Chapter ϵ
6.1

$$
C=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 3
\end{array}\right], P(C)=3 \text {. controllable }
$$

$$
\theta=\left[\begin{array}{rrr}
1 & 2 & 1 \\
-1 & -2 & -1 \\
1 & 2 & 1
\end{array}\right], P(\theta)=1 \text { Nor obenable. }
$$

6.2

$$
\begin{aligned}
& {[B A B]=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right], \quad \begin{array}{l}
\text { er has full, sans } \\
\text { controllable }
\end{array}} \\
& \theta=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 3 & -1 \\
0 & -2 & 4
\end{array}\right], P(0)=3 \text { observable }
\end{aligned}
$$

6.3

$$
\left[A B A^{2} B \cdots A^{n} B\right]=A\left[\begin{array}{llll}
B & A B & \cdots & A^{n-1} B
\end{array}\right]
$$

$$
P\left(\left[A B A^{2} B \cdots A^{n} B\right]\right)=P\left(\left[B A B \cdots A^{n-1} B\right]\right)
$$

if and only if A is nonsingular.
(6.4) $\{A, B\}$ controllable \Leftrightarrow
$\operatorname{sank}\left[\begin{array}{ccc}A_{11}-S I & A_{12} & B_{1} \\ A_{21} & A_{22}-S I & 0\end{array}\right]=n \quad \begin{aligned} & \text { for every } s\left(I_{11}\right. \\ & \text { Theorem } 6,1, \alpha\end{aligned}$ is stated for every eigenvalue of A. Horecues, if s is not an agienvalue, then $(A-S I)$ tee rank n. Thus the statement nolde for envy 5 .)
$\Leftrightarrow\left[A_{21}, A_{22}-S I\right]$ has full sow souk
$\Leftrightarrow\left\{A_{22}, A_{21}\right\}$ controllable.

$$
\begin{aligned}
& \dot{x}_{1}=u-x_{1}, \dot{x}_{2}=-x_{2} \\
& y=-x_{2}+2 u
\end{aligned}
$$

$$
\dot{x}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
0
\end{array}\right] u
$$

$$
y=\left[\begin{array}{ll}
0 & -1
\end{array}\right] x+24
$$

$c=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right], p(c)=1$ nor conturleable

$$
O=\left[\begin{array}{cc}
0 & -1 \\
0 & 1
\end{array}\right], P(O)=1 \text { not obeewable. }
$$

6.6 For the state equation is Problem 6.1, we have $\mu=3$. If the observability index is defined as che least integer such that $p\left(\left[\begin{array}{l}c \\ c A \\ c A^{\nu-1}\end{array}\right]\right)=P\left(\left[\begin{array}{c}c \\ c A \\ c A \\ c A^{\nu}\end{array}\right]\right)$
then $\nu=1$. (Note that on controllability and olsewabilily indices are defined in the text for controllable and obrewable state equations.) For the state equation in Problem 6.2, we have $\mu_{1}=2, \mu_{2}=1, \mu=\operatorname{mox}\left\{\mu_{1}, \mu_{2}\right\}$ $=2$ and $\nu=3$.
$6.7 \mu_{i}=1$ for all i and $\mu=1$
${ }^{6,8} \dot{x}=\left[\begin{array}{cc}-1 & 4 \\ 4 & -1\end{array}\right] x+\left[\begin{array}{l}1 \\ 1\end{array}\right] u, \quad y=\left[\begin{array}{ll}1 & 1\end{array}\right] x$
$C=\left[\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right]$. We select $P^{-1}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$.
Then $P=\left[\begin{array}{cc}1 & 0 \\ -1 & 1\end{array}\right]$ and

$$
\begin{aligned}
& P A P^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 4 \\
4 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]=\left[\begin{array}{cc}
3 & 4 \\
0 & -5
\end{array}\right] \\
& \bar{B}=P B=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad \bar{C}=C P^{-1}=\left[\begin{array}{lll}
2 & 1
\end{array}\right]
\end{aligned}
$$

Thus $\bar{x}=P x$ will thane form the equation to

$$
\begin{aligned}
& \dot{\bar{x}}=\left[\begin{array}{cc}
3 & 4 \\
0 & -5
\end{array}\right] \bar{x}+\left[\begin{array}{l}
1 \\
0
\end{array}\right] 4 \\
& y=\left[\begin{array}{ll}
2 & 1
\end{array}\right] \bar{x}
\end{aligned}
$$

and the equation can the seduced to

$$
\begin{aligned}
& \dot{\bar{x}}_{1}=3 \bar{x}_{1}+4 \\
& y=2 \bar{x}_{1}
\end{aligned}
$$

