC and ICE, are presented in Section V. In Section VI,
numerical examples are given, and the validity of our analytical
results is assessed using the Monte Carlo simulations. The
conclusion is given in Section VII.

II. SYSTEM AND SIGNAL MODELS

A. System Model

The system model used here is identical to that considered
in [7]. MRC is used at the receiver to combat the effects of
fading. The received signal sample at each receiver antenna is
given by

ym = hmx+ nm, m = 1, . . . , L (1)

where x = xI + jxQ, j =
√−1, xI ∈ {±d,±3d, . . . ,±(I −

1)d}, xQ ∈ {±d,±3d, . . . ,±(J − 1)d}, is the data symbol
chosen from an I × J rectangular QAM constellation, L is
the number of diversity branches, and hm and nm denote the
channel attenuation and AWGN of the mth branch, respectively.
The channel hm can be estimated by transmitting pilot symbols
[15], [16]. At the receiver, the channel estimator outputs

gm = αhm + sm, m = 1, . . . , L (2)

where α is a complex number representing the bias in the
estimate, and sm is a circularly complex Gaussian random
variable (RV) with mean zero and variance σ2

S representing the
random noise in the estimate; note that sm and hm are uncorre-
lated. We assume that all branch noise variances are equal, i.e.,
E|nm|2 = constant for m = 1, . . . , L.

The MRC decision variable at the receiver is given in [7]

zd =

L∑
m=1

ymg∗m

L∑
m=1

|gm|2
. (3)

The superscript ∗ represents the conjugate operation. Since
we only consider two-dimensional (2-D) modulation schemes
where the in-phase (I) and quadrature (Q) streams can be
demodulated separately, we need the real and imaginary com-
ponents of zd

zdI
= Re(zd) =

L∑
m=1

(ymg∗m + y∗mgm)

2
L∑

m=1
|gm|2

(4a)

and

zdQ
= Im(zd) =

L∑
m=1

(ymg∗m − y∗mgm)

2j
L∑

m=1
|gm|2

. (4b)

Define W̄ = (g1, y1, g2, y2, . . . , gL, yL)t and µ̄ = E[W̄ ] =
[µg1 , µy1 , . . . , µgL

, µyL
]t, where t represents the transpose op-

eration, and

µgm
=αE(hm)

µym
=xE(hm). (5)

We find the covariance matrix of W̄ as follows:

CW =E
[
(W̄−µ̄)(W̄−µ̄)†

]

=




σ2
g1g1

σ2
g1y1

σ2
g1g2

σ2
g1y2

· · · σ2
g1gL

σ2
g1yL

σ2
y1g1

σ2
y1y1

σ2
y1g2

σ2
y1y2

· · · σ2
y1gL

σ2
y1yL

...
...

...
...

...
...

σ2
gLg1

σ2
gLg1

σ2
gLg2

σ2
gLy2

· · · σ2
gLgL

σ2
gLyL

σ2
yLg1

σ2
yLy1

σ2
yLg2

σ2
yLy2

· · · σ2
yLgL

σ2
yLyL


 (6)

where the superscript † represents the conjugate transpose op-
eration. The quantities σ2

gmgn
, σ2

ymyn
, and σ2

gmyn
are defined as

σ2
gmgn

=E ((gm − µgm
)(gn − µgn

)∗)

=
{ |α|2σ2

hmhm
+ E

(|sm|2) (m = n)
|α|2σ2

hmhn
(m �= n)

(7a)

σ2
ymyn

=E ((ym − µym
)(yn − µyn

)∗)

=
{ |x|2σ2

hmhm
+ E

(|nm|2) (m = n)
|x|2σ2

hmhn
(m �= n)

(7b)

σ2
gmyn

=E ((gm − µgm
)(yn − µyn

)∗) = αx∗σ2
hmhn

(7c)

where σ2
hmhn

= E(hmh∗
n) − µhm

µ∗
hn

. When the branches
m and n are uncorrelated, σ2

hmhn
= 0. Also, note that

σgmyn
= σ∗

yngm
.

