Routing Problem Formulation (1/9)

• When source and destination are connected by a direct link (either or shared or dedicated), data packets may be simply addressed to the destination and transmitted over the link.
• Q: How is data forwarded from source to destination over a potentially multi-hop path?
Routing Problem Formulation (2/9)

- **Connection-oriented service**: An end-to-end to “virtual channel” needs to be established between source and destination before data can be transferred.

![Connection-oriented service diagram](image)

- E.g., circuit switch telephone network

Routing Problem Formulation (3/9)

- **Connectionless service**: No session setup is required as data forwarding decisions are made on a real-time hop-by-hop basis.

![Connectionless service diagram](image)

- E.g., packet switched datagram forwarding network
Routing Problem Formulation (4/9)

• Typical Switch/Router:
 – Incoming links
 – CPU and buffer
 – Output links
 – Output link buffers

Routing Problem Formulation (5/9)

• Routing function implementations:
 – Table-driven routing: Each node maintains a table that maps a packet’s ID to an outgoing link and each incoming packet must be compared with a corresponding table entry
 – Table-free routing: No table look-up required (to reduce processing time) as the outgoing link for the incoming packet is specified either explicitly or implicitly in the packet header
Routing Problem Formulation (6/9)
Routing is regarded as layer 3 (network layer) function

- Path selection
 - Each end-to-end path is associated with a path cost, e.g.,
 - Total number of hops in path
 - Total end-to-end path delay
 - For each hop in the end-to-end path there is an associated link cost, e.g.,
 - Cost of 1 per hop
 - Link cost that is inversely proportional to the link transmission rate
 - Average total delay to deliver a new packet arrival to the next node in the path
 - Two costs: Low cost for when the queue length is below a threshold and a high cost otherwise
Routing Problem Formulation (8/9)

• Link delay metric
 – An important link cost metric in many networks is the average delay associated with forwarding a packet on a particular link
 – Components of a link delay metric
 • Packet transmission delay
 (There may also be delays associated with contending for media access on shared (multi-access) links)
 • Queuing delay while a packet waits its turn for access to the link transmission buffer
 • Estimation of link propagation delay
 • Processing delay at a switch (e.g., table look-up)

Routing Problem Formulation (9/9)

• Classification of routing schemes
 – Static versus dynamic:
 • Dynamic: Best-path computation is updated frequently based on (near) real-time network measurements
 • Static: Best-path information is updated infrequently based on long-term projected network conditions
 – Centralized versus distributed
 • Centralized: A single node or site is responsible for all best-path computations
 • Distributed: All network nodes are involved in the best-path computations
Shortest Path Procedures

- To compute the best path between a pair of nodes, shortest-path (i.e., least-cost-path) procedures are often used.
- Link costs are inputted to some algorithm (either centralized or distributed) and routing table information is outputted.
- Notation
 - \(c_{v,w} \equiv \text{Cost of the link connecting nodes } v \text{ and } w \) \((c_{v,w} = \infty \text{ if no link exists})\)
 - \(C_{v,w} \equiv \text{Cost of the best-known path between } v \text{ and } w \) \((C_{v,w} = \infty \text{ if no path is currently known})\)
 - \(P_{v,w} \equiv \text{Order list of nodes comprising the best-known shortest path from } v \text{ to } w \)

Network Graphs (1/5)

- It is often useful to discuss networks in terms of a graph.
- \(G = (V,E) \) denotes a graph consisting of a set of vertices \(V \) (i.e., nodes) inter-connected by a set of edges \(E \) (i.e., links).
- An edge \(e \in E \) of a directed graph is represented as an ordered pair \((u,v)\), where \(u \in V \) and \(v \in V \)
 - Here, \(u \) is the initial vertex and \(v \) is the terminal vertex.
 - For the purposes here, it is assumed that \(u \neq v \).
Network Graphs (2/5)
• Example, an "un-weighted" and directed graph:

\[
\begin{pmatrix}
\infty & 1 & \infty & \infty \\
\infty & \infty & 1 & 1 \\
\infty & \infty & \infty & \infty \\
1 & 1 & \infty & \infty \\
\end{pmatrix}
\]

\[c = \begin{bmatrix}
2 & 4 \\
3 & 1
\end{bmatrix}\]

\[V = \{1,2,3,4\}, \ E = \{(1,2),(2,3),(2,4),(4,1),(4,2)\}\]
– Although \(E\) is un-weighted, uniform weights might be assigned to the edges
– Thus, \(E\) may be represented by a weight, or cost, matrix \(c\), where \((u,v) \notin E \leftrightarrow c(u,v) = \infty\)

Network Graphs (3/5)
• Example, an un-weighted and undirected graph:

\[
\begin{pmatrix}
\infty & 1 & \infty & 1 \\
1 & \infty & 1 & 1 \\
\infty & 1 & \infty & \infty \\
1 & 1 & \infty & \infty \\
\end{pmatrix}
\]

\[c = \begin{bmatrix}
2 & 4 \\
3 & 1
\end{bmatrix}\]

\[V = \{1,2,3,4\}\]
• \(E = \{(1,2),(1,4),(2,3),(2,4)\} \leftrightarrow \{(2,1),(4,1),(3,2),(4,2)\}\)
– An edge \(e \in E\) in this example is an unordered pair \((u,v) \leftrightarrow (v,u)\)
– An undirected graph yields a symmetric cost matrix \(c\)
Network Graphs (4/5)

- Example, a directed graph with non-uniform costs:

\[V = \{1, 2, 3, 4\} \]

\[E = \{(1, 2), (2, 3), (2, 4), (4, 1), (4, 2)\} \]

- Q: Why might link costs be asymmetric?
- Q: How many edges can there be in a directed graph?

\[
c = \begin{bmatrix}
\infty & 4 & \infty & \infty \\
\infty & \infty & 2 & 3 \\
\infty & \infty & \infty & 4 \\
1 & 9 & \infty & \infty \\
\end{bmatrix}
\]

Network Graphs (5/5)

- Shortest path spanning tree (SPST) ≡ A tree (T) rooted at a particular node, say s, such that the minimum cost paths from s to each of the other network nodes is contained in T

Network Graph

SPST rooted at node 1

SPST rooted at node 4
Shortest Path Forward Tree (1/3)

- A tree consisting of the shortest (directed) paths from a source node s to all other nodes in the network
- May be computed by Dijkstra’s algorithm
 - Maintains a set S of nodes to which shortest paths have been found (initially $S = \{s\}$)
 - At each step, find a node $v \in V - S$ such that $C_{s,v}$ is among nodes all nodes in $V - S$
 - Add v to S: $S = S \cup v$
 - Nodes are added to S until $S = V$

Shortest Path Forward Tree (2/3)

Dijkstra Algorithm:

\[
\begin{align*}
S &= \{s\}; \\
U &= V - \{s\}; \\
\text{For } v \in U &\text{ do} \\
&\quad C_{s,v} = c_{s,v}; \\
&\quad \text{If } C_{s,v} < \infty \text{ then } P_{s,v} = \{s,v\}; \\
\text{EndFor} \\
\text{While } U \neq \emptyset &\text{ do} \\
&\quad \text{Find } w \notin S \text{ for which } C_{s,w} = \min_{v \in U} C_{s,v}; \\
&\quad S = S \cup \{w\}; U = V - \{w\}; \\
&\quad \text{For all } v \notin S &\text{ do} \\
&\quad &\quad \text{If } C_{s,w} + c_{w,v} < C_{s,v}; \\
&\quad &\quad &\quad C_{s,v} = C_{s,w} + c_{w,v}; \\
&\quad &\quad &\quad P_{s,v} = P_{s,w} \parallel v; \\
&\quad &\text{EndIf} \\
&\quad \text{EndFor} \\
\text{EndWhile}
\]

Algorithm complexity?
Shortest Path Forward Tree (3/3)

