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Capturing dynamic patterns of task-based functional connectivity with EEG
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A new approach to trace the dynamic patterns of task-based functional connectivity, by combining signal
segmentation, dynamic time warping (DTW), and Quality Threshold (QT) clustering techniques, is presented.
Electroencephalography (EEG) signals of 5 healthy subjects were recorded as they performed an auditory odd-
ball and a visual modified oddball tasks. To capture the dynamic patterns of functional connectivity during the
execution of each task, EEG signals are segmented into durations that correspond to the temporal windows of
previously well-studied event-related potentials (ERPs). For each temporal window, DTW is employed to mea-
sure the functional similarities among channels. Unlike commonly used temporal similarity measures, such as
cross correlation, DTW compares time series by taking into consideration that their alignment properties may
vary in time. QT clustering analysis is then used to automatically identify the functionally connected regions in
each temporalwindow. For each task, theproposed approachwas able to establish a unique sequence of dynamic
pattern (observed in all 5 subjects) for brain functional connectivity.

Published by Elsevier Inc.
Introduction

Studies of resting state and task-based functional connectivity
aiming to identify similar functionally behaving regions in the brain
have received increased attention over the past few years. Aside from
healthy populations, different patient groups, including patients with
autism (Koshino et al., 2005, 2008; Pollonini et al., 2010), traumatic
brain injury (TBI) (Kasahara et al., 2010; Mayer et al., 2011), Alzheimer
(Dauwels et al., 2010a, 2010b; Uhlhaas and Singer, 2006), and depres-
sion (Greicius et al., 2007; Sheline et al., 2010), have been the subject
of functional connectivity studies. These studies have identified differ-
ent connectivity networks in patient groups compared to healthy
people. A number of imaging modalities, each offering their own
advantages and disadvantages, have been employed to investigate the
brain's functional connectivity (Biswal et al., 1995; Horwitz et al.,
1998; Lowe et al., 1998; Lu et al., 2010; Stam, 2004). Imagingmodalities
such as electroencephalography (EEG) and magnetoencephalography
(MEG) are capable of measuring neuronal activity directly and offer
high temporal resolutions (in the range of milliseconds) while their
spatial resolution is usually in the order of centimeters. In contrast,
functional Magnetic Resonance Imaging (fMRI), which basically mea-
sures the hemodynamic response, provides high spatial resolution,
e).
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while its temporal resolution is in the range of seconds. In general, the
imaging modality of choice is determined by the objective of the study.

It has been shown that the interactions between brain regions
during the execution of a task are temporally dynamic (Büchel and
Friston, 1998; Kang et al., 2011; Kelly et al., 2008; Liu et al., 1999).
These interactions generally happen within milliseconds intervals.
EEG by providing high temporal resolution can therefore, be employed
to capture these short-lasting events (Bhattacharya and Petsche, 2005;
Koenig et al., 2002; Kramer et al., 2008; Lehmann et al., 2012;
Micheloyannis et al., 2006; Pijnenburg et al., 2008).

Assessing functional connectivity requires employing an appropri-
ate measure of functional coupling among brain regions. Accordingly,
several measures for detecting functional connectivity in either time
domain or frequency domain have been proposed (Bhattacharya and
Petsche, 2005; Jalili and Knyazeva, 2011; Kramer et al., 2008;
Lehmann et al., 2012; Lithari et al., 2011; Micheloyannis et al., 2006;
Pijnenburg et al., 2008). To trace the dynamic patterns of functional
similarity among cortical regions during the execution of a task, analysis
in the time domain would be appropriate.

Furthermore, as discussed above, stimulus-elicited brain responses
are short-lasting events (John, 1990; Koenig et al., 2005; Lehmann
et al., 1998, 2005). Identifying the temporal windows corresponding
to these events would be critical in studying task-based functional con-
nectivity. Ignoring these variations can lead to dismissing the dynamic
interactions of the brain regions (Kang et al., 2011). In the context of
EEG, the event-related potentials (ERPs) consisting of a series of elicited
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Fig. 1. (a) Target (b) non-target frequent (c) and non-target infrequent stimuli.
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components (ERP components) manifest these transient variations
after a stimulus is presented. The ERP components are time-locked
events that reveal several sensory, cognitive and motor processes
(Alexander et al., 1995). Hence, part of our proposed method of identi-
fying functionally connected regions during the execution of the task, is
concerned with studying EEG signals within the expected temporal
windows of a number of previously studied ERP components.

