Data Link Layer Requirements (Revisited)

- Identify and synchronize frame/block transmissions
- Provide addressing of sender/receiver pairs (especially for multiple access links)
- Detect and recover from errors
- Manage buffers for flow control
Data Link Control Framing (1/4)

• ARQ protocols consider the following the data link control requirements:
 – Detect and recover from errors
 – Manage buffers for flow control

• Framing (i.e., identification and synchronization)
 – In packet-oriented networks, the RX end of a link needs to decide where successive frames start and stop
 – Types of framing
 • Character-based framing: Special control characters indicate beginning and ending of frames
 • Bit-oriented framing: Special strings of bits (flag sequence) delimit the frames

Data Link Control Framing (2/4)

• SLIP (Serial Line IP): A byte-oriented data link control protocol
 – IETF RFC 1055 (http://www.ietf.org/)
 – “SLIP defines a sequence of characters that frame IP packets on a serial line, and nothing more.”
 – Employed over point-to-point serial links connecting computers (1980s)
 – Special characters:
 • END: 300₈ (octal) = 192₁₀ (decimal)
 • ESC: 333₈ (octal) = 219₁₀ (decimal)
 • ESC_END: 334₈ (octal) = 220₁₀ (decimal)
 • ESC_END: 335₈ (octal) = 221₁₀ (decimal)
Data Link Control Framing (3/4)

- SLIP control characters
 - END: $300_8 = (11 000 000)_2 = 192_{10}$
 - ESC: $333_8 = (11 011 011)_2 = 219_{10}$
 - ESC_END: $334_8 = (11 011 100)_2 = 220_{10}$
 - ESC_ESC: $335_8 = (11 011 101)_2 = 221_{10}$
- END (300_8) character to identify end of frame
 - If 300_8 appears in the payload (i.e., as a message byte) then escape sequence ESC-ESC_END (300_8 334_8) is inserted instead
 - If 333_8 appears in the payload (i.e., as a message byte) then escape sequence ESC-ESC_ESC (333_8 335_8) is inserted instead

Data Link Control Framing (4/4)

- What if END-ESC_END (300_8 334_8) sequence appears in the message?
 300_8 334_8 \rightarrow (333_8 334_8) 334_8
- Also known as “byte stuffing”
- What is worst possible overhead due to the SLIP byte stuffing procedure?
 If message sequence consists entirely of END (300_8) and ESC (333_8) bytes then SLIP payload is twice the size of the message block (100% overhead)
High-Level Data Link Control (1/15)

- High-level data link control (HDLC)
- Example of a *bit oriented* framing protocol
- Features:
 - Delimits start and end of frames
 - Provides addressing (default 1-byte address and multi-byte extended address option)
 - Frame check sequence for error detection
 - Incorporates go-back-N, selective-reject and timeout mechanism for transmission errors
 - Default 3-bit sequence number (SN) with 7-bit extended SN option

High-Level Data Link Control (2/15)

- Frame format:
 - **Flag**: 8-bit *flag sequence* (01111110) to delimit start and end of frame
 - **A**: 8-bit (default) *address* field, extendable for multi-byte addresses
 - LSB of an address field block (i.e., byte) is set to 1 to indicate end of address field
 - LSB of an address field block is 0 if there are one or more additional bytes in the address
 - All 1s \rightarrow broadcast address
High-Level Data Link Control (3/15)

- Frame format (continued):
 - **Control**: Control field to specify frame type, frame number, ACK number and a bit to indicate polling or final frame status
 - **Information**: Frame payload, i.e., data or message content
 - **FCS**: 16-bit frame check sequence (CRC calculated using polynomial $x^{16}+x^{12}+x^5+1$)

High-Level Data Link Control (4/15)

