Chapter Six

Transient and Steady State Responses

In control systemanalysisand design it is importantto considerthe
completesystemresponseandto designcontrollerssuchthata satisfactory
responseas obtainedfor all time instantst > to, wherety standsfor the
initial time. It is known that the systemresponsehastwo components:

transientresponseand steadystateresponsethat is

y(t) = ytr(t) + yss(t)

Thetransientresponsés presenin theshortperiodof time immediately
after the systemis turnedon. If the systemis asymptoticallystable,the

transientresponsalisappearsyhich theoreticallycan be recordedas
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Am yir(t) =0
However, if the systemis unstable,the transientresponsewill increase
very quickly (exponentially)in time, andin the mostcaseghe systemwill
be practically unusableor even destroyedduring the unstabletransient
responsdas canoccur, for example,in someelectricalnetworks).

Even if the systemis asymptotically stable, the transientresponse
shouldbe carefully monitoredsincesomeundesirecphenomendike high-
frequencyoscillations(e.g. in aircraft during landing and takeof), rapid
changesand high magnitudesof the output may occur.

Assuming that the systemis asymptotically stable, then the system

responsen thelong runis determinedoy its steadystatecomponenbnly.



For control systemsit is importantthat steadystateresponsevaluesare
as close as possibleto desiredones(specifiedones)so that we haveto

studythe correspondingerrors,which representhe differencebetweerthe
actualand desiredsystemoutputsat steadystate,and examineconditions

underwhich theseerrorscanbe reducedor eveneliminated.

In Section6.1we find analyticallytherespons®f asecond-ordesystem
due to a unit stepinput. The obtainedresultis usedin Section6.2 to
ddfine importantparameterghatcharacterizéhe systentransientresponse.
For higher-ordersystemsonly approximationdor the transientresponse
parametergan be obtainedusing a computer. The steadystateerrors of
linearcontrolsystemsaredefinedin Section6.4,andthefeedbaclelements

which help to reducethe steadystateerrorsto zero areidentified.



6.1 Response of Second-Order Systems

Considerthe second-ordefeedbacksystemrepresentedin general, by
the block diagramgiven in Figure 6.1, where K representghe system
staticgain andT' is the systemtime constant.It is quite easyto find the

closed-looptransferfunction of this system,thatis
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The closed-looptransferfunction canbe written in the following form

Y (s) B ‘-"727, ¢ 1 9 K
U(s) 82 4+ 2Cwns + w,zl, w
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Figure 6.1: Block diagram of a general second-order system

Quantities¢ andw,, are called,respectivelythe system damping ratio

andthe system natural frequency. The systemeigenvaluesre given by

)\1,2 = —Cwp £ Jwpv 1 — Cz = —(wn L Jwy

wherew, is the system damped frequency.



The location of the systempoles and the relation betweendamping

ratio, naturaland dampedfrequenciesare given in Figure6.2.
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Figure 6.2: Second-order system eigenvalues in terms of parameters (, Wy, W

In the following we find the closed-loopresponseof this second-order

systemdue to a unit stepinput.



Sincethe Laplacetransformof a unit stepis 1/s we have

w2

Y — n
(s) 3(32 + 2¢wns + w%)

Dependingon the value of the dampingratio ¢ three interestingcases
appear:(a) the critically dampedcase,( = 1; (b) the over-dampedase,
¢ > 1; and(c) the under-dampedase, < 1.

Thesecasesare distinguishedoy the natureof the systemeigenvalues.
In case(a) the eigenvaluesare multiple andreal, in (b) they are real and

distinct, andin case(c) the eigenvaluesare complexconjugate.



(a) Critically Damped Case
For{ = 1, wehaveadoublepoleat —w,,. Thecorrespondin@utputis

Y( ) wi 1 1 Wn
S = —_— - — —_
s(s + wn)z s s+wn (s+4+ wnp)

which after taking the Laplaceinverseproduces
y(t) =1 — e ¥t — W, te “nt

The shapeof this responsas givenin Figure 6.3a,wherethe location of

the systempoles(A; = p1, A2 = p2) is also presented.