B. QAM Signaling

We consider I × J rectangular QAM consisting of two inde-
pendent one-dimensional pulse amplitude modulation (PAM)
signals. In the special case when I = J , the constellation rep-
resents an M -ary square QAM, where M = I × I . We also
assume that all the symbols are equally likely to be transmitted.

In a typical QAM modulator, the data stream is divided into
the I and Q bit streams, each encoded onto a separate axis using
identical Gray coding mapping blocks [1]. The in-phase and
quadrature components are thus selected independently over the
set of {±d,±3d, . . . ,±(I − 1)d} and {±d,±3d, . . . ,±(J −
1)d}, respectively. Note that 2d is the Euclidean distance
between two adjacent signal points. Denoting Eb as the bit
energy, d can be written in terms of Eb, I and J as [5]

d =

√
3Eb log2(I × J)
I2 + J2 − 2

. (8)
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For the case of M -ary square QAM, (8) becomes

d =

√
3Eb log2 M

2(M − 1)
. (9)

At the receiver, the complex symbols are divided into I and
Q components, and each component is demodulated indepen-
dently against their respective decision boundaries.

We next derive a general BER expression for M -ary
square and I × J rectangular QAM in terms of conditional
probabilities.

III. GENERAL BER EXPRESSION FOR

M -ARY SQUARE QAM

A general expression for the BER of an arbitrary square/
rectangular QAM for AWGN channels is derived in [5]. How-
ever, this expression depends on the complementary error func-
tion and is only valid for AWGN channels. Here, we derive a
general expression for the BER of M -ary QAM, which is valid
not only in AWGN but also in any fading channel with/without
diversity and with perfect/ICE.

Due to symmetry, the average BER of an M -ary square QAM
is equal to the BER of either the I or the Q components. We
assume that in the QAM constellation, the most significant bit
is the in-phase bit. Then, the BER of an M -ary square QAM is
given in [5, eq. (16)]

Pb =
1

log2

√
M

log2

√
M−1∑

n=0

PI(log2 M − 2n) (10)

where PI(log2 M − 2n) denotes the bit error probability of the
(log2 M − 2n)th bit in the in-phase components. Therefore, in
order to obtain the average BER of an M -ary square QAM,
one needs to determine PI(log2 M − 2n). In this section, we
first determine PI(log2 M − 2n) for the two in-phase bits of
a 16-QAM constellation. Using this example, we then obtain a
general expression for the bit error probability of the (log2 M −
2n)th in-phase bit of an arbitrary M -ary square QAM. Then,
using (10), the BER of an M -ary square QAM is determined.

A. BER of 16 QAM

Fig. 1 shows Gray-coded bit mapping and the decision
boundaries for square 16 QAM. The fourth1 and the second
bits are the in-phase bits while the third and the first bits are the
quadrature bits. Due to symmetry, we only consider the bit error
probability of the in-phase bits. Note that with ICE, the decision
boundaries shown in Fig. 1 may no longer be optimal in the
sense of minimizing the overall error rate. In [17] and [18], an
optimal metric that takes ICE into account has been derived, the
use of which is equivalent to modifying the decision boundaries

1We refer to the first bit as the least significant bit and to the (log2 M)th bit
as the most significant bit.

Fig. 1. Square 16-QAM constellation with gray encoding.

in Fig. 1. Our simulations reveal that the use of this metric
has a negligible effect on the error performance of uncoded
systems especially when the estimation noise variance is small
compared with the channel noise variance. Consequently, we
do not use the optimal metric derived in [17] and [18].

