
Chapter Six

Transient and Steady State Responses

In control system analysisand design it is important to consider the

completesystemresponseandto designcontrollerssuchthata satisfactory

responseis obtainedfor all time instants � , where � standsfor the

initial time. It is known that the systemresponsehas two components:

transientresponseand steadystateresponse,that is

��� ���

Thetransientresponseis presentin theshortperiodof time immediately

after the systemis turnedon. If the systemis asymptoticallystable,the

transientresponsedisappears,which theoreticallycanbe recordedas
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However, if the systemis unstable,the transientresponsewill increase

very quickly (exponentially)in time, andin themostcasesthesystemwill

be practically unusableor even destroyedduring the unstabletransient

response(ascanoccur, for example,in someelectricalnetworks).

Even if the system is asymptotically stable, the transient response

shouldbecarefullymonitoredsincesomeundesiredphenomenalike high-

frequencyoscillations(e.g. in aircraft during landing and takeoff), rapid

changes,and high magnitudesof the output may occur.

Assuming that the systemis asymptoticallystable, then the system

responsein the long run is determinedby its steadystatecomponentonly.



For control systemsit is important that steadystateresponsevaluesare

as closeas possibleto desiredones(specifiedones)so that we have to

studythecorrespondingerrors,which representthedifferencebetweenthe

actualanddesiredsystemoutputsat steadystate,andexamineconditions

underwhich theseerrorscanbe reducedor eveneliminated.

In Section6.1wefind analyticallytheresponseof asecond-ordersystem

due to a unit step input. The obtainedresult is usedin Section6.2 to

define importantparametersthatcharacterizethesystemtransientresponse.

For higher-ordersystems,only approximationsfor the transientresponse

parameterscan be obtainedusinga computer.The steadystateerrorsof

linearcontrolsystemsaredefinedin Section6.4,andthefeedbackelements

which help to reducethe steadystateerrorsto zeroare identified.



6.1 Response of Second-Order Systems

Considerthe second-orderfeedbacksystemrepresented,in general,by

the block diagramgiven in Figure 6.1, where representsthe system

staticgain and is the systemtime constant.It is quite easyto find the

closed-looptransferfunction of this system,that is

� �
 �� � �

The closed-looptransferfunction canbe written in the following form


�
 � 
� �

�
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Figure 6.1: Block diagram of a general second-order system

Quantities and � arecalled,respectively,the system damping ratio

andthe system natural frequency. The systemeigenvaluesaregiven by

����� � � � � �
where � is the system damped frequency.



The location of the systempoles and the relation betweendamping

ratio, naturalanddampedfrequenciesaregiven in Figure6.2.
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Figure 6.2: Second-order system eigenvalues in terms of parameters � �

In the following we find the closed-loopresponseof this second-order

systemdue to a unit step input.



Sincethe Laplacetransformof a unit stepis we have ! !  !

Dependingon the value of the dampingratio three interestingcases

appear:(a) the critically dampedcase, ; (b) the over-dampedcase,

; and (c) the under-dampedcase, .

Thesecasesaredistinguishedby the natureof the systemeigenvalues.

In case(a) the eigenvaluesaremultiple andreal, in (b) they are real and

distinct, and in case(c) the eigenvaluesarecomplexconjugate.



(a) Critically Damped Case

For , wehaveadoublepoleat " . Thecorrespondingoutputis#"
" # "

"
" #

which after taking the Laplaceinverseproduces

$&%('*) " $&%+',)

The shapeof this responseis given in Figure6.3a,wherethe locationof

the systempoles - - # # is also presented.



(b) Over-Damped Case

For the over-dampedcase,we havetwo real andasymptoticallystable

polesat . / . The correspondingclosed-loopresponseis easily

obtainedfrom

0
. /

1
. /

as
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It is representedin Figure 6.3b.
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Figure 6.3: Responses of second-order systems and locations of system poles



(c) Under-Damped Case

This caseis the most interestingand importantone. The systemhasa

pair of complexconjugatepolesso that in the -domainwe have

H I
J K

LI
J K

Applying the Laplacetransformit is easyto show(seeProblem6.1) that

the systemoutput in the time domainis given by
M<N8O(P*Q

I J I

where from Figure 6.2 we have

I I

The responseof this systemis presentedin Figure6.3c.



Theunder-dampedcaseis themostcommonin control systemapplica-

tions. A magnifiedfigureof thesystemstepresponsefor theunder-damped

caseis presentedin Figure 6.4.
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Figure 6.4: Response of an under-damped second-order system



6.2 Transient Response Parameters

The most important transientresponseparametersare denotedin Figure

6.4 asresponseovershoot,settling time, peaktime, andrise time.