- Bit stuffing: What if flag sequence (01111110) is part of message data?
 - After a sequence of 5 consecutive 1s in data, TX inserts a 0
 - At RX and 5 consecutive 1s arrive:
 - If next bit is 0, then RX knows it was inserted at TX, removes it and continues processing bit stream as usual
 - If next bit is a 1 (i.e., 6 consecutive 1s), the RX looks at the following bit:
 - If 0 then 01111110 is received and RX assumes a flag sequence was received
 - If 1 then 01111111 is received and RX assumes a frame error occurred and frame is discarded
High-Level Data Link Control (5/15)

- Types of HDLC stations
 - Primary station:
 - Controls operation of the link (issues commands and receives expected responses)
 - E.g., mainframe computer
 - Secondary station:
 - Receive commands from primary station and issue responses in accordance with commands received
 - E.g., terminals or data display devices
 - Combined station:
 - Initialize and disconnect the link
 - Activate other combined stations
 - Can issue both commands and responses and receive both commands and responses
 - E.g., host computer or packet switching node (router)

High-Level Data Link Control (6/15)

- Link configurations
 - **Unbalanced**: one primary station connected to one or more secondary stations in point-to-point or multipoint mode
 - **Balanced**: one combined station is connected to another combined station in point-to-point mode
High-Level Data Link Control (7/15)

- Data transfer modes
 - Normal response mode (NRM):
 • Unbalanced configuration, single primary station with one or more secondary stations
 • Secondary stations transmit only after receiving permission (via polling messages) from primary station
 - Asynchronous response mode (ARM):
 • Like NRM, unbalanced configuration
 • Unlike NRM, however, secondary stations do not need explicit permission from primary station to initiate transmissions (responses)

High-Level Data Link Control (8/15)

- Data transfer modes (continued)
 - Asynchronous balanced mode (ABM):
 • Balanced configuration
 • Data transfer between two combined stations
 - For point-to-point operation, ARM or ABM is usually more efficient than NRM because they do not incur polling overhead
High-Level Data Link Control (9/15)

• Types of frames
 – Information frames:
 • Used for transfer of data consisting of any code or grouping of bits
 • Data may be variable length
 – Supervisory frames: Control flow of data
 – Unnumbered frames:
 • Provide additional control information
 • Not included in send/received sequence number

High-Level Data Link Control (10/15)

```
<table>
<thead>
<tr>
<th>Flag</th>
<th>A</th>
<th>Control</th>
<th>Information</th>
<th>FCS</th>
<th>Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>≥ 0</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>
```

- Information (I) frame
- Supervisory (S) frame
- Unnumbered (U) frame
High-Level Data Link Control (11/15)

• Information (I) frames
 – Bit $c_1 = 0$ to distinguish I frames from S and U frames
 – Bits (c_2, c_3, c_4) are the send SN to uniquely identify the frame
 – Bits (c_6, c_7, c_8) are ACK notification and indicate the next frame expected
 – Bit c_5 (P/F):
 • For a command this is the P-bit and F-bit for a response
 • For NRM, primary station sets $P = 1$ to poll addressed secondary station while secondary station sets $F = 1$ to identify final frame sent frame

High-Level Data Link Control (12/15)

• Supervisory (S) frames
 – Bits (c_1, c_2) = 10 to identify as an S frame
 – Bits (c_6, c_7, c_8) are as for I frame
 – Bit c_5 (P/F) is as for I frame
High-Level Data Link Control (13/15)

- **Supervisory (S) frames (continued)**
 - Bits \((c_3, c_4)\) denote supervisory functions
 - \((c_3, c_4) = 00\), Receive Ready (RR): ACK I frames received from other station and indicate readiness to receive
 - \((c_3, c_4) = 01\), Reject (REJ): Request transmission of all I frames from a given SN and ACK I frames already received from the other station
 - \((c_3, c_4) = 10\), Receive not ready (RNR): Indicates temporary busy condition and ACK I frames
 - \((c_3, c_4) = 11\), Selective reject (SREJ): Request retransmission of a single designate I frame previously transmitted

High-Level Data Link Control (14/15)

- Unnumbered (U) frames:
 - Bits \((c_1, c_2) = 11\) to identify as an U frame
 - Bit \(c_5\) (P/F) is as for I frame
 - Bits \((c_3, c_6, c_7, c_8)\) denote up to 32 additional command and response control functions
High-Level Data Link Control (15/15)