In the present study, we attempt to establish a dynamic pattern for
task-based functional connectivity, which will enable us to trace func-
tionally connected regions during the execution of the tasks. To achieve
this goal, first, EEG signals are divided into several segments. The
temporal windows for EEG segmentation are set to be the same as the
time intervals, where the occurrence of ERP components is expected.
Second, we employed the dynamic time warping (DTW) algorithm to
measure similarity among signals within each segment. DTW is a com-
mon practice in the field of speech processing (Sakoe and Chiba, 1978)
and is used to compare time series by taking into consideration that
their alignment properties may vary in time. In other words, DTWmea-
sures similarity between two signals by compressing/expanding them
and looking for their best nonlinear temporal alignment. With respect
to the non-stationary behavior of the EEG signals (John, 1990; Koenig
et al., 2005; Lehmann et al., 1998, 2005), employing DTW seems to be
more appropriate in comparison to the conventionally used methods
like cross-correlation (Jalili and Knyazeva, 2011; Lithari et al., 2011),
which generally requires the assumption of stationarity. Therefore, to
identify the functionally connected regions in each segment's temporal
window, a similarity matrix using DTW is constructed. It should be
noted that the employed DTW technique is not the only approach that
addresses the problem of nonlinearity quantification among time
series, and there are other techniques (Dauwels et al., 2009a, 2009b,
2012; Quiroga et al., 2002; Victor and Purpura, 1997) which have
addressed this issue in different ways. Here we employed the DTW
approach. Finally, the similaritymatrix is used as an input to the Quality
Threshold (QT) clustering (Heyer et al., 1999) algorithm. QT is a
technique, which is used for unsupervised categorization of data sets.
One of the advantages of using QT over other clustering methods such
as k-means (Hartigan andWong, 1979) is that it does not require spec-
ifying the number of clusters a priori. Moreover, the outcome of the
algorithm is not dependent on the order of the points to be clustered,
and it always returns the same cluster outcomes.

The rest of the paper is organized as follows. First, experimental
paradigms, data acquisition process, and analysis techniques are
described. Next, results are presented and discussed.
Methods

Experimental paradigms and data acquisition

Five right handed subjects (aged 27.2±5.1 years) participated in
this study. All subjects provided written informed consents approved
by the Georgetown University Institutional Review Board prior to the
experiments. They had self-reported normal hearing and normal
vision (corrected in one case).

For each participant, both tasks were completed in one session last-
ing about two hours. Two versions of the oddball paradigm, a modified
visual (Wang et al., 1999) and an auditory (IRAGUI et al., 1993) were
used. For the visual task, sequences of three different stimuli (shown
in Fig. 1) were presented. Each stimulus was presented for 50 ms,
with inter-trial interval (ITI) of 1000–2000 ms. The plus sign image
(Fig. 1-a) was designated as a target stimulus with the appearance
probability of 15%. Two other images appeared as frequent (Fig. 1-b)
and infrequent (Fig. 1-c) non-target stimuli with the probability of
60% and 25%, respectively. Overall, 45 target and 250 non-target stimuli
were presented. Subjects were asked to press a button when a target
stimulus appeared on the screen.
For the auditory oddball task, the auditory stimuli were presented
for 50 ms in duration with an ITI of [1000–2000] ms. The stimuli were
pure tones of 1000 Hz (non-target) and 2000 Hz (target) in frequency.
The target stimuluswas presentedwith probability of 15%with an over-
all of 45% targets versus 250 non-target stimuli.

EEG data acquisition and preprocessing

Brain potentials were recorded using a 128-channel EEG system
(Electrical Geodesic, Inc., Eugene, OR). The signals recorded from each
channel were first visually examined for motion artifacts. Single trials
impacted bymotionwere identified and removed from further analysis.
The signal quality in few channels was found to be poor (possibly due to
the dryness of the sensors during the recording). These channels were
replaced by the average of their neighboring channels. For every partic-
ipant, average ERP waveforms for target stimuli-related trials of both
tasks (visual/auditory) were computed. To filter the physiological arti-
facts, the signals were high pass filtered at 1 Hz. Other major artifacts
related to eye blink or muscle activities were then removed by
employing the Independent Component Analysis (ICA) (Hyvärinen
and Oja, 2000) technique.