This seduced equation is olvewable.
6.9 The state equation in Problem 6.5 is already in tare form of (6.40), thus ir can the reduced to

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+4 \\
& y=0 \cdot x_{1}+24
\end{aligned}
$$

It is not obocutable, thus it en the further seduced to

$$
y=24 .
$$

Shew is no state vancible in the equation
6.10 From Cosollouy 6.8 on Fig. 6.9, we see char x_{3} is nor controllable. we rearrange the equation as

$$
\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{4} \\
\dot{x}_{5} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{cccc:c}
\lambda_{1} & 1 & 0 & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 & 1 \\
0 & 0 & \lambda_{2} & \vdots \\
0 & 0 & 0 & \lambda_{2} & 0 \\
\hdashline 0 & 0 & 0 & 0 & \dot{\lambda}_{1}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4} \\
x_{5} \\
x_{3}
\end{array}\right]+\left[\begin{array}{c}
0 \\
1 \\
0 \\
1 \\
\hdashline 0
\end{array}\right] u
$$

$$
y=\left[\begin{array}{llll:l}
0 & 1 & 0 & 1
\end{array}\right] \bar{x}
$$

Thus the equation can be reduced on

$$
\begin{aligned}
{\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{4} \\
\dot{x}_{5}
\end{array}\right] } & =\left[\begin{array}{llll}
\lambda_{1} & i & 0 & 0 \\
0 & \lambda_{1} & 0 & 0 \\
0 & 0 & \lambda_{2} & 1 \\
0 & 0 & 0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{4} \\
x_{5}
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right] u \\
y & =\left[\begin{array}{llll}
0 & 1 & 0 & 1
\end{array}\right] \tilde{x}
\end{aligned}
$$

Using Conollany 6.8, we conchucle Thar the reshes equation it controllable. Using Corollary 6.05 or Fig. 6.4, we ser Char x_{1} and x_{4} are nat olaewable. We rearrange the equation as

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x}_{2} \\
\dot{x}_{5} \\
\dot{x}_{1} \\
\dot{x}_{4}
\end{array}\right]=\left[\begin{array}{cc:cc}
\lambda_{1} & 0 & 0 & 0 \\
0 & \lambda_{2} & 0 & 0 \\
\hdashline 1 & 0 & \lambda_{1} & 0 \\
0 & 1 & 0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{5} \\
x_{1} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
1 \\
1 \\
\hdashline 0 \\
0
\end{array}\right] 4} \\
& y=[1,1: 00] \hat{x}
\end{aligned}
$$

This is w che form of (6.44) and can he reduced to

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{2} \\
\dot{x}_{5}
\end{array}\right]=\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{5}
\end{array}\right]+\left[\begin{array}{l}
1 \\
1
\end{array}\right] u} \\
& y=\left[\begin{array}{lll}
1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{2} \\
x_{5}
\end{array}\right]
\end{aligned}
$$

This is controllable and obsenvelele.
(6.11) Select an arbitrary Q_{2} much chat $\left[Q_{1} Q_{2}\right]$ is inonsingular. Define

$$
\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]:=\left[Q_{1} Q_{2}\right]^{-1}
$$

Then

$$
\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right]\left[Q_{1} Q_{2}\right]=\left[\begin{array}{ll}
P_{1} Q_{1} & P_{1} Q_{2} \\
P_{2} Q_{1} & P_{2} Q_{2}
\end{array}\right]=\left[\begin{array}{ll}
I_{n} & 0 \\
0 & 1
\end{array}\right]
$$

and $P_{2} Q_{1}=0$. Because Q_{1} consists of all lInearly independent columns of $[B A B$ $\left.\cdots A^{n-1} B\right]=0$, we have

$$
P_{2} B=0 \text { and } P_{2} A O_{1}=0
$$

Consider the transformation $\bar{x}=\left[\begin{array}{l}P_{1} \\ P_{2}\end{array}\right] x$.
Thea

$$
\begin{aligned}
& \text { Then } \\
& \bar{A}=\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right] A\left[Q_{1} Q_{2}\right]=\left[\begin{array}{l}
P_{1} A Q_{1} P_{1} A Q_{2} \\
P_{2} A Q_{1} \\
P_{2} A Q_{2}
\end{array}\right] \\
& \bar{B}=\left[\begin{array}{l}
P_{1} \\
P_{2}
\end{array}\right] B=\left[\begin{array}{l}
P_{1} B \\
P_{2} B
\end{array}\right] \\
& \bar{C}=C\left[Q_{1} Q_{2}\right]=\left[C Q_{1} C Q_{2}\right] \\
& \text { Becasac } P_{2} B=0 \text { and } P_{2} A Q_{1}=0, \text { ane }
\end{aligned}
$$ equation is in che form of (5.40) and sean we reduced to the controllable

$$
\begin{aligned}
& \dot{\dot{x}_{1}}=P_{1} A Q_{1} \bar{x}_{1}+P_{1} B u \\
& y=C Q, \bar{x}_{1}+D u
\end{aligned}
$$

G. 12 Method 1: We may use elementary sow operations to Hasa form Q, into

$$
P Q_{1}=\left[\begin{array}{l}
I_{n_{1}} \\
0
\end{array}\right]
$$

The firer x, now of P yield P.