The Q-axis is the decision boundary for the fourth bit.
Because of the symmetry between the right and left half sides
of the plane, the probability that the fourth bit is in error is [2]

PI(4) =
1
2
[
Pr
(
zdI

< 0|Re(x)=d

)
+ Pr

(
zdI

< 0|Re(x)=3d

)]
=

1
4

[Pr(zdI
< 0|x=d+jd) + Pr(zdI

< 0|x=d+j3d)

+Pr(zdI
< 0|x=3d+jd) + Pr(zdI

< 0|x=3d+j3d)] .
(11)

For the second bit, the decision boundaries are 2d and −2d.
If the second bit is an “0,” an error occurs when the real part of
the decision variable zd is out of the region (−2d, 2d), and if
the second bit is “1,” an error occurs if the real part of zd falls
in (−2d, 2d). Therefore, the error probability of the second bit
is obtained as [2]

PI(2)

=
1
2
[
Pr
(|zdI

| > 2d|Re(x)=d

)
+ Pr

(|zdI
| < 2d|Re(x)=3d

)]
=

1
4

[1− Pr(zdI
< 2d|x=d+jd) − Pr(zdI

< 2d|x=d+j3d)

+ 1 + Pr(zdI
<−2d|x=d+jd) + Pr(zdI

< −2d|x=d+j3d)
+ Pr(zdI

< 2d|x=3d+jd) + Pr(zdI
< 2d|x=3d+j3d)

−Pr(zdI
< −2d|x=3d+jd)− Pr(zdI

< −2d|x=3d+j3d)].
(12)

Substituting (11) and (12) into (10), the BER for 16 QAM is
obtained.
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B. General BER Expression for an M -ary Square QAM

From (11) and (12), a regular pattern can be found for
the bit error probability of the (log2 M − 2n, n ∈ {0, 1, . . . ,
log2

√
M − 1})th bit as

PI(log2 M − 2n)

=




4
M


√

M−1∑
k=1

k odd

Ak,0


 (n = 0)

4
M


M

8 +
2n−1∑
i=0

F2(i,n)∑
k=F1(i,n)

k odd

(−1)iAk,n


 (n �= 0)

(13a)

where F1(i, n) = max[(
√
M/2n)(2i− 1) + 1, 1], F2(i, n) =

min[(
√
M/2n)(2i + 1) − 1,

√
M − 1], and

Ak,n

=




√
M−1∑
l=1
lodd

[Pr(zdI < 0|x=kd+jld)] (n = 0)

√
M−1∑
l=1

l odd

n−1∑
i=0

(−1)i [Pr(zdI < −Gi,n|x=kd+jld)

−Pr(zdI < Gi,n|x=kd+jld)] (n �= 0)

(13b)

where Gi,n = (
√
M(2i + 1)/2n)d.

If the conditional probabilities are known, then the above
expressions for PI(log2 M − 2n) can be used in (10) to obtain
the BER of an M -ary square QAM.

To compare our result with the expression derived in [5],
we consider an AWGN channel without fading, for which the
decision variable zd reduces to

zd = x+ n0 (14)

where n0 is a zero-mean AWGN with a two-sided power
spectrum density N0/2. The bit error probability of the most
significant bit (n = 0), for example, is obtained from (13) as

PI(log2 M) =
1√
M



√
M−1∑
k=1

k odd

erfc
(

kd√
N0

) (15)

which is equal to [5, eq. (15)].2

IV. GENERAL BER EXPRESSION FOR I × J
RECTANGULAR QAM

The previous section derives a general expression for BER of
M -ary square QAM. In this section, we extend this analysis to
an arbitrary I × J rectangular QAM.

2Note that in [5] the most significant bit is referred to as first bit.

If we assume that the most significant bit is the in-phase
bit, then the BER of an I × J rectangular QAM is given by
[5, eq. (22)]

Pb =
1

log2(I × J)
×

log2 I−1∑

n=0

PI (log2(I × J) − 2n)

+
log2 J−1∑
n=0

PQ (log2(I × J) − (2n + 1))


 (16)

where PI(log2(I × J)− 2n) and PQ(log2(I × J)− (2n +
1)) denote the bit error probabilities of the (log2(I × J) −
2n)th in-phase bit and (log2(I × J)− (2n + 1))th quadrature
bit, respectively. The general expression for the BER of the in-
phase bits is given in Section III. Note that for the case of I × J
rectangular QAM, M and

√
M in (13) should be replaced by

I × J and I , respectively.
For the quadrature bits, the imaginary part of the decision

variable should be considered. The regular pattern that can
be found for the bit error probability of the (log2 I × J −
(2n + 1))th bit is