Theresponseovershootcanbeobtainedby finding themaximumof the

function with respectto time. This leadsto
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which implies

^
From this equationwe have

^
The peak time is obtainedfor , i.e. as

_ ^ ` a
and times for other minima and maximaare given by

b _ ^ ` a
Since the steadystatevalue of is cYc , it follows that the

response overshoot is given by

_ cYc dfeYg+h*ikj d<e@g(h,ilj d
m�noqp m�r



Overshootis very often expressedin percent,so that we can define the

maximum percent overshoot as
s tquv�w t�x

y

FromFigure6.4, theexpressionfor the response5 percentsettling time

can be obtainedas

z sf{Y|+}*~��
�

which for the standardvaluesof leadsto

z � � �
Note that in practice .

The responserise time is definedas the time requiredfor the unit step

responseto changefrom 0.1 to 0.9 of its steadystatevalue.



Therise time is inverselyproportionalto thesystembandwidth,i.e. the

wider bandwidth,the smallerthe rise time. However,designingsystems

with wide bandwidthis costly,which indicatesthatsystemswith very fast

responseare expensiveto design.

Example 6.1: Considerthe following second-ordersystem

�

We have

�� � �
� � �



The peak time is obtainedas

� �

and the settling time is found to be

� �

The maximumpercentovershootis equal to

� �q���� ���

The step response obtained using the MATLAB functions

[y,x]=step(num,den,t); t=0:0.1:5 is given in Figure6.5.
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Figure 6.5: System step response for Example 6.1

It canbeseenthattheanalyticallyobtainedresultsagreewith theresults

presentedin Figure6.5. From Figure6.5 we areable to estimatethe rise

time, which in this caseis approximatelyequalto � .



6.3 Transient Response of High-Order Systems

In theprevioussectionwehavebeenableto preciselydefineanddetermine

parametersthat characterizethe systemtransientresponse.This hasbeen

possibledue to the fact that the systemunderconsiderationhasbeenof

order two only. For higher-ordersystems,analyticalexpressionsfor the

systemresponseare not generallyavailable. However,in somecasesof

high-ordersystemsone is able to determineapproximatelythe transient

responseparameters.

A particularly important is the casein which an asymptoticallystable

systemhasa pair of complexconjugatepoles(eigenvalues)muchcloserto

the imaginaryaxis thanthe remainingpoles. This situationis represented

in Figure 6.6.



Thesystempolesfar to theleft of theimaginaryaxishavelargenegative

realpartsso that theydecayvery quickly to zero(asa matterof fact, they

decayexponentiallywith ����� , where � are negativereal parts of the

correspondingpoles).Thus,the systemresponseis dominatedby the pair

of complexconjugatepolesclosestto the imaginaryaxis. Thesepolesare

called the dominant system poles.
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Figure 6.6: Complex conjugate dominant system poles



This analysiscan be also justified by using the closed-loopsystem

transferfunction. Consider,for example,a systemdescribedby its transfer

function as

Sincethe polesat –60and–70 arefar to the left, their contributionto the

systemresponseis negligible (they decayvery quickly to zero as �f�@�D�
and � �G�Y� ). The transferfunction canbe formally simplified asfollows

¡
�@�

¡
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Example 6.2: In this examplewe useMATLAB to comparethe step

responsesof the original andreduced-ordersystems.The resultsobtained

for and £ are given in Figure 6.7. It can be seenfrom this

figure thatstepresponsesfor theoriginal andreduced-order(approximate)

systemsalmost overlap.
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Figure 6.7: System step responses for the original

(1) and reduced-order approximate (2) systems



The correspondingMATLAB programis:

z=-1; p=[-3 —10 —60 —70]; k=12600;

[num,den]=zp2tf(z,p,k);

t=0:0.05:5; [y,x]=step(num,den,t);

zr=-1; pr=[-3 —10]; kr=3;

[numr,denr]=zp2tf(zr,pr,kr);

[yr,xr]=step(numr,denr,t);

plot(t,y,t,yr,’- —’);

xlabel(’time t [sec]’);

ylabel(’(1):y(t), (2):yr(t)’);

grid; text(0.71,0.16,’(1)’);

text(0.41,0.13,’(2)’);



6.4 Steady State Errors

The responseof an asymptoticallystablelinear systemis in the long run

determinedby its steadystatecomponent.During the initial time interval

the transientresponsedecaysto zero so that in the remaining part of

the time interval the systemresponseis representedby its steadystate

componentonly. Control engineersare interestedin having steadystate

responsesas closeas possibleto the desiredonesso that we define the

so-calledsteadystateerrors,which representthedifferencesat steadystate

of the actualand desiredsystemresponses(outputs).

Beforewe proceedto steadystateerroranalysis,we introducea simpli-

fied versionof the basiclinear control systemproblemdefinedin Section

1.1.