- Some unnumbered commands
 - Un-extended numbering set mode commands:
 - Set the particular Modulo 8 SN mode to be used
 - SNRM, SARM and SABM
 - Extended numbering set mode commands
 - Set the particular Modulo 128 SN to be used
 - Control field is extended to 2 bytes to accommodate the 7-bit SN
 - SNRME, SARME and SABME
 - Unnumbered ACK (UA): ACK receipt and execution of a mode setting, initialization, etc.
 - Unnumbered Information (UI)

HDLC Examples (1/5)

- “A, Y\(N(S)\)\(N(R)\), P/F” notation
 - A: Address associated with a frame
 - Y: Abbreviation for the command or response, e.g.,
 - I34 indicates information frame with \(N(S) = 3\) an \(N(R) = 4\)
 - RR6 indicates a S frame (receive ready) with \(N(R) = 6\)
 - P/F: When present indicates that the P- or F-bit has been set to 1 and 0 when not present
HDLC Examples (2/5)

Primary Station (A) Secondary Stations (B,C)

Primary Station (A)
- B, SNRM, P
- C, SNRM, P
- B, RR0, P
- B, RR4
- C, I00, P

Secondary Stations (B,C)
- B, UA, F
- C, UA, F
- B, I00
- B, I10
- B, I20
- B, I30, F
- C, RR1, F

Primary Station (A) Secondary Stations (B,C)

Primary Station (A)
- B, I00
- B, I10
- B, I20, P
- B, I13
- B, I23, F
- (All), UI
- (All), UI
- C, I00, P

Secondary Stations (B,C)
- B, I03
- B, I13
- B, I23, F
- C, RR1, F

Fig. 4.18a

HDLC Examples (3/5)

Primary Station (A) Secondary Stations (B,C)

Primary Station (A)
- B, RNR3
- (All), UI
- (All), UI
- C, I00, P

Secondary Stations (B,C)
- B, I03
- B, I13
- B, I23, F
- C, RR1, F

Fig. 4.18b
HDLC Examples (4/5)

Primary Station (A) Secondary Stations (B,C)

B, RR0, P → B, I00
B, SREJ0, P → B, I00
B, IO3, P → B, I00
C, IO0, P → C, I00
C, IO0, P → C, RR1

Errors

B, I03, P → B, I00
B, I00 → B, I00
B, I30, P → B, I00
B, I00 → B, I00
B, I40, P → B, I00
B, I00 → B, I00
B, I50, F → B, I00
B, I00 → B, I00
B, I31, P → B, I00
B, I00 → B, I00
B, I41, F → B, I00
B, I00 → B, I00
B, I51, F → B, I00
B, I00 → B, I00

Fig. 4.18c

HDLC Examples (5/5)

Primary Station (A) Secondary Stations (B,C)

B, RR0, P → B, I00
B, SREJ0, P → B, I00
B, IO3, P → B, I00
C, IO0, P → C, I00
C, IO0, P → C, RR1

Errors

B, I03, P → B, I00
B, IO0, P → B, I00
B, I30, P → B, I00
B, I00 → B, I00
B, I40, P → B, I00
B, I00 → B, I00
B, I50, F → B, I00
B, I00 → B, I00
B, I31, P → B, I00
B, I00 → B, I00
B, I41, F → B, I00
B, I00 → B, I00
B, I51, F → B, I00
B, I00 → B, I00

Fig. 4.18c
Exam Info

- Friday, October 17, 5th period (2:50PM-4:10PM)
- Location:
 - Last names beginning A-J: Hill Center, Room 116
 - Last names beginning K-Z: SEC, Room 117
- Closed book, closed notes, no cheat sheet
- Please use a pen
- Exam coverage available on class web page
- Additional office hours:
 - Tuesday, October 14, 12 noon – 1:00PM, CoRE
 - Thursday, October 16, 3:00PM-4:00PM, ECE 232