Discrete-Time State Space Analysis
8.3 Discrete-Time Models

Discrete-timesystemsare eitherinherentlydiscrete(e.g. modelsof bankaccounts,
nationaleconomygrowth models,populationgrowth models,digital words)or they
areobtainedasa resultof sampling(discretization)of continuous-timesystems.In
suchkinds of systemsjnputs, statespacevariables,and outputshavethe discrete
form andthe systemmodelscanbe representedan the form of transitiontables.
The mathematicamodel of a discrete-timesystemcan be written in termsof a

recursiveformula by using linear matrix differenceequationsas

x((k + 1)T) = Agx(kT) + Baf (kT)

y(kT) = Cax(kT) + Dyf(kT)
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HereT representshe constansamplinginterval, which may be omittedfor brevity,
that is, we use the following notation

x[k + 1] = Agx[k] + Baf[k]

y[k] = Cax[k] + Daf[k]

Similarly to continuous-timdinear systems discretestate spaceequationscan
be derived from differenceequations(Section8.3.1). In Section8.3.2 we show
how to discretizecontinuous-timeinear systemsin order to obtain discrete-time
linear systems.

8.3.1 Difference Equations and State Space Form

An nth-orderdifferenceequationis definedby
ylk + n] + an—1ylk +n — 1]+ --- + ary[k + 1] + aoy|k]

= buf[k 4+ n] + bo_1f[k +n — 1]+ - + b1 f[k + 1] + bof[K]
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The correspondingtatespaceequationcanbe derivedby usingthe sametechnique

asin the continuous-timecase.For phasevariablecanonicalform in discrete-time,

we have
(zi[k+1]] [ o 1 0 .- 0 J[zi[k]] O]
T2k + 1] 0 0 | I 0 zo[k] 0
: = | : Y : F |+ || FIR]
: 0 0 0o ... 1 : 0
_ar:n[k + 1] i |—ap —a; —az -+ —ap-—1 | _acn[k] i _1 |
o]
ulk] = [(bo — aobu) (b1 — arbn) - (buos — ancaba)] |2
| zn[k]

+ by (]
Note that the transformationequations analogougo the continuous-timecase,are

given in the discrete-timedomain by
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Elk+n]+ an_1blk+n — 1] + - - + arf[k + 1] + aof[k] = f[k]
ri[k] = E[k] = @[k + 1] = z2[k]
zolk] = &k +1] =  x2[k + 1] = x3[k]

z3[k] = €[k +2] = axs[k + 1] = z4[k]

xnlk] =€k +n—1] = xu(k+ 1] = €[k + n]

(which gives the phasevariable canonicalform)

ylk] = bo&lk] + b1&[k + 1] + b2f[k + 2] + - - - + bu [k + n]

(which by eliminating £[k + n] givesthe statespaceoutputequation).
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8.3.2 Discretization of Continuous-Time Systems

Real physicaldynamicsystemsare continuousin nature. In this section,we show

howto obtaindiscrete-timestatespacanodelsfrom continuous-timeystemmodels.
Integral Approximation Method

Theintegralapproximationrmethodfor discretizationof a continuous-timdinear
systemis basedon the assumptionthat the systeminput is constantduring the
given samplingperiod. Namely, the methodapproximateghe input signal by its

staircaseform, that is

f(t) = f(kT), kT <t< (k+1)T, k=0,1,2,..

The impact of this approximationto the solution of the state spaceequations,

for t = T, is given by
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x(T) = e*Tx(0) + / eAT-TIBf(0)dr

T
= eATx(0) + AT / e=ATdrBf(0) = &(T)x(0) + / &(T — v)drBF(0)

We can concludethat
Ag = eAT = ®(T)

T T T
T/e_ATdTB = /eA(T_T)dT . / erdo - B
0 0 0

Note that A; and B, are obtainedfor the time interval from 0 to T'. It caneasily
be shownthat dueto systemtime invariancethe sameexpressiongor A; andBg4
areobtainedfor anytime interval. The procedurecanbe repeatedor time intervals

2T, 3T, ..., (k + 1)T with initial conditionstakenasx(T'), x(2T), ..., x(kT).
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For the time instantt = (k + 1)T andfor txc = kT, we have

<((k +1)T) = &((k + 1)T — kT)x(kT)
(k+1)T
+ / &((k + 1)T — v)drBf(kT)
kT

= Agx(kT) + Buf (KT)

From the aboveequationwe seethat the matricesA 4 and B4 are given by

Ag=®((k+1)T — kT) = ®(T) = e*T

(k+1)T T T
By = / ®((k+1)T — 7)dtB = /<I>(0')d0'B = /eA”daB
kT 0 0

The lastequalityis obtainedby usingchangeof variablesaso = (k 4+ 1)T — 7.
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In a similar manner the formula for the systemoutputat¢ = kT implies

y(kT) = Cx(kT) + Df(kT)

Comparingthis equationwith the generaloutput equationof linear discrete-time

systems,we concludethat

In the caseof discrete-timdinear systemsobtainedoy samplingcontinuous-time

linear systemsthe matrix A4, canbe determinedrom the infinite series

Ag=ce _I—I-AT—|- A2T2 Z AT’

Thematrix A g canalsobeobtaineceitherusingthe Laplacetransformmethodor the

methodbasedon the Cayley—Hamiltortheoremandsettingt = T in ®(t) = e?!
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To find B4, we performintegration(seeAppendix A—matrix integrals)

B, = eAT(—e—ATA—l + A—1>B — (Aq—1)A"!B

which is valid underthe assumptiorthat A is invertible.

