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In this talk we presenta unified approachfor optimal con-
trol andfiltering of linear continuous-timesingularly perturbed
linear systems(continuous,discrete,stochastic)that facilitates
completeand exactdecompositiorof optimal control andfilter-
ing tasksinto pure-slowand pure-fasttime scales.

The presentednethodologyhasthe following features:

« HIGH ACCURACY

« Eliminationof numericalill-conditioning of the original prob-
lems

 Introductionof parallelisminto the designprocedures

* Independenparallel processingof information in the pure-
slow and pure-fasttime scales

* Order-reductionof the original problems,which, in general,
implies reductionin both off-line and on-line computational
requirements.



In the last thirty five yearsaroundone thousand journal
papers, morethan thirty books,and severaloverviewjournal
papers, were publishedon singularly perturbedsystems.

The notion of singularperturbationsn mathematicfasbeen
used for systemsof ordinary differential equationsthat have
somederivativesmultiplied by small positive parametersSuch
systemsof differential equationswere extensively studied in
the 1950s and 1960s by several mathematicians: Tikhonov,
Levin, Levinson, Vasileva, Butuzov, Wasov, Hoppendsteadt,
O’Malley, