
6.3 Convolution of Discrete-Time Signals

The discrete-timeconvolutionof two signals
���������

and
�
	������

is definedin Chapter

2 as the following infinite sum

 �
�����
�������

 �

where
�

is an integerparameterand � is a dummyvariableof summation.

The propertiesof the discrete-timeconvolutionare:

1) Commutativity

 � � 

2) Distributivity

 � �  �  �

3) Associativity

 � �  � �
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4) Duration

The duration of a discrete-timesignal ������� is definedby the discretetime

instants��� and � � for which for every � outsidethe interval !"����#$� ��% the discrete-

time signal ���&���(' ) . We use * to denotethe discrete-timesignal duration. It

follows that * ' � �,+ � � .
Let thesignals��-.�&��� and �
/
�0��� havedurations,respectivelygivenby * - and * / ,

thenthe durationof their convolution, ���&���1' ��-.�&��� 23�4/��0�5� , is given by * -76 * / .
The discrete-timeconvolutiondurationpropertycanbe alsoexpressedin terms

of the numberof signal samples.Let the numberof samplesin the signal (signal

size)bedenotedby 8 , then 8 ' * 6 9 . Considertwo signals �:-��&��� and �
/
���5� with

thenumberof samplesrespectivelygivenby 8;- and 8</ . Thenumberof samplesin

their convolutionsignalis equalto 8;-=6 8</ + 9 , which correspondsto the duration

of 8 - 6 8 / + > ' * - 6 * / .
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5) Time Shifting

Let ?�@�A5BDC ?�E�@&A�BGF3?
H
@&A�B . Then,convolutionsof the shiftedfunctionsare

I I J I
I J J J

I I J J I J

The proofs of thesepropertiesare similar to the proofs of the corresponding

continuous-timeconvolution properties. For example, in order to establishthe

commutativitypropertywe haveto introducethechangeof variablesas A3KML C N
I J OQP7R

O�P�S�R
I J

T
P<R

T
PUS�R

I J J I

The slides contain the copyrighted material from Linear Dynamic Systems and Signals, Prentice Hall, 2003. Prepared by Professor Zoran Gajic 6–37



Example 6.10: Theconvolutionof thediscrete-timeimpulsedeltafunctionwith

a generalfunction V7W0XZY is given by
[]\<^
[]\U_�^

Example 6.11: The convolutionof two causalexponentialfunctionsdefinedby

V�`.W�X5Y�a bdcfegW�X�Y and V4h4W�X�Y�a i�cje;W�X5Y is obtainedas follows

k k []\<^
[]\U_�^

[ k _�[

[]\ k
[�\ml

[ k _�[ k []\ k
[�\ml

[

Using the known summationformula (seeAppendix B)k
[�\ml

[ k�n<o
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we have
p p p p.qgr p�q;r p�q;r

Example 6.12: The convolutionof the unit stepsignal and any causalsignal

( s7tvu�w]x y{z|u } y ) produces~
�����

p
�]�7�

Example 6.13: Convolutionof two causalsignals s���t�u�w and s4��t&u�w is

r �
~

������~
r �

p
���m�

r �

r � r � r � r �

which representsan easyto rememberformula.
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6.3.1 Sliding Tape Method

Like in the continuous-timeconvolution,the discrete-timeconvolutionrequiresthe

“flip and slide” steps. For the reasonof simplicity, we will explain the method

using two causalsignals. However,the methodis applicableto any two discrete-

time signals. Note that by using the discrete-timeconvolutionshifting property,

this methodcan be also appliedto noncausalsignals. The sliding tapemethodis

presentedin the following three steps.

Step 1: The signal valuesare recordedon two tapes,one tape for the values

of the signal �����0��� andanothertapefor the valuesof the signal �
������� , seeFigure

6.17a,donefor an exampleof two causalsignals

� � � � � � �
� � � � � � �
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Note that the durationsof thesesignals,which contain �;��� � ��� � and �<���
� � � � samples(values),are � � and � � .
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Figure 6.17: Graphical representation for the sliding tape method

Step 2: One of the tapes,say, the secondtape, is flipped about its value at

�
�����.�
to form the signal

�
�
�¡ (¢��
, seeFigure 6.17b. It shouldbe pointedout that
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the signal £
¤�¥§¦�¨ is flipped in such a way that the signal value £
¤�¥v©.¨ remainsin

the sameposition.