PQ (log2(I × J)− (2n + 1))

=




4
I×J


 J−1∑

k=1
k odd

Bk,0


 (n = 0)

4
I×J


 I×J

8 +
2n−1∑
i=0

E2(i,n)∑
k=E1(i,n)

k odd

(−1)iBk,n


 (n �= 0)

(17a)

where E1(i, n) = max[(J/2n)(2i− 1) + 1, 1], E2(i, n) =
min[(J/2n)(2i + 1) − 1, J − 1], and

Bk,n

=




J−1∑
l=1

l odd

[
Pr(zdQ < 0|x=ld+jkd)

]
(n = 0)

J−1∑
l=1

l odd

n−1∑
i=0

(−1)i
[
Pr(zdQ < −Vi,n|x=ld+jkd)

−Pr(zdQ < Vi,n|x=ld+jkd)
]

(n �= 0)

(17b)

where Vi,l = (J(2i + 1)/2l)d.
Once PI(log2(I × J) − 2n) and PQ(log2(I × J)− (2n +

1)) are defined from (13) and (17), the BER of an I × J
rectangular QAM follows from (16).

The above analysis shows that the BER of an arbi-
trary square/rectangular QAM consists of the summation of
the probability terms in the form of Pr(zdI

< T |x=ad+jbd)
and Pr(zdQ

< t|x=ad+jbd), where a ∈ {1, 3, . . . , (I − 1)}, b ∈
{1, 3, . . . , (J − 1)}, and T depends on d. We next determine
the expression for these probabilities when MRC with ICE is
used at the receiver.
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V. EXACT BER EXPRESSION FOR AN ARBITRARY

SQUARE/RECTANGULAR QAM IN GENERALIZED

RICEAN FADING CHANNELS

The previous sections show that the BER of an arbitrary
square/rectangular QAM can be written as a sum of proba-
bilities in the form of Pr(zdI

< T |x=ad+jbd) and Pr(zdQ
<

T |x=ad+jbd). When MRC with ICE is employed, the decision
variable zd is defined as (3).

Using (4a), the Pr(zdI
< T |x=ad+jbd) can be rewritten as

Pr(zdI < T |x=ad+jbd)

= Pr




L∑
m=1

(ymg∗m + y∗mgm)

2
L∑

m=1
|gm|2

< T |x=ad+jbd




= Pr

(
L∑

m=1

(−2T |gm|2 + ymg∗m + y∗mgm
)
< 0|x=ad+jbd

)

= Pr(DI < 0|x=ad+jbd) (18)

where

DI =
L∑

m=1

(−2T |gm|2 + ymg∗m + y∗mgm
)

= W̄ †HIW̄ (19)

W̄ = [g1, y1, g2, y2, . . . , gL, yL]t (20)

and

HI =




−2T 1 0 0 . . . 0 0
1 0 0 0 . . . 0 0
0 0 −2T 1 . . . 0 0
0 0 1 0 . . . 0 0
...

...
...

...
...

...
0 0 0 0 . . . −2T 1
0 0 0 0 . . . 1 0




. (21)

Similarly, using (4b), Pr(zdQ
< T |x=ad+jbd) can be ex-

pressed as

Pr(zdQ < T |x=ad+jbd)

= Pr




L∑
m=1

(ymg∗m−y∗mgm)

2j
L∑

m=1
|gm|2

<T |x=ad+jbd




= Pr

(
L∑

m=1

(−2T |gm|2−jymg∗m+jy∗mgm
)
<0|x=ad+jbd

)

= Pr(DQ < 0|x=ad+jbd) (22)

where

DQ =
L∑

m=1

(−2T |gm|2 − jymg∗m + jy∗mgm) = W̄ †HQW̄

(23)

and

HQ =




−2T 1
j 0 0 . . . 0 0

− 1
j 0 0 0 . . . 0 0

0 0 −2T 1
j . . . 0 0

0 0 − 1
j 0 . . . 0 0

...
...