Dijkstra’s Algorithm Example

Network Graph

Shortest Path Forward Tree

<table>
<thead>
<tr>
<th>Iter</th>
<th>S</th>
<th>P_{A,B}</th>
<th>C_{A,B}</th>
<th>P_{A,C}</th>
<th>C_{A,C}</th>
<th>P_{A,D}</th>
<th>C_{A,D}</th>
<th>P_{A,F}</th>
<th>C_{A,F}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(A)</td>
<td>(A,B)</td>
<td>3</td>
<td>-</td>
<td>∞</td>
<td>-</td>
<td>∞</td>
<td>(A,E)</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>(A,B)</td>
<td>(A,B)</td>
<td>3</td>
<td>(A,B,C)</td>
<td>18</td>
<td>-</td>
<td>∞</td>
<td>(A,E)</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>(A,B,E)</td>
<td>(A,B)</td>
<td>3</td>
<td>(A,B,C)</td>
<td>18</td>
<td>(A,E,D)</td>
<td>12</td>
<td>(A,E)</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>(A,B,D,E)</td>
<td>(A,B)</td>
<td>3</td>
<td>(A,E,D,C)</td>
<td>13</td>
<td>(A,E,D)</td>
<td>12</td>
<td>(A,E)</td>
<td>7</td>
</tr>
<tr>
<td>5</td>
<td>(A,B,C,D,E,F)</td>
<td>(A,B)</td>
<td>3</td>
<td>(A,E,D,C)</td>
<td>13</td>
<td>(A,E,D)</td>
<td>12</td>
<td>(A,E)</td>
<td>7</td>
</tr>
</tbody>
</table>

Shortest Backward Path Tree (1/3)

- Here, an algorithm computes the shortest path from all sources to a single destination
- $d \equiv$ Destination to which shortest paths must be computed
- $L_d(v) = (n_{v,d}, C_{v,d})$ where
 - $C_{v,d}$ is as before and
 - $n_{v,d}$ is the next node in shortest path from v to d
- For each cycle, each node v updates $L_d(v)$ based on costs to d reported by its neighbors
- Algorithm terminates when $L_d(v)$ is the same as from the previous cycle for all $v \in V$
Shortest Backward Path Tree (2/3)

Shortest Backward Path Tree Algorithm:

\[L_d(d) = (-, 0) \; ;\]

For all nodes \(v \neq d \) do \(L_d(v) = (-, \infty) \; ;\)

\(L_d \) = Set of all node labels for destination \(d \);

Repeat

\[L_{\text{Temp}} = L_d \; ;\]

For all \(v \in V \) do

\[A(v) = \text{Set of neighbors of } v \; ;\]

\[C_{vd} = \min_{w \in A(v)} \{ C_{wd} + c_{vw} \} \; ;\]

\[n_{vd} = w \text{ that minimizes } C_{vd} \; ;\]

EndFor

Until \(L_d = L_{\text{Temp}} \; ;\)

Algorithm complexity?

Shortest Backward Path Tree Example:

<table>
<thead>
<tr>
<th>Cycle</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(-, 0)</td>
<td>(-, \infty)</td>
<td>(-, \infty)</td>
<td>(-, \infty)</td>
<td>(-, \infty)</td>
<td>(-, \infty)</td>
</tr>
<tr>
<td>1</td>
<td>(-, 0)</td>
<td>(A, 2)</td>
<td>(B, 8)</td>
<td>(C, 9)</td>
<td>(A, 1)</td>
<td>(C, 9)</td>
</tr>
<tr>
<td>2</td>
<td>(-, 0)</td>
<td>(A, 2)</td>
<td>(B, 8)</td>
<td>(E, 6)</td>
<td>(A, 1)</td>
<td>(C, 9)</td>
</tr>
<tr>
<td>3</td>
<td>(-, 0)</td>
<td>(A, 2)</td>
<td>(B, 8)</td>
<td>(E, 6)</td>
<td>(A, 1)</td>
<td>(C, 9)</td>
</tr>
</tbody>
</table>