Method $2:$ Solve n, ser of Liven oulgelraid equations. The finis sow, p_{1}, of P_{1} is the solution of

$$
p_{1} Q_{1}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right] \quad\left(\text { finest sow of } I_{n_{1}}\right)
$$ The second sore, P_{2}, of P_{1} in the solution of

$$
P_{2} Q_{1}=[010 \ldots 0] \quad\left(\text { second sow of } I_{n}\right)
$$ and so forth.

6.13 Consider

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x+D u
\end{aligned}
$$

$\operatorname{det} p(\theta)=n_{2}$ and P_{1} be $n_{2} \times n$, comacitury of x_{2} linearly independent sons of θ. Solve Q_{1} from $P_{1} Q_{1}=I_{n_{2}}$, where Q_{1} in $n \times n_{2}$.
Then

$$
\begin{aligned}
& \dot{\dot{x}_{1}}=P_{1} A Q_{1} \bar{x}_{1}+P_{1} B u \\
& y=C Q_{1} \bar{x}_{1}+D u
\end{aligned}
$$

is zeso-state equivalent to the original state equation.
6. 14 Because the rows of $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 1 & 1 \\ 3 & 2 & 1\end{array}\right]$ and the sous of $\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$ are linearly independent, the equation is controllable. To be obresmable, the thee colone of
$\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 1\end{array}\right]$ and the two columns of $\left[\begin{array}{cc}-1 & 1 \\ 0 & 0 \\ 1 & 0\end{array}\right]$
muter be linearly independent. The three columns are nor linearly indespandars therefore, the equation is not olocesable. 6.15 To the controllable, the three some of $\left[\begin{array}{ll}b_{21} & b_{22} \\ b_{41} & b_{42} \\ b_{31} & b_{52}\end{array}\right]$ must be Linearly viclypendant This is not possible. To be observable, the trice e columns of

$$
\left[\begin{array}{lll}
c_{11} & c_{13} & c_{15} \\
c_{21} & c_{23} & c_{25} \\
c_{31} & c_{33} & c_{35}
\end{array}\right]
$$

must be linearly independent. This can the easily achieved. For example, we may choose it as I_{3}.
6.16 Consider

$$
\dot{\bar{x}}=\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & 0 & 0 \\
0 & \alpha_{1}+j \beta_{1} & 0 & 0 & 0 \\
0 & 0 & \alpha_{1}-j \beta_{1} & 0 & 0 \\
0 & 0 & 0 & \alpha_{2}+j \beta_{2} & 0 \\
0 & 0 & 0 & 0 & \alpha_{2}-j \beta_{2}
\end{array}\right] \bar{x}+\left[\begin{array}{c}
b_{1} \\
r_{1} \dot{r} j \eta_{1} \\
r_{1}-j \eta_{1} \\
r_{2}+j \eta_{2} \\
r_{2}-j \eta_{2}
\end{array}\right]
$$

$$
y=\left[c_{1}, 1+j q_{1} p_{1}-j q_{1} p_{2}+j q_{2} p_{2}-j q_{2}\right] x
$$

It is controllable $\Rightarrow b_{1} \neq 0 ; r_{i} \neq$ or $\eta_{i} \neq 0, i=1.2 ;$ obentable $\Leftrightarrow c_{1} \neq 0 ; p_{i} \neq 0$ or $f_{i} \neq 0, i=1,2$.
(Corollaries 6.5 and 6.08)
The tram formation $\bar{x}=P x$ with

Transforms the equation into

$$
\dot{x}=\left[\begin{array}{c:c}
\lambda_{1}: & \\
\hdashline \alpha_{1} & \beta_{1} \\
\vdots \beta_{1} & \\
\hdashline & \vdots \alpha_{2} \\
& \\
& \\
& \\
& -\beta_{2} \\
\alpha_{2}
\end{array}\right] x+\left[\begin{array}{c}
\alpha_{1} \\
\hdashline 2 r_{1} \\
\hdashline-2 \eta_{1} \\
2 r_{2} \\
-2 \eta_{2}
\end{array}\right] u
$$

$$
y=\left[\begin{array}{ll:ll}
c_{1} ; p_{1} q_{1} ; p_{2} & q_{2}
\end{array}\right] x
$$