...
...

...
...

0 0 0 0 . . . −2T 1
j

0 0 0 0 . . . − 1
j 0




. (24)

Note that DI and DQ are special cases of the general
quadratic form. Following [19], we can immediately write
the moment generating functions (MGF) of DI and DQ as
follows3:

ϕDI
(s) =

1
|I − sCWHI | exp

{
µ̄† (s−1H−1

I − CW

)−1
µ̄
}

(25a)

and

ϕDQ
(s) =

1
|I − sCWHQ| exp

{
µ̄†
(
s−1H−1

Q − CW

)−1

µ̄

}
(25b)

where CW is the covariance matrix defined in (6).
Equations (25a) and (25b) can also be written in another use-

ful form. Since CW is the covariance matrix, we can obtain its
square root matrix denoted by C

1/2
W such that CW = C

1/2
W C

1/2
W .

Then, if we define V̄ = C
−1/2
W W̄ , where C

−1/2
W is the inverse

of C1/2
W , (19) and (23) can be written as

DI = V̄ †
(
C

1/2
W HIC

1/2
W

)
V̄ (26a)

DQ = V̄ †
(
C

1/2
W HQC

1/2
W

)
V̄ . (26b)

Using an eigenvalue decomposition, we rewrite (26a) and
(26b) as

DI = V̄ †
(
UIΛIU

†
I

)
V̄ (27a)

DQ = V̄ †
(
UQΛQU

†
Q

)
V̄ (27b)

where ΛI = diag(λa1 , λa2 , . . . , λa2L
), ΛQ = diag(λb1 , λb2 ,

. . . , λb2L
), and λai

and λbi
are the eigenvalues of C1/2

W HIC
1/2
W

and C
1/2
W HQC

1/2
W , respectively.

Let X̄I = U †
IC

−1/2
W µ̄ and X̄Q = U †

QC
−1/2
W µ̄. DI and DQ

in (27a) and (27b) can now be written as a weighted sum of

3Note that we have defined the covariance matrix of a vector W̄ as
E(W̄W̄ †) rather than (1/2)E(W̄W̄ †) as in [19].
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noncentral chi-square RVs. Using [13], the MGFs of DI and
DQ are expressed as

ϕDI
(s) =

2L∏
r=1

(
1

1− sλar

)
exp

(
s|xIr

|2λar

1− sλar

)
(28a)

ϕDI
(s) =

2L∏
r=1

(
1

1− sλbr

)
exp

(
s|xQr

|2λbr

1 − sλbr

)
. (28b)

When repeated eigenvalues exist, the MGF expressions (28a)
and (28b) are modified as [20]

ϕDI
(s) =

N∏
r=1

(
1

1 − sλar

)υir

exp

(
y2
Ir
λar

s

1 − sλar

)
(29a)

ϕDQ
(s) =

N∏
r=1

(
1

1 − sλbr

)υqr

exp

(
y2
Qr

λbr
s

1− sλbr

)
(29b)

where N is the total number of distinct eigenvalues, υir and
υqr

are the multiplicity of the eigenvalues λar
and λbr

, respec-
tively, and

y2
Ir

=
∑
k∈κr

|xIr
|2

y2
Qr

=
∑
k∈κr

|xQr
|2

and κr denotes the set of k indexes associated with the rth
distinct eigenvalue.

We now derive the BER expression for an arbitrary square/
rectangular QAM in the generalized fading channel.

A. i.i.d. Fading Channels

With the assumption of i.i.d. fading statistics across the
diversity branches, hm and gm in (3) are i.i.d. Gaussian RVs.
With MRC in i.i.d. Rayleigh or Ricean fading channels, the
conditional probabilities in (13) and (17) are reduced to a
closed-form expression given in [13, eq. (B-21)]. Our general
expression then can be used for the derivation of the BER of
any square/rectangular QAM scheme with MRC and ICE in
i.i.d. Rayleigh/ Ricean fading channels. A special case of 16
QAM is considered in [9].