(b) Over-Damped Case

For the over-dampedase ,we havetwo real and asymptoticallystable
polesat —(w, * wq. The correspondinglosed-loopresponsas easily

obtainedfrom

v _1+ k1 n ko
(8)_3 s+ Cwnp +wg s+ (wn — wy

as

y(t) = 1 + kje Cwntwat 4 pye=(Cwn—wa)t

It is representedn Figure 6.3D.
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Figure 6.3: Responses of second-order systems and locations of system poles



(c) Under-Damped Case
This caseis the mostinterestingand importantone. The systemhasa

pair of complexconjugatepolesso thatin the s-domainwe have

k1 ko k3
Y —
(s) 3+3-|—Cwn-|—jwd+3—|—Cwn—jwd

Applying the Laplacetransformit is easyto show (seeProblem6.1) that

the systemoutputin the time domainis given by

e—Cwnt
msin [(wn\/l — C2>t — 0]
where from Figure 6.2 we have

1 — (2
cos@ = —(, sinf =+1-—(2, tanf = CC

y(t) =1+

The responseof this systemis presentedn Figure 6.3c.



The under-dampedaseis the mostcommonin control systemapplica-
tions. A magnifiedfigureof thesystemstepresponsdor theunder-damped

caseis presentedn Figure 6.4.
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Figure 6.4: Response of an under-damped second-order system



6.2 Transient Response Parameters

The mostimportanttransientresponsearametersare denotedin Figure

6.4 asresponsevershootsettling time, peaktime, andrise time.

Therespons@vershoottanbe obtainedby finding the maximumof the

function y(t) with respectto time. This leadsto

dy(t) 0
dt
= — e $“nt gin (wgt — 0)+ wd

V1 — 2 1— (2

e~ ¢wnt cog (wgt — 0)

or

Cwp sin (wgt — 0) — wgcos (wgt —0) =0



which implies
sinwgt = 0
From this equationwe have
wgt =, 1=0,1,2,...

The peak time is obtainedfor : = 1, i.e. as

™ ™
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andtimesfor other minima and maximaare given by

1T Xy ,
= - = i =2,3,4,...

t;p = —
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Sincethe steadystatevalue of y(t) is yss(t) = 1, it follows that the

response overshoot is given by
__¢m

0S = y(ty) — yss(t) = 1+ e SWnte — 1 = e~ CWnlp = ¢ V1-C



Overshootis very often expressedn percent,so that we can definethe

maximum percent overshoot as
(m

- X
MPOS = 0S8(%) =e V' 100(%)

From Figure 6.4, the expressiorfor the responsé percentsettling time

can be obtainedas

—(Qwnpts
y(ts) =1+ = 1.05

i

which for the standardvaluesof ¢ leadsto

1 3
tg = ——1In (0.05 1— 42> ~ -
Cwn Cwn

Note that in practice0.5 < ¢ < 0.8.

Theresponseise time is definedasthe time requiredfor the unit step

responsdo changefrom 0.1 to 0.9 of its steadystatevalue.



Therisetime is inverselyproportionalto the systembandwidth,i.e. the
wider bandwidth,the smallerthe rise time. However,designingsystems
with wide bandwidthis costly, which indicatesthat systemswith very fast

responseare expensiveto design.

Example 6.1: Considerthe following second-ordesystem

Y (s) 4

U(s)_32—|—23—|—4

We have

wi:4=>wn=2rad/s, 2Cwp, =2 = ¢ =0.5

wg = wnpy/1—¢2=+/3rad/s



The peaktime is obtainedas

tp = = = 1.82s

Cwn

The maximum percentovershootis equalto

__¢n
MPOS =e V'=¢100(%) = 16.3%

The step response obtained using the MATLAB functions

[V, X] =step(num den,t); t=0:0.1:5 is givenin Figure6.5.
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Figure 6.5: System step response for Example 6.1

It canbe seenthatthe analyticallyobtainedresultsagreewith theresults
presentedn Figure 6.5. From Figure 6.5 we are able to estimatethe rise

time, which in this caseis approximatelyequalto ¢, =~ 0.8 s.



6.3 Transient Response of High-Order Systems

In the previoussectionwe havebeenableto preciselydefineanddetermine
parametershat characterizéhe systemtransientresponse.This hasbeen
possibledue to the fact that the systemunder consideratiorhas beenof
ordertwo only. For higher-ordersystems,analytical expressiongor the
systemresponseaare not generallyavailable. However,in somecasesof
high-ordersystemsone is able to determineapproximatelythe transient
responseparameters.

A particularly importantis the casein which an asymptoticallystable
systemhasa pair of complexconjugatepoles(eigenvaluesinuchcloserto
the imaginaryaxis thanthe remainingpoles. This situationis represented

in Figure 6.6.