Step 3: Thesecondtapeis shiftedto the left andright, that is, a travelingsignal

£ ¤ ¥�ª¬« ¦�¨ is formed. The parameterª is an integer that theoretically takesall

valuesfrom «® to  . Practically,we have to shift the secondsignal only for

thosevaluesof ª for which the convolution sum is different from zero. In that

respect,the durationpropertyof the discrete-timeconvolutionplays an important

role. After we shift the secondtape for the given value of ª , we evaluatethe

productsof the correspondingoverlappingsignal valueson the tapes. The sum

of all productsgives the convolutionvalue for the chosenvalue of the parameter

ª , seeFigure 6.17c. This procedureis repeatedfor all valuesof ª for which the

convolutionsum may be different from zero.

Let £�¥&ª�¨�¯ £�°.¥�ª5¨d±²£
¤�¥0ª5¨ . From Figure6.17b,we seethat for ª�¯ © only £�°.¥&©.¨
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and ³4´�µ�¶�· overlap,hence ³¸µ&¶.·º¹ ³�».µ&¶.·¼³4´�µ&¶.· . From Figure 6.17c,drawn for ½¾¹ ¿ ,
we obtain three pairs of the overlappedsignal values,hencethe convolution of

thesetwo signalsfor ½À¹ ¿ is given by ³�µ&¿.·1¹ ³ » µ�¶�·¼³ ´ µ&¿.·:Á ³ » µÃÂÄ·Å³ ´ µ"ÂÄ·�Á ³ » µ�¿�·¼³ ´ µ0¶�· .
Similarly, we evaluatethediscrete-timeconvolutionfor othervaluesof ½ . Notethat

for ½ÇÆ ÈÉÂ thesignals ³�»
µ§Ê�· and ³4´�µ0½QÈ Ê�· do not overlap,hencethe convolution

is equal to zero for ½ Æ ÈÉÂ . Also, no overlappingbetweenthe valuesof ³�».µËÊ�·
and ³ ´ µ&½QÈ Ê�· existsfor ½ÍÌ Î » Á Î ´ Á Â , and the correspondingdiscrete-time

convolution is equal to zero in this interval.

Example 6.14: Let the signalsbe definedas follows

Ï Ð

The durationsof thesesignalsare Î » ¹ Î ´ ¹ Â . By the convolutionduration

property, the convolutionsum may be different from zero in the time interval of

length Î ¹ Î »ÑÁ Î ´Ò¹ ÂÓÁ ÂÔ¹ ¿ . Tapesfor ³�».µ�Ê�· and ³
´�µ¡ÈÕÊ�· are shown
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in Figure 6.18.

[ m ] =f
1

m

[0]=1(-1)=-1
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-13
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f

f
2
[ -m

k=0
] =

Figure 6.18: The sliding tape method for Example 6.14, ÖØ× Ù
The convolution of thesetwo signals, Ú7Û0ÖZÜ®× Ú�Ý
Û0Ö5ÜºÞßÚ4à4Û�Ö�Ü , for Ö × Ù , is easily

obtainedfrom Figure 6.18 as Ú�Û&Ù.Ü,× Ú Ý Û0Ù.ÜmÞ�Ú à Û&Ù.Ü,× áØâ ãåäÉá4æÔ× äçá . If we

slide the secondtape to the left, which correspondsto Ö è äçá , we seethat the

convolution is equal to zero. Sliding the secondtapeto the right for Ö × á , we

obtain Ú:Ý
Û"áÄÜ�× á�âêé�ë ìíâ ãîäçá:æç× á , seeFigure 6.19.

[ m ] =f
1

-13f
2 -m1

m-1 0 1

1 2
f

=[

2

[1]=1x3+2x(-1)=1

]

k=1

Figure 6.19: The sliding tape method for Example 6.14, ïØð ñ
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For ò,ó ô , accordingto Figure6.20,theconvolutionis givenby õ�ö�ô�÷øó ô]ù�úQó û .
For òÇü ú , the signals õ:ý�ö§þ�÷ and õ
ÿ�ö&ò�� þ�÷ do not overlap,hence,the convolution

is equal to zero in this interval.

[ m ] =f
1

-13f
2

-1 0 1

1 2
f

m32

[ -m2 =

[2]=2x3=6

]

k=2

Figure 6.20: The sliding tape method for Example 6.14,
��� �

In summary,we have obtained

� �
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Example 6.15: Let us find the convolution of the following two signals by

using the sliding tape method

� 	

Note that the first signal is noncausal. However, the sliding tape procedureto

be appliedis exactly the sameas in the caseof causalsignals. The durationsof

thesesignalsare respectivelygiven by 
 �� � and 
 ��� � , hencethe duration

of their convolutionis equal to 
 �� 
 ��� 
 � � � , which meansthat at most

six ( ����� 
 � � � ) discrete-timeinstantsthe convolution sum may be different

from zero.
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In Figure 6.21, we presentthe signals ����� ��! and ��"��$#%��! . It canbe seenfrom

this figure that �&�(')!+* ,.-0/21 34#5/768-:9;* #=< . It canalsobe concludedthat the

convolutionis equalto zero for > ? #5/ and >A@ B , which is consistentwith the

discrete-timeconvolutiondurationproperty.

31 2-1

1 m0-1-2-3

[ m ] =f
1

1 3-2

[0]=(-2)x3+1x2=-4f
f
2
[ -m =

k=0

]

Figure 6.21: The sliding tapes for Example 6.15, CED F

In Figure 6.22, we presentthe sliding tapesfor C:D GIH and C�D H . It can be

seenthat J&KLGIHNMOD P4G5QSRUT�Q�D G%V and J�K$HNMWD P4G5QXRUT P4GYHZR\[]H^T�_`[ _aT�QD H�H .
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Figure 6.22: The sliding tapes for Example 6.15, bdc e2f�ghf

Figure6.23presentsthe situationfor b;c iSgkjSgml . It canbeseenfrom this figure

that n�opirq%c s4e5iXtvu f�w]f;u s4eIf�t+w jxuAj:c y , n�opj)q8c fzu fvw jxu s4eYf{t|c e5i ,

and n�o}l�q]c j�u f c j .
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Figure 6.23: The sliding tape method for Example 6.15, ~�� �S�k�S�m�

In summary,we havethe following valuesfor theconvolutionof theconsidered

signals
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� �

6.4 Convolution for Linear Discrete-Time Systems

In this subsectionwe show how to use the discrete-timeconvolution in order to

find the zero-stateresponseof discrete-timelinear time invariant systems. We

have seenin Chapter5 that every discrete-timelinear time invariant systemis

uniquely characterizedeither by its transfer function or by its impulse response.

We have also seenthat the systemtransfer function is the � –transformof the

systemimpulseresponse,and that the systemimpulseresponseis obtainedas the

inverse� –transformof thesystemtransferfunction. Let usassumethat thesystem
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initial conditionsare set to zero and that the systemimpulse responseis known.

This canbe symbolicallyrepresentedas in Figure6.24,where �����5��� � standsfor

zero initial conditions.

[ k]

[ k-m ]

[ k]

[ k-m ]

Linear System

Linear System

δ

δ

h

h

h

h

[ k

[ k

],

],

I.C.

I.C.

=0

=0

Figure 6.24: Discrete-time system impulse response

By the time invarianceprinciple, ���}�.� ��� producesthe systemoutput ���}��� ��� .
By the linearity principle, a weightedimpulsedelta function �����������(�]� ��� , where

������� is a constant,producesthe systemoutput signal �&�}�������}�]� ��� , seeFigure

6.25. Note that we assumethat the systemin Figures6.24and6.25 is represented
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in its integral formulation,for which we havedefinedthe systemtransferfunction

and the systemimpulseresponsein Chapter5.

[ m]f[ k-m ][ m]f δ [ k-m ]Linear System

h

h

[ k], I.C.=0

Figure 6.25: A weighted system impulse response

Our goal is to find the systemzero-stateresponsedue to any input function

���} 7¡
. In that respect,we haveassumedthat the systeminitial conditionsareequal

to zero, that is
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Let thesysteminput signalbecausal( ¢�£}¤7¥§¦ ¨S©k¤«ª ¨ ) anddefinedby its values

at discrete-timeinstants

Foranyvalueof ¤ , wecanrepresent¢�£p¤X¥ by aweightedsumof deltaimpulsesignals
¬|+®

¬]°¯
By the linearity and time invarianceprinciples,we know that a sum of weighted

andshifteddeltaimpulsesignalsproduceson thesystemoutputa sumof weighted

andshiftedsystemimpulseresponsesignals.Hence,using ¢�£p¤X¥ asthesysteminput,

we obtain the systemoutput in the form

±
²)³

¬|+®

¬|�¯
which is symbolicallypresentedin Figure6.26. Notethattheupperscript ´ indicates

the integral formulationof a discrete-timelinear system(seeSection5.3.1) that is
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consistentwith the definedinitial conditions.

if k ] [f k] [kδ ] [f k] [ k]hLinear System= *

h

= *

[ k

y

], I.C. =0

zs[

Figure 6.26: Discrete system response as the convolution

of a system input and the system impulse response

The precedingderivationsestablishthe most fundamentalresultof theoryof linear

discrete-timesystems,which is restatedin the following theorem.

Theorem 6.2 The response of a linear discrete-time system at rest (zero initial

condition response) due to any input is the convolution of that input and the system

impulse response.

In addition to its importancefor linear discrete-timedynamic systems,the

discrete-timeconvolutionis alsovery importantfor digital signalprocessing.
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