B. i.n.d. Fading Channels

The fading statistics are different across the diversity
branches. This occurs when different signals may propagate via
completely different paths before arriving at the receiver.

For the i.n.d. case, we derive a closed-form error-rate expres-
sion for Rayleigh fading and present a numerical technique for
Ricean fading to compute the BER performance of an arbitrary
square/rectangular QAM with MRC and ICE.

1) Rayleigh Fading: In a Rayleigh-fading channel, we have
µ̄ = 0, and, therefore, the MGFs defined in (25a) and (25b) are
simplified to

ϕDI
(s) =

1
|I − sCWHI | =

2L∏
k=1

1
1− sλIk

(30a)

ϕDQ
(s) =

1
|I − sCWHI | =

2L∏
k=1

1
1− sλQk

(30b)

where λIL
and λQL

are the lth eigenvalue of matrices CWHI

and CWHQ, respectively.
We assume that RVs gm and ym are i.n.d. Therefore, the

eigenvalues are distinct and the characteristic functions can be
partial factored as

ϕDI
(s)=

2L∑
k=1

aIk

1− sλIk

, aIk
=

2L∏
r=1
r �=k

(
λIk

λIr
− λIk

)
(31a)

ϕDQ
(s)=

2L∑
k=1

aQk

1− sλQk

, aQk
=

2L∏
r=1
r �=k

(
λQk

λQr
− λQk

)
. (31b)

Using (31a) and (31b), we find closed-form expressions for the
conditional probabilities in (18) and (22) as follows:

Pr(DI < 0|x=ad+jbd) =
−1
2πj

ε+j∞∫
ε−j∞

ϕDI
(s)
s

ds (32)

and

Pr(DQ < 0|x=ad+jbd) =
−1
2πj

ε+j∞∫
ε−j∞

ϕDQ
(s)

s
ds (33)

where ε is a small negative number to avoid the pole at s = 0.
Without loss of generality, we assume that (λI1 , . . . , λIt

)
and (λQ1 , . . . , λQt

) are the negative eigenvalues, and (λIt+1 ,
. . . , λI2L

) and (λQt+1 , . . . , λQ2L
) are the positive eigenvalues.

We now illustrate a common procedure for evaluating (32) and
(33). Using Cauchy’s residue theorem, we can write

1
2πj

∫
CR

ϕ(s)
s

ds +
1

2πj

ε+j∞∫
ε−j∞

ϕ(s)
s

ds

=
∑

Re(si)<0

Residue

(
ϕ(s)
s

, s = si

)
(34)

where Cr is a large semicircular arc so that the resulting closed
contour encloses all the singularities sI of ϕ(s) that are located
in the left-half plane (i.e., singular values whose real parts are
negative). Using s = Rejθ and ds = jRejθdθ, we have∣∣∣∣∣∣

1
2πj

∫
CR

ϕ(s)
s

ds

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
1
2π

∫
CR

ϕ(Rejθ)dθ

∣∣∣∣∣∣ ≤ lim
R→∞

C

R2L
. (35)
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The last term follows from the fact that ϕ(s) is given by either
(31a) or (31b). Equation (35) shows that as R → ∞, the first
integral in (34) along the semicircular arc vanishes to zero; thus,
the second integral in (34) is equal to the sum of the residues.
Therefore, using (31a) and (31b), and considering the negative
eigenvalues only, (32) and (33) can be written as

Pr(DI < 0|x=ad+jbd)

= −
t∑

l=1

aIl

λIl


 1

2πj

ε+j∞∫
ε−j∞

ds

s
(
s− 1

λIl

)



= −
t∑

l=1

aIl
(36)

and

Pr(DQ < 0|x=ad+jbd)

= −
t∑

l=1

aQl

λQl


 1

2πj

ε+j∞∫
ε−j∞

ds

s
(
s− 1

λQl

)



= −
t∑

l=1

aQl
(37)

where aIl
and aQl

are defined in (31a) and (31b).
Now that the closed-form expressions for the conditional

probabilities in (13) and (17) are obtained, the BER of an
arbitrary square/rectangular QAM with MRC and ICE in i.n.d.
Rayleigh fading follows from (10) and (16).