ICA aims at decomposing a linear mixture of measured EEG signals
into the contributing sources, with the assumption that the sources
are statistically independent. Since artifacts and signals of physiological
sources are expected to be independent, the ICA algorithm can be used
to separate them. If x is a set of nmeasured EEG signals, and element ai,j
in matrix A specifies the contribution of source sj in matrix s to the
signal xi, one can write:

x ¼ As: ð1Þ

To retrieve the source signals, the algorithm looks for maximum
independency and estimates the unmixing matrix W, where W=A−1.
As a result, each signal source, si, can be defined as:

si ¼ wi;1x1 þwi;2x2 þ…þwi;nxn; ð2Þ

wherewi,j specifies theweighted contribution of xi. To identify which of
the estimated independent components are in fact the artifacts, an ac-
tivity map localizing the contribution of each channel (wi,,j coefficients)
was plotted for each source. For example, for the components corre-
sponding to eye blinks, channels placed closer to the eye presented
strong contributions. After identifying the artifacts' components, they
were removed, and the signal matrix was reconstructed. Signal prepro-
cessing, including data visualization, filtering, and ICA analysis were
performed in Matlab using the EEGLAB toolbox (Delorme and Makeig,
2004).

ERP segmentation

Both oddball tasks involved target and non-target stimuli. For
this study, only epochs corresponding to the target stimuli were
extracted and averaged. Epoch length was 1000 ms intervals (100 ms
prestimulus and 900 ms poststimulus). To track possible changes in
the functionally connected regions during the execution of each task,
the ERP signals were segmented to a number of shorter temporal
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windows. Segments were obtained by extracting portions of the
ERP signals where a number of well-studied ERP components were
expected to be evoked. Selected temporal windows for the visual task
were P100, N100, N200, and P300, with the expected latency windows
of [50–190], [50–190], [150–300], [250–500] ms, respectively. For the
auditory task, the same temporal windows were used except for the
P100 and N100 intervals, which were shortened to [80–190] and
[85–190] ms, respectively. All the above mentioned intervals were
selected based on the previously reported time windows for the corre-
sponding ERP components (Alexander et al., 1995; Brown et al., 2007;
Folstein and Van Petten, 2008; Itagaki et al., 2011; Kayser and Tenke,
2006; Kayser et al., 1998).
Fig. 3. Two time series, which have similar pattern of activity but are not aligned in the
time domain. Matrix C is the cost matrix in which the optimal warping path is shown
as the sequence of solid squares (shown in red).
Dynamic time warping

As previously stated, the majority of the functional connectivity
studies performed in the time domain use cross-correlation to analyze
the similarities among signals. The major limitation of this technique
is that it fails to capture the similarities if the alignment properties of
the signals vary in time. To address this issue and to assess brain func-
tional connectivity during the execution of a task more accurately, we
have employed DTW technique (Sakoe and Chiba, 1978).

DTW finds the optimal alignment between two time series
through a non-linear compression and extension of the time axes (as
depicted in Fig. 2). In fact, the basic problem that DTW attempts to
solve is how to align the two time series in order to generate the most
representative distance measure of their overall difference. Fig. 3
illustrates how the analysis is done. Suppose we are interested in com-
puting the DTW distance between two EEG signals d=(d1,d2…dN) and
e=(e1,e2,…,eN) of length N. The first step is to calculate the distance be-
tween each point in signal d and all the points in signal e. Euclidean dis-
tance metric can be used for such distance computation. Therefore, for
every point in signal d, N measured distance values are obtained,
resulting in an N×N matrix (cost matrix) C∈ℝN×N (Fig. 3). The signals
are associated to thismatrix such that the bottom-left and top-right cor-
ners of the matrix represent the distance between their beginning and
the ending points, respectively.

Once the cost matrix is formed, the second step is to find the best
alignment between signals d and e. This alignmentmay be sought in a
form of a warping path, p, consisting of a set of elements taken from
matrix C (p=[p1… pL], where N≤L≤2 N-1). A number of conditions
can be enforced on this search, to reasonably limit the number of
potential path candidates. For our analysis, only the paths satisfying
the following conditions were considered:

• Boundary condition: start and end points of the warping path have to
be the very first and last points of the given time signals, respectively

• Monotonicity condition: For any two consecutive points of the path,
pk=ci,j and pk-1=cm.n, (ci,j and cm,n∈C), the following condition
should be satisfied: i-m≥0, j-n≥0. This condition guarantees that
the path will not turn back on itself.