Thus it is controllable $\Leftrightarrow b_{1} \neq 0 ; b_{i 1}=2 r_{i} \neq 0 \mathrm{cz}$ $b_{i_{2}}=-2 q_{i} \neq 0$. ar is olnewrable $\Leftrightarrow c_{1} \neq 0$;
$t_{i 1}=p_{i} \neq 0$ or $c_{i 2}=q_{i} \neq 0$.

$$
\begin{aligned}
& y=-x_{2}-x_{1} \\
& \dot{x}_{2}=-3 \dot{x}_{2}-3 \dot{x}_{1} \quad \Rightarrow \dot{x}_{2}=\frac{-3}{4} \dot{x}_{1} \\
& 0.5\left(14+x_{1}\right)+2 \dot{x}_{1}=\dot{x}_{2}=\frac{-3}{4} \dot{x}_{1}
\end{aligned}
$$

$\dot{x}_{1}=-\frac{2}{11} x_{1}-\frac{2}{11} u$

$$
\begin{aligned}
& {\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{-2}{11} & 0 \\
\frac{3}{22} & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{c}
\frac{-2}{11} \\
\frac{3}{22}
\end{array}\right] u} \\
& y=\left[\begin{array}{lll}
-1 & -1
\end{array}\right] x
\end{aligned}
$$

This two-dinenseonal equation ducribles the network
$C=\left[\begin{array}{cc}\frac{-2}{11} & \frac{-2}{11} \times \frac{-2}{11} \\ \frac{3}{22} & \frac{-3}{22} \times \frac{-2}{11}\end{array}\right], P(C)=1$ not controllable
$0=\left[\begin{array}{cc}-1 & -1 \\ \frac{1}{22} & 0\end{array}\right], P(C)=2$ ofecurable
How we introduce the voltage across ot e 3F capacitor as che third state vascielle x_{3}. Then we haw $y=x_{3}$ and $x_{3}=-x_{1}-x_{2}$. Thus

$$
\dot{x}_{3}=-\dot{x}_{2}-\dot{x}_{1}=\frac{1}{22} x_{1}+\frac{1}{22} 4
$$

and

$$
\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2} \\
\dot{x}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\frac{-2}{11} & 0 & 0 \\
\frac{3}{22} & 0 & 0 \\
\frac{1}{22} & 0 & 0
\end{array}\right] x+\left[\begin{array}{c}
\frac{-2}{11} \\
\frac{3}{22} \\
\frac{1}{22}
\end{array}\right] u
$$

$$
y=\left[\begin{array}{ll}
0 & 0,
\end{array}\right] x
$$

T his 3-dineuesornal equation does onleds the network. This equation it not controllable and not obsumable. 6. 18 The equation is

$$
\dot{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] u
$$

$$
y=\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
$$

$C=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 0 & -1 \\ 0 & 1 & -1\end{array}\right], P(C)=3$ contiollalue
$O=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & -1\end{array}\right], P(0)=2 \quad$ not observable

The RC loop it in series with the current come Therefore the repose due to x, will nor affect the nest of the network. These the network is nor otreswable
6.19 Conceder

$$
\begin{aligned}
& x^{4}=\left[\begin{array}{cc}
0 & 1 \\
-2 & -2
\end{array}\right] x+\left[\begin{array}{l}
1 \\
1
\end{array}\right] 4 \\
& y=\left[\begin{array}{ll}
2 & 3
\end{array}\right] x
\end{aligned}
$$

tho eigenvalues ane $-1 \pm j$. The necessary and sufficient condition for ito diocretaje equation to be controllable is

$$
T \neq \frac{2 \pi}{|1-(-1)|} n=\frac{2 \pi}{2} m=m \pi, \quad n=1,2 \cdots
$$

For $T=1$, du disontyged equation wo
computed in problem 4.3 as

$$
\begin{aligned}
& x[k+1]=\left[\begin{array}{cc}
0.5083 & 0.3096 \\
-0.6191 & -0.1108
\end{array}\right] x[k]+\left[\begin{array}{c}
1.04 \% 1 \\
-0.1821
\end{array}\right] u[k] \\
& y[k]=\left[\begin{array}{ll}
2 & 31 \times[k]
\end{array}, l\right.
\end{aligned}
$$