2) Ricean Fading: In the case of Ricean fading in i.n.d.
channels, µ̄ �= 0, and a closed-form expression cannot be
found. Employing the result for computing the distribution of
a quadratic form [14], we can compute Pr(DI < 0|x=ad+jbd)
and Pr(DQ < 0|x=ad+jbd) numerically using the following
equations:

Pr(DI < 0|x=ad+jbd) =
1
2
− 1

π

∞∫
0

sin θI(t)
tρI(t)

dt (38)

Pr(DQ < 0|x=ad+jbd) =
1
2
− 1

π

∞∫
0

sin θQ(t)
tρQ(t)

dt (39)

where

θI(t) =
2L∑
k=1

(
tan−1(λak

t) +
|xik |2λak

t

1 + λ2
ak
t2

)
(40a)

ρI(t) =
2L∏
k=1

(
1 + λ2

ak
t2
) 1

2 exp
( |xik |2λ2

ak
t2

1 + λ2
ak
t2

)
(40b)

θQ(t) =
2L∑
k=1

(
tan−1(λbk

t) +
|xqk

|2λak
t

1 + λ2
bk
t2

)
(41a)

ρQ(t) =
2L∏
k=1

(
1 + λ2

bk
t2
) 1

2 exp

(
|xqk

|2λ2
bk
t2

1 + λ2
bk
t2

)
(41b)

where λar
and λbr

are the eigenvalues of C
1/2
W HIC

1/2
W and

C
1/2
W HQC

1/2
W , respectively. As mentioned in [14], the functions

Fig. 2. Plot of BER of a 16 QAM with ICE Case 1 and β = 0.5 for three
different diversity branches.

tρI(t) and tρQ(t) in (38) and (39) increase monotonically
toward ∞. Therefore, the integrals in (38) and (39) can be
truncated over a finite range, with negligible error. After the
computation of the conditional probabilities in (13) and (17),
the BER of an arbitrary square/rectangular QAM with MRC
and ICE in i.n.d. Ricean fading follows from (10) and (16).

C. Correlated Fading

When the diversity branches are correlated, the analysis can
proceed in a similar manner to that of i.n.d Ricean fading. Note
that for the correlated branches m and n, the covariance σgmyn

in the covariance matrix (6) is not zero. Using the covariance
and correlation matrices, the conditional probabilities in (13)
and (17) can be evaluated using (38) and (39).

VI. SIMULATIONS

All the simulations in this section are implemented in Matlab.
Two ICE cases are considered as in [7]: Case 1, α = 1 and
σ2
S = 0.1σ2

n, which allows for the estimation noise to be 10%
of the channel noise; Case 2, in addition to the estimation noise,
an irreducible error in the estimation of the channel exists, i.e.,
σ2
S = 0.001σ2

h + 0.1σ2
n.

For i.n.d. fading channels, we consider an exponential mul-
tipath intensity profile (MIP) with the decay parameter β, i.e.,
γl = γ1 exp{−β(l − 1)}, L = 1, 2, . . . , L.

For analytical results, we used (31) and (32) in (13) and
(17) and then in (10) and (16) to obtain the BER performance
of MRC QAM with ICE. In Fig. 2, the BER performance
of 16 QAM with MRC for Case 1 and for three different
diversity branches is presented. The MIP decay parameter β
is set to 0.5. For both perfect and imperfect estimations, the
BER performance improves when the number of diversity
branches increases. Also, for Case 1, ICE does not change the
slope of the BER curves. Interestingly, as the diversity order
increases, the SNR difference between perfect channel estima-
tion and ICE increases. For example, at a BER of 10−4, the
SNR differences between perfect and imperfect estimations for
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Fig. 3. Plot of BER of an 16 QAM with four diversity branches and ICE
Case 2 for four different channel MIPs.

Fig. 4. Plot of BER of several QAM constellations with two diversity
branches and ICE Case 1 and β = 0.1.