• Step size condition: restricts the path to advance only one step at a
time
Fig. 2. Two hypothetical time series with an overall similar shape but not well aligned
along the time axis. To find the optimal alignment between two time series, one point
from the first time series may be compared against a number of points from the second
time series, after (Keogh and Ratanamahatana, 2005).
The optimal warping path (optimal alignment) is the one having
the minimal total cost among all possible warping paths. Mathemati-
cally the optimal warping path (dDTW) can be formulated as

dDTW ¼ min
∑L

L¼1pL
L

 !
: ð3Þ

To capture functional connectivity during the execution of both
oddball tasks, for every segment of the 128 recorded EEG signals,
DTW algorithm was applied and a 128×128 similarity matrix was
constructed.

QT clustering

Automatic identification of themost similar-behaving channels dur-
ing various ERP components was carried out by employing a clustering
algorithm called theQuality Threshold (QT). This algorithmwas initially
developed for the analysis of gene expression data (Heyer et al., 1999).
As explained in the previous section, for every segmented signal, a
similaritymatrixwas computed through the DTWprocess. The QT algo-
rithm beginswith considering each of the 128 channels as a single clus-
ter. In the next step, each cluster is expanded by adding channels with
distance from the given cluster (taken from the similarity matrix)
below a certain threshold set by the user. Once this is done for all clus-
ters, the most populated cluster is retained and others are discarded.
The same procedure is repeated for the discarded channels until either
all channels are clustered, or the largest cluster does not pass the
user-defined “minimum number of points” criteria.

Results

For each participant, applying the QT clustering algorithm on the
segmented EEG signals resulted in the identification of the channels
(brain regions) that, based on the DTW criteria, were functioning
similarly during the corresponding time interval.

Fig. 4-a illustrates the color-coded clustering results (on a 2D
128-sensor map) applied to the EEG signal within the time window
[50–190]ms for one of the subjects. The representative temporal signals
for each cluster are plotted in Fig. 4-b. For each cluster, the solid line
corresponds to the average value of the signals of all the channels in
that cluster, and the dash lines represent the standard deviation of the
signals. It can be seen that in this temporal window, the electrodes
placed over the posterior region show a similar positive-going ERP
component (shown in green), whereas the electrodes located at other
regions exhibit different behavior (shown in red and black).

image of Fig.�2
image of Fig.�3


Fig. 4. (a) 2Dmap for functionally connected regions over the time interval of [50–190] ms shown by green, black, and red colors, (b) for each cluster, a cluster-representative signal
obtained by averaging ERPs over all the channels (solid line), and its corresponding standard deviations (dash lines) are plotted.
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Asmentioned in the previous section, to cluster the data, QT cluster-
ing requires a user defined threshold value, which corresponds to the
similarity level between the signals in each cluster. Setting a threshold
value, which results in clusters with the most analogous activity
pattern, can be a challenging task: a low threshold value may result in
large clusters containing channels with distinct neuronal activities,
while a high threshold value might result in a large number of smaller
clusters. We tried several threshold values for each subject, and those
values that resulted in clusters with a high intra-cluster similarity
(a small standard variation for the cluster-average signal) and a low
inter-cluster similarity (distinct activity patterns for cluster-average
signals) were selected.

Another challenge in the group analysis was the variations in the
head shape and size across subjects, as these variations resulted in
slightly different electrode positions across subjects. In our analysis,
we focused only on the activation regions, which were common in all
the subjects, thus, ignoring the inter-subject variations in the spatial
distribution of brain activity.

For each EEG segment, the group analysis involved finding the clus-
ters that were spatially common across all the subjects. The clusters
were selected if their corresponding ERP signals were consistent with
the expected activity for the selected temporal window. As a result,
the region identified as functionally connected was a subset of the
corresponding ERP activity map for the given temporal window.

Fig. 5 presents the group analysis results showing the 3D activation
maps of functionally connected regions for multiple segments of both
the auditory and the modified visual oddball tasks. The averaged and
the standard deviation of the corresponding ERP waveforms (for one
of the subjects as an example) are also plotted for each component.
The red area on the scalp demonstrates the identified functionally
connected regions whereas the yellow strip around this area deter-
mines the boundary of that region. Using the proposed technique for
the auditory task, we identified functionally connected regions corre-
sponding to all the four designated time intervals. For the visual task,
the functionally connected regions were identified for three of four
designated time intervals.
Cluster evaluation

In this section, we attempt to evaluate the performance of the clus-
tering algorithm. Since there was no external information regarding the
potential clustering structure, an unsupervised approach for measuring
the performance of the clustering is being used. We determined the
quality of the clustering algorithm by measuring the compactness of
the clusters (cluster cohesion), as well as cluster separation (isolation).
Cluster cohesion suggests how closely the ERP signals in a single cluster
are, whereas cluster separation determines how well separated a clus-
ter is from other clusters.