As predicted by theorem 6.4, ir is controllable. Similarly, it is obresvable
For $T=\pi$, we Deme, as comprited in Prod.4.3,

$$
\begin{aligned}
x[k+1] & =\left[\begin{array}{cc}
-0.0432 & 0 \\
0 & -0.0432
\end{array}\right] x[k]+\left[\begin{array}{c}
1.5648 \\
-1.0432
\end{array}\right] u[k] \\
y[k] & =\left[\begin{array}{ll}
2 & 3
\end{array}\right] x[k]
\end{aligned}
$$

st em he readily verified to the
uncontrollable and unotreersable and is consistent with Theorem 6.9.
$(6,20) \dot{x}=\left[\begin{array}{ll}0 & 1 \\ 0 & t\end{array}\right] x+\left[\begin{array}{l}0 \\ 1\end{array}\right] u \quad y=\left[\begin{array}{ll}0 & 1\end{array}\right] x$
$M_{0}=B,=\left[\begin{array}{l}0 \\ 1\end{array}\right], M_{1}(t)=-A(t) M_{0}(t)+\frac{d}{d t} M_{0}(t)=\left[\begin{array}{l}-1 \\ -t\end{array}\right]$
$\operatorname{rank}\left[\begin{array}{ll}0 & -1 \\ 1 & -t\end{array}\right]=2$ ar every t. Thus the equation
i controllable ar every t (Theorem 6,12)
$N_{0}(t)=\left[\begin{array}{ll}0 & 1\end{array}\right], N_{1}(t)=[0, t]$
$\operatorname{rank}\left[\begin{array}{l}N_{0}(t) \\ N_{1}(t)\end{array}\right]=\operatorname{arch}\left[\begin{array}{ll}0 & 1 \\ 0 & t\end{array}\right]=1$
Because Theorem 6.012 is a sufficient
condition, we cannot way anything about the cloeswability of the equation.
The state transition matron of the equation who computed in Problem 4.16 an

$$
\phi\left(t, t_{0}\right)=\left[\begin{array}{cc}
1 & -e^{0.5 t^{2}} \int_{t_{D}}^{t} e^{0.5 z^{2}} d z \\
0 & e^{0.5\left(t^{2}-t_{0}^{2}\right)}
\end{array}\right]
$$

ω_{2} complete $c \phi\left(v, t_{0}\right)=\left[\begin{array}{ll}0 & e^{0.5\left(r^{2}-t_{0}^{2}\right)}\end{array}\right]$ and

$$
W_{0}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}}\left[\begin{array}{cc}
0 & 0 \\
0 & e^{\left(\tau^{2}-t_{0}^{2}\right)}
\end{array}\right] d \tau
$$

4 is Angular ar every to. Thus the equation is nat ofrevirable at ency t.
$x=\left[\begin{array}{cc}0 & 0 \\ 0 & -1\end{array}\right] x+\left[\begin{array}{l}1 \\ e^{-t}\end{array}\right] u$

$$
\begin{aligned}
& y=\left[\begin{array}{ll}
1 & e^{-t}
\end{array}\right] x \\
& \phi(t, z)=\left[\begin{array}{cc}
1 & 0 \\
0 & e^{-(t-z)}
\end{array}\right] \\
& \phi(t, \tau) B(\tau)=\left[\begin{array}{ll}
1 & 0 \\
0 & e^{-(t-\tau)}
\end{array}\right]\left[\begin{array}{c}
1 \\
e^{-z}
\end{array}\right]=\left[\begin{array}{c}
1 \\
e^{-\tau}
\end{array}\right] \\
& W_{c}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}}\left[e^{-t_{1}}\right]^{\left[1 e^{-t_{1}}\right]} d \tau \\
& =\left[\begin{array}{l}
t_{1}-t_{0} \\
e^{-t_{1}} \\
\left(t_{1}-t_{0}\right) \\
e^{-t_{1}}\left(t_{1}-t_{0}\right)
\end{array} e^{-2 t_{1}}\left(t_{1}-t_{0}\right)\right]
\end{aligned}
$$

$\operatorname{der} W_{c}\left(t_{0}, t_{1}\right)=0$ for all t_{0} and $t_{1} \geqslant t_{0}$. Thus the equation is nor controllable at any t,
We we theown 6,012 to check oldeswabality.

$$
\begin{aligned}
N_{0}(t) & =\left[\begin{array}{ll}
1 & e^{-t}
\end{array}\right] \\
N_{1}(t) & =\left[\begin{array}{ll}
1 & e^{-t}
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
0 & -1
\end{array}\right]+\frac{d}{d t}\left[\begin{array}{ll}
1 & e^{-t}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & -e^{-t}
\end{array}\right]+\left[\begin{array}{ll}
0 & -e^{-t}
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & -2 e^{-t}
\end{array}\right]
\end{aligned}
$$