Thesystempolesfar to theleft of theimaginaryaxis havelarge negative
real partssothatthey decayvery quickly to zero(asa matterof fact, they
decay exponentiallywith e, where o; are negativereal parts of the
correspondingpoles). Thus,the systemresponsas dominatedoy the pair
of complexconjugatepolesclosestto the imaginaryaxis. Thesepolesare

called the dominant system poles.
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Figure 6.6: Complex conjugate dominant system poles



This analysiscan be also justified by using the closed-loopsystem
transferfunction. Consider for example a systemdescribedy its transfer
function as

Y(s) 12600(s + 1)
U(s) (s43)(s+10)(s + 60)(s + 70)

Sincethe polesat —60 and—70 arefar to the left, their contributionto the

systemresponsés negligible (they decayvery quickly to zero as e %%

and e~ "%). The transferfunction canbe formally simplified asfollows
12600(s + 1)
(s+3)(s +10)60(g5 + 1)70(55 + 1)

~ oy vy = M

M(s) =




Example 6.2: In this examplewe use MATLAB to comparethe step
responsesf the original andreduced-ordesystems.The resultsobtained
for y(t) and y,(t) are given in Figure 6.7. It can be seenfrom this
figure thatstepresponse$or the original andreduced-ordefapproximate)

systemsalmost overlap.
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Figure 6.7: System step responses for the original

(1) and reduced-order approximate (2) systems



The correspondingMATLAB programis:
z=-1; p=[-3 20 —60 —+#0]; k=12600;
[ num den] =zp2tf(z, p, k) ;
t=0:0.05:5; [y, xX]=step(num den,t);
zr=-1; pr=[-3 —20]; kr=3;
[ nunT, denr ] =zp2tf (zr, pr, kr);
[yr, xr]=step(nunr,denr,t);
plot(t,y,t,yr,’ - —);
xlabel ("time t [sec]’);
ylabel (" (1):y(t), (2):yr(t)’");
grid; text(0.71,0.16," (1));
text(0.41,0.13,'(2)");



6.4 Steady State Errors

The responseof an asymptoticallystablelinear systemis in the long run
determinedby its steadystatecomponent.During the initial time interval
the transientresponsedecaysto zero so that in the remaining part of
the time interval the systemresponseds representedy its steadystate
componentonly. Control engineersare interestedin having steadystate
responsess close as possibleto the desiredonesso that we definethe
so-calledsteadystateerrors,which representhe differencesat steadystate
of the actualand desiredsystemresponsegoutputs).

Beforewe proceedo steadystateerroranalysiswe introducea simpli-
fied versionof the basiclinear control systemproblemdefinedin Section

1.1.



Simplified Basic Linear Control Problem

As definedin Sectionl.1 the basiclinear control problemis still very
difficult to solve. A simplified versionof this problemcanbe formulated
asfollows. Apply to the systeminput a time function equalto the desired
systemoutput. This time function is known as the system’sreference
input and is denotedby »(¢). Note that r(¢) = wu(t). Comparethe
actualanddesiredoutputsby feedingbackthe actualoutputvariable. The
differencey(t) — r(t) = e(t) representshe error signal. Usethe error
signaltogetherwith simple controllers(if necessaryjo drive the system
underconsideratiorsuchthate(t) is reducedasmuchaspossible at least
at steadystate.If a simplecontrolleris usedin the feedbackoop (Figure

6.11) the error signal hasto be slightly redefined.



In the following we use this simplified basic linear control problem
in order to identify the structureof controllers(feedbackelements)that
for certaintypesof referencanputs (desiredoutputs)producezerosteady
state errors.

Considerthe simplestfeedbackcorfiguration of a single-inputsingle-

output systemgiven in Figure 6.11.

Controller - Plant

U(s) = R() E(s)
+ K -

G(9) >Y ©

H(s)

Feedback Element

Figure 6.11: Feedback system and steady state errors



Let theinputsignalU (s) = R(s) representhe Laplacetransformof the

desiredoutput (in this feedbackconfigurationthe desiredoutputsignalis

usedas an input signal); thenfor H(s) = 1, we seethatin Figure6.11
the quantity E(s) representghe differencebetweenthe desiredoutput
R(s) = U(s) andthe actualoutputY (s). In orderto be ableto reduce
this errorasmuchaspossible we allow dynamicelementsn the feedback
loop. Thus, H(s) asa function of s hasto be chosensuchthat for the

given type of referenceinput, the error, now definedby

E(s) = R(s) — H(s)Y (s)

Is eliminatedor reducedto its minimal value at steadystate.