L = 2, 4, and 6 are 2.89, 3.19, and 3.46 dB, respectively. This
shows that as the number of diversity branches increases, the
ICE degradation increases rapidly.

Fig. 3 shows the BER of four branch reception of 16 QAM
for four different channel MIPs for Case 2. The BER with
perfect estimation for each β is also presented for comparison.
The i.i.d. channel case has the best BER performance, and it
degrades as the decay exponent β increases. For Case 2, an error
floor occurs at high values of SNR.

We use (13) and (17) to plot the BER performances of several
square and rectangular QAM constellations. We assume a two-
branch MRC receiver, and β = 0.1. The analytical results along
with Monte Carlo simulations are shown in Figs. 4 and 5. For
comparison between the two estimation models, we use Case 1
and Case 2 in Figs. 4 and 5, respectively, for ICE. These two
figures show that to transmit an extra bit per dimension, the
SNR must be increased by 3–6 dB. Also, for Case 1 (Fig. 4),
both analytical and simulation results show a constant decrease

Fig. 5. Plot of BER of several QAM constellations with two diversity
branches and ICE Case 2 and β = 0.1.

Fig. 6. Plot of BER of a 16 QAM with two diversity branches, ICE Case 1,
and β = 0.5 for three different Ricean factors.

while in Fig. 5 (Case 2), an error floor occurs at high values
of SNR.

Fig. 6 shows the average BER of 16 QAM with two di-
versity branches and ICE Case 1 for different Ricean factors.
Analytical bit error probability is calculated using (38) and (39)
numerically. The finite range used in calculating (38) and (39)
numerically needs to be increased as SNR increases. Note that
the SNR difference between perfect channel estimation and ICE
remains constant and does not change with the increase of the
Ricean factor. As expected, the system performs better as the
Ricean factor increases.

For correlated channels, we assume that the Ricean factor pa-
rameter K is identical for all branches. For simplicity, we also
consider equally correlated channels with the fading correlation
factor ρ. Fig. 7 shows the BER of a two correlated branches
16 QAM with ICE Case 1 for five different correlation factors.
For simulations, we have used the technique presented in [21],
and (38) and (39) have been used to obtain the average BER
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Fig. 7. Plot of BER of a 16-QAM constellations with two correlated diversity
branches, ICE Case 1, and K = 5 for five different correlation factors.

Fig. 8. Plot of BER of a 16-QAM constellations with two correlated/
uncorrelated diversity branches and ICE Case 1 for four different Ricean
factors.

analytically. We observe that as ρ increases, the performance of
the system degrades. This is more pronounced at higher SNRs.

Fig. 8 plots the BER curves for both correlated (ρ = 0.5) and
uncorrelated (ρ = 0) two diversity branches of 16 QAM with
ICE Case 1, for Ricean factors k = 0, 5, 10, and 30. Note
that as SNR increases, the SNR difference between correlated
and uncorrelated cases increases as well. Also, for K > 0
and a specific average BER, the SNR difference between the
correlated and uncorrelated cases decreases as K increases.

In Figs. 2–8, both simulation and analytical results are pre-
sented, and they are in excellent agreement.

VII. CONCLUSION

Channel estimation is an essential element of coherent digital
demodulation, and ICE can severely degrade the BER of digital
modulations with MRC diversity reception. The most general

case involves nonidentical and possibly correlated fading, arbi-
trary QAM, and Ricean fading, which includes Rayleigh fading
as a special case. This problem has not been comprehensively
addressed before. In this paper, we analyzed the effect of ICE on
the BER of an arbitrary square/rectangular Gray-coded QAM
in generalized Ricean fading channels, when MRC reception
is employed. We derived a general expression for the bit error
probability of an arbitrary square/rectangular QAM scheme.
We also derived the necessary conditional probabilities in
closed form for independent and i.n.d. Rayleigh-fading chan-
nels, with MRC and ICE. An efficient numerical method has
also been developed to compute the conditional probabilities for
i.n.d. and correlated Ricean fading. In addition, we presented
extensive Monte Carlo simulations that agreed excellently with
our analytical results.
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