A commonly usedmethod that takes into consideration both cluster
cohesion and cluster separation is called silhouette coefficient (Tan
et al., 2006). To calculate this coefficient, first the average DTWdistance
of the ith ERP signal to all other ERP signals in its own cluster (wi) is
computed. Then, for the ith ERP signal, the distance to the closest cluster
(ri) is determined. The silhouette coefficient for the ith ERP signal is
then computed by the following equation:

silhouettei ¼ ri−wið Þ=max ri;wið Þ: ð4Þ

The silhouette coefficient value for every ERP signal would vary
between−1 and 1. Overall, a nonnegative value for the silhouette coef-
ficient is desirable. This may be verified from (4), where the negative
value corresponds to a case where the average distance of an ERP signal
in a cluster from other members of the cluster is larger than its distance
from members of other clusters. Furthermore, a positive silhouette
coefficient value (ri>wi) suggests that the ERP signal is more similar
to the members of its own cluster as opposed to the members of other
clusters. In particular, values closer to 1 (ri>>wi), relate to improved
performance for the clustering task.

The average silhouette coefficient of a single cluster (representing
the functionally connected regions) for each subject, was determined
by averaging over silhouette values of all the cluster members. Next,
computed silhouette coefficient values for the selected cluster across
subjects were determined by averaging the cluster's silhouette coeffi-
cient of all subjects. The results are summarized in Table 1.

It has been found in Rousseeuw andKaufman (1990) that an average
silhouette coefficient greater than 0.5 indicates reasonable partitioning
of data whereas values less than 0.2 suggest poor partitioning of the
data. As can be seen in Table 1, the silhouette coefficient for each cluster
suggests that a precise partitioning of the data has been performed. In
other words, the ERP signals corresponding to a functionally connected
region have shown a pattern of activity that are strongly similar to each
other, and are well distinct from the ERP signals belonging to other
regions.

Discussion

Our proposed approach of segmenting the EEG signals into multiple
temporal windows, followed by identifying the functionally connected

image of Fig.�4


Component Auditory Task Visual Task

N100

P100

N200

P300

Fig. 5. ERP signal and its corresponding 3Dmap of the functionally connected regions distributed over the scalp for both auditory (left column) and visual (right column) tasks. The red
region over the scalp demonstrates the identified functionally connected regions across all subjects whereas the surrounding yellow strip determines the boundary of the region.
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regions (by employing DTW and clustering techniques), has enabled us
to trace the brain interactions during the execution of both oddball
tasks.We considered four temporalwindows, ranging from early stages
of the ERP (50–190 ms for visual and 80–190 ms for auditory tasks) to
later intervals (250–500 ms). The early evoked potentials, such as the
P100 and N100 components, are dependent on the stimulus type (audi-
tory or visual), and are assumed to be generated in the primary auditory
or visual cortices, respectively (Herrmann and Knight, 2001). In con-
trast, the later ERP components, such as P300, are independent of the
stimuli type and their sources are localized outside the primary sensory
cortices (Katayama and Polich, 1999; Polich, 2007).

The scalp topography of the functionally connected regions obtained
by our technique (Fig. 5) in reference to the well-established ERP com-
ponents complies with the aforementioned expected scalp distribution

image of Fig.�5


Table 1
Average silhouette coefficient value corresponding to functionally connected regions
shown of Fig. 5. Silhouette coefficient value varies between−1 and 1 whereas a positive
silhouette coefficient value suggests that the ERP signal is more similar to its own cluster
members as opposed to the members of other clusters. Values closer to 1 correspond to
improved performance for the clustering task.