Example 8.8: The discrete-timestatespacemodelof a continuous-timesystem
. 0 1 0
=% 10+ [7]r

y(t) = [1 0]x(t)
for the samplingperiod T is equalto 0.1, is obtainedas follows.

-T _ _—2T —T _ 2T
Ag=9(T) = [26 € e e ] _ [0.9909 0.0861]

2e 2T _ 2T 22T _ T —0.1722 0.7326

1 2T =T
. Cva-ln _ |z(1+e7?) —e __[0.0045
Ba=(Ad—DATB = [ e T — 2T ~ |0.0861

Cq=C=[1 0], Dg=D=0
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Euler’'s Method

Less accuratebut simpler than the integral approximationmethodis Euler’s

method. It is basedon the approximationof the first derivativeat t = kT
dx(t) 1

(x((k + 1)T) — x(kT))

Applying this approximativeformulato the statespacesystemequation,we have
%(x((k + 1)T) — x(kT)) =~ Ax(kT) + Bf(kT)
x((k+1)T) = (I+ TA)x(kT) + TBf(kT)

or
x[k + 1] = (I + TA)x[k] + TBf[k]
where

Ag=14+T-A, Bg=T-B
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8.3.3 Solution of the Discrete-Time State Equation

We find the solution of the differencestateequationfor the giveninitial statex[0]

and the input signal f[k]. From the stateequation

x[k + 1] = Agz[k] + Baf[k]

for k = 0,1, 2..., it follows
x[1] = Agx[0] + B4f[0]
x[2] = Agx[1] + Baf[1] = A2x[0] + A4B4f[0] + Bguf[1]

x[3] = Agx[2] + Baf[2] = A3x[0] + A2B4f[0] + A4B4f[1] + Buf[2]

kE—1
x[k] = Agx[k — 1] + Buf[k — 1] = Akx[0] + Y AL 'Bf[i]
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Using the notion of the discrete-time state transition matrix definedby

By[k] = A

we get
k—1
x[k] = ®4[k]x[0] + > ®4[k — i — 1]B4f[s]
=0
Note that the discrete-timestatetransitionmatrix relatesthe stateof an input-free

systemat initial time (k = 0) to the stateof the systemat any othertime k& > 0,

that is

x[k] = ®4[k]x[0] = Akx[0]

It is easyto verify thatthe discrete-timestatetransitionmatrix hasthe following

properties
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(@) ®4[0] = AY =1 <« x[0] = ®,4[0]x[0]

(b) ®4[ks — ko] = ®y[ka — k1]®y[k1 — ko] = ARzF1 ARk — pka=ho

©) ®ifk] = Balik] « (Af)' = A¥

(d) ®4[k + 1] = Ag®q[k], P4[0] =1
The last property follows from

x[k + 1] = Agx[k] = ®4[k + 1]x[0] = AgP4[k]x[O]

It is importantto point out that the discrete-timestatetransitionmatrix may be
singular,which follows from thefactthatAf; is nonsingulaif andonly if the matrix
A4 is nonsingular. In the caseof inherentdiscrete-timesystemsthe matrix Ay
may be singularin general.However,if A ; is obtainedthroughthe discretization

procedureof a continuous-timdinear system,then

(Ad)_l _ (eAT>_1 — o~ AT
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The outputof the systemat samplinginstantk is obtainedby substitutingx[k]

into the output equation,producing
k—1

y[k] = Cq®4[k]x[0] + Cq Z B[k — i — 1]B4f[i] + Dyf[k]

Remark 8.1: If theinitial value of the statevectoris not x[0] but x[ko], then

the solution hasto be modified into
k—1

x[ko + k] = ®glk]x[ko] + Y  ®a[k — i — 1]B4f[ko + 1]
1=0

Note that for T' # 1, the following modificationmust be used
k—1
x(kT) = ®4(kT)x(0) + Y  ®a((k — i — 1)T)Byf (iT)
=0
k—1
y(kT) = Cq®4(kT)x(0) + Cq Z ®((k—1— 1)T)Baf (:T) + D4f(kT)
=0
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Remark 8.2: The discrete-timestate transition matrix defined by A% can
be evaluatedefficiently for large valuesof k& by using a method basedon the
Cayley—Hamiltontheoremand describedin Section8.5. It can be also evaluated

by usingthe Z-transformmethod,to be derivedin the next subsection.