Simplified Basic Linear Control Problem

As definedin Section1.1 the basiclinear control problemis still very

difficult to solve. A simplified versionof this problemcanbe formulated

asfollows. Apply to thesysteminput a time functionequalto thedesired

systemoutput. This time function is known as the system’sreference

input and is denotedby . Note that . Comparethe

actualanddesiredoutputsby feedingbacktheactualoutputvariable.The

difference representsthe error signal. Use the error

signal togetherwith simple controllers(if necessary)to drive the system

underconsiderationsuchthat is reducedasmuchaspossible,at least

at steadystate.If a simplecontroller is usedin the feedbackloop (Figure

6.11) the error signal hasto be slightly redefined.



In the following we use this simplified basic linear control problem

in order to identify the structureof controllers(feedbackelements)that

for certaintypesof referenceinputs(desiredoutputs)producezerosteady

stateerrors.

Considerthe simplestfeedbackconfiguration of a single-inputsingle-

output systemgiven in Figure 6.11.
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Figure 6.11: Feedback system and steady state errors



Let the input signal representtheLaplacetransformof the

desiredoutput (in this feedbackconfigurationthe desiredoutputsignal is

usedasan input signal); then for , we seethat in Figure6.11

the quantity representsthe differencebetweenthe desiredoutput

andthe actualoutput . In orderto be ableto reduce

this errorasmuchaspossible,we allow dynamicelementsin thefeedback

loop. Thus, as a function of hasto be chosensuchthat for the

given type of referenceinput, the error, now definedby

is eliminatedor reducedto its minimal valueat steadystate.



From the block diagramgiven in Figure6.11 we have

so that the expressionfor the error is given by

Thesteadystateerror componentcanbe obtainedby usingthefinal value

theoremof the Laplacetransformas

¦Y¦ §©¨ ª ¦ ¨ « ¦ ¨ «
This expressionwill be used in order to determinethe nature of the

feedbackelement such that the steadystate error is reducedto

zero for different typesof desiredoutputs. We will particularly consider

step,ramp,andparabolicfunctionsasdesiredsystemoutputs.



Beforewe proceedto theactualsteadystateerroranalysis,we introduce

one additional definition.

Definition 6.1 The type of feedback control system is determinedby

the numberof polesof the open-loopfeedbacksystemtransferfunction

locatedat the origin, i.e. it is equalto , where is obtainedfrom

¬ ­® ¬ ¯ °²±³®
Now we considerthe steadystateerrorsfor different desiredoutputs,

namelyunit step,unit ramp,and unit parabolicoutputs.

Unit Step Function as Desired Output

Assumingthat our goal is that the systemoutput follows as close as

possiblethe unit stepfunction, i.e. , we have



´Y´ ´�µ ¶

´Yµ ¶ ·

where · is known as the position constant

· ´�µ ¶
It follows that the steadystateerror for the unit stepreferenceis reduced

to zero for · . We seethat this conditionis satisfiedfor .

Thus,we canconcludethat the feedbacktype systemof order at least

oneallows thesystemoutputat steadystateto track theunit stepfunction

perfectly.



Unit Ramp Function as Desired Output

In this casethe steadystateerror is obtainedas

¸Y¸ ¸º¹ » ¸Y¹ » ¼

¸Y¹ » ½

where

½ ¸�¹ »
is known asthe velocity constant. It follows that ½ , i.e. ¸�¸
for . Thus, systemshaving two and more pure integrators(

terms)in the feedbackloop will be able to perfectly track the unit ramp

function as a desiredsystemoutput.



Unit Parabolic Function as Desired Output

For a unit parabolicfunction we have ¾ so that

¿�¿ ¿�À Á ¾ ¿YÀ Á Â Ã
wherethe so-calledacceleration constant,

Ã
, is definedby

Ã ¿YÀ Á
Â

We can concludethat
Ã

for , i.e. the feedbackloop must

have three pure integratorsin order to reducethe correspondingsteady

stateerror to zero.



Example 6.5: The steadystateerrorsfor a systemthat hasthe open-

loop transfer function as

are Ä Å�Å
Æ Å�Å
Ç Å�Å

Sincetheopen-looptransferfunctionof this systemhasoneintegratorthe

outputof the closed-loopsystemcanperfectly track only the unit step.



Example 6.6: Consider the second-ordersystem whose open-loop

transfer function is given by

Thepositionconstantfor this systemis È so that thecorrespond-

ing steadystateerror is

É�É È

The unit step responseof this systemis presentedin Figure 6.12, from

which it can be clearly seenthat the steadystateoutput is equal to ;

hencethe steadystateerror is equalto .
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Figure 6.12: System step response for Example 6.6