Component Silhouette coefficient/auditory
task

Silhouette coefficient/visual
task

N100 0.87
P100 0.90 0.92
N200 0.86 0.90
P300 0.91 0.89
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of brain activation. For the auditory task, the scalp topography of the
functionally connected regions during N100 and P100 components
within the bilateral temporal lobes suggests the involvement of the
primary auditory cortex. The region of increased connectivity during
the N200 component appeared to be within the frontocentral part of
the scalp. This result is consistent with the previous reports for the
N200 scalp topography (Alho, 1995; Folstein and Van Petten, 2008;
Patel and Azzam, 2005). The frontocentral contributed in forming the
functionally connected regions during the P300 temporal window,
which is in line with the previous studies (Bledowski et al., 2004;
Brown et al., 2007; Katayama and Polich, 1999; Patel and Azzam, 2005).

For the visual task, during the early P100 component ([50–190]ms),
functionally connected bilateral regions were revealed over the visual
cortex. The area of increased functional connectivity did not change
significantly for the temporal window of the N200 component
([150–280] ms). Significant connectivity was observed over the occipi-
tal lobe along with a partial involvement of the parietal lobe. This is
consistent with the previous reports, which have identified sources of
the N200 component within the parietal and more posterior areas
(Folstein and Van Petten, 2008; Ogura et al., 1991). The scalp map of
the functionally connected regions during the P300 component
[250–500] ms shows a change from the posterior to the frontocentral
distribution.

The functionally connected regions during the execution of the
auditory task were revealed in two major areas: the temporal lobe
(during the early ERP component) and the frontal-parietal observed
with the involvement of occipital (during the early ERP component)
and occipital-parietal and frontal lobes (the later ERP component).
Overall, it seems that the functionally connected regions during the
early poststimulus periods tend to vary systematically with the phys-
ical modality of the stimulus, whereas the later ERP components vary
in relation to the higher-order processing mechanisms of the brain
that become activated later in response to the stimulus.

The captured spatio-temporal dynamic changes in the functionally
connected regions during the execution of the oddball tasks provide
Fig. 6. 3D maps of functionally connected regions obtained by two similarity techniques
over the full length signal: (a) DTW and (b) cross-correlation.
evidence that the task-related functional connectivity follows a dynam-
ic pattern, and is not bounded to a static set of brain regions. We have
been able to capture this temporal dynamic in the functional connectiv-
ity pattern at time intervals of 100 ms duration. Naturally, the method
can work at shorter time intervals if it is of interest.

To compare our technique with the commonly used correlation
technique, we analyzed functionally connected regions for the audi-
tory task using both the DTW and the cross-correlation methods
applied on the full length signal. We then applied QT clustering, and
identified functionally connected regions that were common across
all subjects.

Fig. 6-a shows the functionally connected regions captured by DTW
when applied to the full length signal. As it can be seen, the functionally
connected regions corresponding to the N100 and P100 components
(which were revealed by our segmentation approach as seen in Fig. 5)
were not detected with this approach. Full length signal analysis only
identified the frontocentral part of the brain as the functionally
connected region. Note that the analysis on the segmented signal for
the P300 component had identified a comparable region (with a
broader spatial distribution). Results for the cross-correlation analysis
on the full length signal are shown in Fig. 6-b. Similar to the DTW
method, the cross-correlation technique also revealed the frontocentral
part as the region of connectivity (slightly smaller in size compared to
the DTW) and also was not able to capture the functionally connected
regions corresponding to the P100 and N100 as was obtained when
considering segmentation.

As seen in Fig. 6, compared to cross-correlation, DTW has identified
a larger area for functionally connected regions. This can be explained
by the fact that unlike cross-correlation, DTW also considers the
nonlinear alignment of the signals. Therefore, the larger frontocentral
area (revealed by the DTW) could be an indication of the brain regions
with nonlinear similarity behavior.

It should be emphasized that in this paper, when looking for func-
tionally connected regions, we were only interested in identifying
the regions that were similarly “activated” (showing similar positive/
negative ERP components). However, the technique is not bounded to
activation signals, and can be used to reveal the functionally similar
“behaving” regions in the broader sense. For example, the technique
can be used to trace the regions of the brain where there are no activa-
tions during the execution of the task.

Our proposed approach enables tracing the task-based functional
connectivity over the scalp, and has the potential to become a useful
tool for conducting research in the field of cognitive neuroscience. We
demonstrated that our technique can identify functional connectivity
in a more accurate way compared to other existing techniques. It is
expected that in healthy individuals, every task can have a unique
dynamic functional connectivity pattern which might differ from that
of patient population. Comparing such dynamic patterns between the
two groups could further help clinical investigators to identify the
underlying impairments of brain functional connections in the patient
groups.
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