$\operatorname{rank}\left[\begin{array}{cc}1 & e^{-t} \\ 0 & -2 e^{-t}\end{array}\right]=2$ for all finite t. Thus the state equation is olsesonble ot every t.
We mention that in the tion-invasiour case, (A, B) is controllable if and only if $\left(A^{\prime}, B^{\prime}\right)$ is obsestrable. In the imine vary ing case, ir mus the modified as $(A(t), B(t))$ is controllable at t_{0} if and only if $\left(-A^{\prime}(t), B^{\prime}(t)\right.$ is obeeswable at t_{0}. See Problean 6.22.

6,22 Let $X(t)$ be a frondomental matrix of $\dot{x}=A(t) x$. or $\frac{d}{d t} X(t)=A(t) X(t)$.

Then

$$
\begin{aligned}
& \frac{d}{d t}\left(x^{-1}(t) X(t)\right)=\left(\frac{d}{d t} x^{-1}(t)\right) X(t)+X^{-1}(t) \frac{d}{d t} X(t) \\
& =\frac{d}{d t}(I)=0 \quad \text { Thin } \\
& \frac{d}{d t} x^{-1}(t)=-X^{-1}\left(\frac{d}{d r} X(t)\right) X^{-1}(t) \\
& =
\end{aligned}
$$

Let $X_{1}(t)$ be a fundamental matins of

$$
\hat{x}(t)=-A^{\prime}(t) X(t) \quad \text { or } \quad \frac{d}{d t} X_{1}(t)=-\Delta^{\prime}(t) X_{1}(t)
$$

Taking its transpose yields

$$
\frac{d}{d t} x_{1}^{\prime}(t)=-x_{1}^{\prime}(t) A(t)
$$

Thus we have $X_{1}^{\prime}(t)=X^{-1}(t) ;\left(X_{1}^{\prime}(t)\right)^{-1}=X(t)$

$$
\begin{aligned}
\phi(t, z) & =X(t) X^{-1}(z) \\
\phi_{1}(t, z) & =X_{1}(t) X_{1}^{-1}(\tau) \\
\phi_{1}^{\prime}(t, z) & =\left(X_{1}^{\prime}\right)^{-1}(z) X_{1}^{\prime}(t)=X(z) X^{-1}(t) \\
& =\phi(z, t)
\end{aligned}
$$

How $(A(t), B(t))$ is controll A ale aet to if anode only if

$$
W_{c}=\int_{t_{0}}^{t_{1}} \phi\left(t_{1}, z\right) B(z) B^{\prime}(z) \phi^{\prime}\left(t_{1}, \tau\right) d z
$$

is noneingular. Wing

$$
\phi\left(t_{1}, z\right)=\phi\left(t_{1}, t_{0}\right) \phi\left(t_{0}, z\right)
$$

we write W_{c} as

$$
\begin{gathered}
W_{c}=\phi\left(t_{1}, t_{0}\right)\left(\int_{t_{0}}^{t_{1}} \phi\left(t_{0}, \tau\right) B(z) B^{\prime}(z)\right. \\
\left.x \phi^{\prime}\left(t_{0}, \tau\right) d \tau\right) \phi^{\prime}\left(t_{1}, t_{0}\right)
\end{gathered}
$$

Because $\phi\left(t_{1}, t_{0}\right)$ is noneingulas, w concluele $(A(t), B(t))$ is controllable if and only if

$$
\int_{t_{0}}^{t} \phi\left(t_{0}, \tau\right) B(\tau) B^{\prime}(z) \phi^{\prime}\left(t_{0}, \tau\right) d \tau \quad(*)
$$

is noneringulan. Now $\left(-A^{\prime}(t), B^{\prime}(t)\right)$
is observable if and only if

$$
W_{10}=\int_{t_{0}}^{t} \phi_{1}^{\prime}\left(\tau, t_{0}\right) B(z) B^{\prime}(\tau) \phi_{1}\left(\tau, t_{0}\right) d \tau
$$

is nonsingulas. Using $\phi_{1}\left(z, t_{0}\right)=$ $\phi\left(t_{0}, \tau\right)$, we write w_{10} as

$$
W_{10}=\int_{t_{0}}^{t} \phi\left(t_{0}, z\right) B(z) B^{\prime}(z) \phi^{\prime}\left(t_{0}, z\right) d z
$$

which is identical to (*). This establishes chat $(A(t), B(t))$ is controllable if and only if $\left(-A^{\prime}(t), B(t)\right)$ is observable.
6.23) $(-A, B)$ is controllable if and only if