8.3.4 Solution Using the Z-transform

Applying the Z-transformto the statespacesquationof adiscrete-timdinearsystem

x[k + 1] = Agx[k] + Baf[k]

we get

zX(z) — z2x[0] = A4X(z) 4+ B4F(2)
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The frequencydomainstatespacevector X (z) canbe expresseds

X(z) = (21 — Ag) '2x[0] + (21 — Agq) 'B4F(2)

The inverse Z-transformof the last equationgives x[k], thatis

x[k] = 27! |(21 — Ag)"'z|2[0] + 27! |(21 — Ag)T'BF(2))

We concludethat

®4k] = 27! [(zI _ Ad)—lz] =AY k=1,2,3,..

and

D4(z) = z(=I — Ad)_1
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The inverse transform of the secondterm on the right-handside is obtained

directly by the applicationof the discrete-timeconvolution,which produces

k-1

27 (21— Ag) 'BaF(2) } = >~ @alk — i — 1]Baf[i]

We havethe requiredsolution of the discrete-timestatespaceequationas

k—1
x[k] = ®4[k]x[0] + > P4k — i — 1]B4f[s]

=0
From
y[k] = Cgx[k] + Dqf[k]

the systemoutput responseas obtained

kE—1
y[k] = Ca®4[k]x[0] + Cq Y  ®a[k — i — 1]Byf[i] + Daf[K]
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The frequency domain form of the output vector Y (z) is obtainedif the

Z-transformis appliedto the outputequation,and X(z) is eliminated,leadingto
Y(2) = Ca(2I — Ag) *2x[0] + [Cd(zI —Ag) By + Dd]F(z)

From the above expression,for the zero initial condition, i.e. x[0] = 0, the

discrete matrix transfer function is definedby

Hy(z) = Cq(2zI — Ag) 'Bg + Dy

Example 8.9: Considerthe following discrete-timesystem
0 1 0
Ad:[ 5]9 Bd=[1]7 Cd=[1 0]9 Dd=0

The discrete-timestatetransitionmatrix in the frequencydomainis obtainedas
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The time domain statetransitionmatrix is given by

®y[k] = Z7{®q4(2)} = Z_l{

Let us find the responseof this systemdue to

K = (-D"ulk], xlo] =[]
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Sincethe systemstatetransition matrix is alreadydetermined,we canusethe

derived formula, which produces

x[k] = ®qlk]

b + o= nft v

kE—1 _6<_l)k_i_1 —I— 6<_l)k—i—1] .
+ 2 —1—1 13 —1—1 —1)°
2 [ N P e

This can be acceptedas the final result. Note that using known formulas for

seriessummation(Appendix B), the aboveformula can be further simplified, and

eventuallya closedform solution might be obtainedfor x[k]. However,if we find

in the frequencydomainX(z), thenin mostcasesthe inverse Z—transformwill

producea nice closedformulafor x[k]. In this example,we have
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Applying the inverse Z—transformwe obtainthe stateresponse
k k k k
2(—5)" +3(—) ]+ [—m—%k) +9(=3) +3<—1k>k]
(3" = (=3) 6(-3)" +3(=5)" = 3(-1)

O] - ]

x[k] = [_
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For the systemoutput responsaene have

ylk] = [1 0]x[k] = a1[k] = —14(—%)k + 12(-%)16 +3(—1)k

8.3.5 Discrete-Time Impulse and Step Responses

The impulse and stepresponse®f multi-input multi-output discrete-timesystems

are definedfor zeroinitial conditions,and calculatedusing the formulas

k—1
x[k] = ) ®a[k —i — 1]Byf[i], y[k] = Cax[k] + Df[k]
=0
Sincethe input forcing functionis a vectorof dimensions: x 1, we candefinethe
impulseandstepresponsefor everyinput of thesystem.Introducethediscrete-time

systeminput functionwhoseall componentsarezeroexceptfor the 3th component,

that is
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k] =[0 --- 0 f[k] 0 -+ 0]

Note that

Buf’[k] = f;[k]b;

whereb; is the yth columnof thematrix B4. Thesystemstateandoutputresponses

dueto the 3th componentof the input signal are given by
k—1
xI[k] = Y ®4lk — i — 1]bj fi[i], y'[k] = Cax![k] + d;f;[k]
=0
whered; is the jth columnof the matrix Dg4. For f;[k] = é[k], theseformulas

producethe system output i mpul se response, h? [k], dueto thedeltaimpulsefunction

on the j3th systeminput and all otherinputs equalto zero, thatis
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k—1
xI[k] = ) @4k — i — 1]b;8[i] = Al 'b;
1=0

v/ [k] = Caxi[k] 4+ d;6[k] = CqA b, + d;6[k] = W' [K]

Similarly, with f;[k] = wu[k], we candefinethe system output step response

dueto the unit stepfunctionon the y3th systeminput andall otherinputssetto zero

k—1 k—1
; : : k—i—1
Xhreplk] = Y ®alk — i — 1]bju;[i] = > Ag"" " 'b;
=0 =0

kE—1

' k—2—1

Vateplk] = Cd(Z Ag bj> + djulk]
=0
It follows that
. k . . . B
y.;tep[k] = Z h’ [Z], h’ [k] = y.;tep[k] - y.;tep[k T 1]
1=0
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