From the block diagramgiven in Figure6.11 we have
E(s) = R(s) — H(s)G(s)E(s)

so that the expressiorfor the error is given by

_ R(s)
Bls) = T H )G

The steadystateerror componentanbe obtainedby usingthe final value

theoremof the Laplacetransformas

. . . sR(s)
ess = lim e(t) = lim {sE(s)} = lim {1 + H(S)G(S)}

This expressionwill be usedin order to determinethe nature of the
feedbackelement H(s) such that the steadystate error is reducedto
zero for differenttypesof desiredoutputs. We will particularly consider

step,ramp, and parabolicfunctionsas desiredsystemoutputs.



Beforewe proceedo the actualsteadystateerroranalysiswe introduce

one additional definition.

Definition 6.1 The type of feedback control system is determinedby
the numberof polesof the open-loopfeedbacksystemtransferfunction

locatedat the origin, i.e. it is equalto 3, where is obtainedfrom

K(s+2z1) - (s4+ zm)
sI(s + p1)(s -I-pz)"'(s -I-pn—j)

G(s)H(s) =

Now we considerthe steadystateerrorsfor differentdesiredoutputs,

namelyunit step,unit ramp, and unit parabolicoutputs.
Unit Sep Function as Desired Output

Assumingthat our goal is that the systemoutput follows as close as

possiblethe unit stepfunction,i.e. U(s) = R(s) = 1/s, we have



S 1

88 — li —
o = S0 {1 + H(s)G(s) 3}
1 1

T 1+ lim {H(s)G(s)} 1+ K

where K, is known as the position constant
Kp = lim {H(s)G(s)}
S—
It follows that the steadystateerror for the unit stepreferences reduced

to zerofor K, = oco. We seethat this conditionis satisfiedfor 3 > 1.

Thus, we can concludethat the feedbacktype systemof order at least
oneallows the systemoutputat steadystateto track the unit stepfunction

perfectly.



Unit Ramp Function as Desired Output

In this casethe steadystateerror is obtainedas

. 1 5 1
€ss = lim {sE(s)} = lim {1 + H(ls)G(S) 32}

1
 lim {sH(s)G(s)} ~ Ko

where

K, = lim {sH(s)G(s)}

Is known asthe velocity constant. It follows that K, = oo, i.e. eg3 = 0
for 5 > 2. Thus, systemshaving two and more pure integrators(1/s
terms)in the feedbackioop will be able to perfectly track the unit ramp

function as a desiredsystemoutput.



Unit Parabolic Function as Desired Output

For a unit parabolicfunction we have R(s) = 2/s® sothat

S 2 2 2
s — l. p— p—
55 T 5000 {1 ¥ H(s)G(s) 33} lim {s?H(s)G(s)}  Ka
wherethe so-calledacceleration constant, K, is definedby
K, = lirr(l) {32H(3)G(3)}
Ss—

We can concludethat K, = oo for 3 > 3, i.e. the feedbackioop must
have three pure integratorsin order to reducethe correspondingsteady

stateerror to zero.



Example 6.5: The steadystateerrorsfor a systemthat hasthe open-

loop transferfunction as

20(s + 1)
s(s+2)(s+5)

H(s)G(s) =

are
K, =00 = ess =0 (step)

2
|

=2 = egs= 0.5 (ramp)

Ks=0 = ess

oo (parabolic)

Sincethe open-looptransferfunction of this systemhasoneintegratorthe

outputof the closed-loopsystemcan perfectly track only the unit step.



Example 6.6: Considerthe second-ordersystem whose open-loop

transferfunction is given by

(s + 3)
(s + 1)(s + 2)

H(s)G(s) =

The positionconstanfor this systemis K, = 1.5 sothatthe correspond-
ing steadystateerror is

1 1

= =04
1+ K, 1415

€55 —
The unit stepresponseof this systemis presentedn Figure 6.12, from
which it can be clearly seenthat the steadystateoutputis equalto 0.6;

hencethe steadystateerroris equalto 1 — 0.6 = 0.4.
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Figure 6.12: System step response for Example 6.6