$$
\left.\left.\begin{array}{rl}
& {\left[\begin{array}{llll}
B & (-A) B & (-A)^{2} B & \cdots
\end{array}(-A)^{n-1} B\right.}
\end{array}\right] \quad \begin{array}{llll}
B & -A B & A^{2} B & -A^{3} B
\end{array} \cdots \pm A^{n-1} B\right]\left[\begin{array}{lll}
B & \cdots
\end{array}\right.
$$

has full son rant. Because

$$
\left.\begin{array}{l}
{\left[B-A B A^{2} B\right.}
\end{array}-A^{3} B \cdots \cdots\right]\left[\begin{array}{lllll}
B & A B & A^{2} B & A^{3} B & \cdots
\end{array}\right]\left[\begin{array}{cccc}
I & 0 & 0 & 0 \\
0 & -工 & 0 & 0 \\
0 & 0 & I & 0 \\
0 & 0 & 0 & -I
\end{array}\right]
$$

(npxnp)
The (npxup) matixi is clearly nonsingular, Thus $\left[B A B A^{2} B \cdots\right]$ and $\left[B-A B A^{2} B \cdots\right]$
have the came rout, and (A, B) is controllable if and only if $(-A, B)$ is controllable.
The aecestion is nat true in the timevarying case. For example, $(A(t), B(t))$ in Problem 6.21 is not controllable at any t. Consider $(-A(t), B(t))$ on

$$
-A(t)=\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right], B(t)=\left[\begin{array}{c}
1 \\
e^{-t}
\end{array}\right]
$$

we have

$$
\begin{aligned}
& \phi(t, z)=\left[\begin{array}{ll}
1 & 0 \\
0 & e^{(t-z)}
\end{array}\right] \\
& \phi(t, \tau) B(z)=\left[\begin{array}{c}
1 \\
e^{(t-z)} e^{-z}
\end{array}\right]=\left[\begin{array}{c}
1 \\
e^{t-2 z}
\end{array}\right] \\
& W_{c}\left(t_{0}, t_{1}\right)=\int_{t_{0}}^{t_{1}}\left[\begin{array}{c}
1 \\
e^{t_{1}-2 z}
\end{array}\right]\left[1 e^{t_{1}-2 \tau}\right] d z \\
& =\int_{t_{0}}^{t_{1}}\left[\begin{array}{c}
1 e^{t_{1}-2 z} \\
e^{t_{1}-2 z} e^{2\left(t_{1}-2 z\right)}
\end{array}\right] d z \\
& =\left[\begin{array}{ll}
t_{1}-t_{b} & \frac{1}{3} e^{t_{1}}\left(e^{-3 t_{0}}-e^{-3 t_{1}}\right) \\
\frac{1}{3} e^{t_{1}} & \left(e^{-3 t_{0}} e^{-3 t_{1}}\right)
\end{array} \frac{1}{5} e^{2 t_{1}}\left(e^{-5 t_{0}}-e^{-5 t_{1}}\right)\right]
\end{aligned}
$$

hor any to, we can find a t_{1} to what $W_{c}\left(t_{0}, t_{1}\right)$ is nonimpular and $(-A(t), B(i))$ is controllable at any t although $(A(t), B(t))$ is nor.

Problem Assuming that the desired nnal state of a aiscrete system representea by

$$
\mathbf{A}=\left[\begin{array}{rrr}
0 & 1 & 0 \\
-2 & 3 & 1 \\
-1 & 0 & 1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right], \quad \mathbf{x}(0)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

is $\mathbf{x}(3)=\left[\begin{array}{lll}0 & -1 & 1\end{array}\right]^{T}$ find the control sequence that transfers the system from $\mathbf{x}(0)$ to $\mathbf{x}(3)$.

Solution: Let us start with equation (5.18) for $n=3$, i.e.

$$
\mathbf{x}(3)-\mathbf{A}^{3} \mathbf{x}(0)=\left[\begin{array}{lll}
\mathbf{B} & \mathbf{A B} & \mathbf{A}^{2} \mathbf{B}
\end{array}\right]\left[\begin{array}{l}
u(2) \\
u(1) \\
u(0)
\end{array}\right]
$$

Since

$$
\begin{aligned}
\mathbf{A}^{2} & =\left[\begin{array}{rrr}
-1 & 3 & 1 \\
-4 & 7 & 4 \\
-1 & -1 & 1
\end{array}\right], \quad \mathbf{A}^{3}=\left[\begin{array}{rrr}
-7 & 8 & 4 \\
-10 & 17 & 11 \\
1 & -4 & 0
\end{array}\right] \\
\mathbf{A B} & =\left[\begin{array}{l}
1 \\
5 \\
2
\end{array}\right], \quad \mathbf{A}^{2} \mathbf{B}=\left[\begin{array}{r}
5 \\
15 \\
1
\end{array}\right], \quad \mathbf{A}^{3} \mathbf{x}(0)=\left[\begin{array}{r}
5 \\
18 \\
-3
\end{array}\right]
\end{aligned}
$$

the previous equation becomes

$$
\left[\begin{array}{r}
-5 \\
-19 \\
4
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 5 \\
1 & 5 & 15 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
u(2) \\
u(1) \\
u(0)
\end{array}\right]
$$

The solution of this system gives the required control sequence as

$$
\left[\begin{array}{l}
u(2) \\
u(1) \\
u(0)
\end{array}\right]=\left[\begin{array}{r}
0.5455 \\
-2.2727 \\
-0.5455
\end{array}\right]
$$

Problem 2)

$$
\begin{aligned}
\mathbb{C} & =\left[\begin{array}{ll}
B & A B
\end{array}\right]=\left[\begin{array}{cc}
b_{1} & -b_{1}+b_{2} \\
b_{2} & -2 b_{2}
\end{array}\right] \\
\operatorname{det} \mathbb{S} & =-2 b_{1} b_{2}-b_{2}\left(b_{2}-b_{1}\right)=-2 b_{1} b_{2}-b_{2}^{2}+b_{2} b_{1} \\
\operatorname{det} C & =-b_{2}^{2}-b_{1} b_{2}=-b_{2}\left(b_{2}+b_{1}\right) \neq 0 \\
\Rightarrow & b_{2} \neq 0 \text { and } b_{1}+b_{2} \neq 0 \Rightarrow \text { controutable } \\
\mathbb{T} & =\left[\begin{array}{c}
C \\
C A
\end{array}\right]=\left[\begin{array}{cc}
9 & c_{2} \\
-9 & c_{1}-2 c_{2}
\end{array}\right] \\
\operatorname{det} \mathbb{D} & =c_{1}^{2}-2 c_{1} c_{2}+c_{1} c_{2}=c_{1}^{2}-c_{1}=c_{1}\left(a_{1}-c_{2}\right) \neq 0
\end{aligned}
$$

$\Rightarrow c_{1} \neq 0$ and $c_{1}-c_{2} \neq 0 \Rightarrow$ observable

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{cc}
-1 & 1 \\
0 & -2
\end{array}\right] x+\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right] u \\
& y=\left[\begin{array}{ll}
a & c_{2}
\end{array}\right] x
\end{aligned}
$$

(1) $y(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t) \Rightarrow y(0)=c_{1} x_{1}(0)+c_{2} x_{2}(0)$
(2)

$$
\begin{aligned}
\dot{y}(t)=c_{1} \dot{x}_{1}(t)+c_{2} \dot{x}_{2}(t)= & \left.c_{1}\left(-x_{1}(t)+x_{2}(t)\right)+b_{1} u(t)\right) \\
& +c_{2}\left(-2 x_{2}(t)+b_{2} u(t)\right)
\end{aligned}
$$

(1) $y(0)=\alpha_{1}+\alpha_{2}=c_{1} x_{1}(0)+c_{2} x_{2}(0)$
(2) $\dot{y}(0)=-\alpha_{1}-2 \alpha_{2}=-a_{1} x_{1}(0)+\left(a_{1}-2 c_{2}\right) x_{2}(0)+a_{1} b_{1} u(0)+c_{2} b_{2} u(0$.
(1) $\left[\begin{array}{cc}c_{1} & c_{2} \\ -a_{1} & c_{1}-2 c_{2}\end{array}\right]\left[\begin{array}{l}\left.x_{1} / 0\right) \\ x_{2}(0)\end{array}\right]=\left[\begin{array}{c}\alpha_{1}+\alpha_{2} \\ -\alpha_{1}-2 \alpha_{2}-c_{1} b_{1} u(0)-c_{2} b_{2} u(0)\end{array}\right]$

$$
\left[\begin{array}{l}
x_{1}(c) \\
x_{2}(0)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
a & c_{2} \\
-a & a_{1}-2 c_{2}
\end{array}\right]^{-1}}\left[\begin{array}{c}
\alpha_{1}+\alpha_{2} \\
-\alpha_{1}-2 \alpha_{2}-c b_{1} u(0)-c_{2} b_{2} u(0)
\end{array}\right]
$$

Envertible if the system is observable thatis, $c_{1} \neq 0$ and $a-c_{2} \neq 0$

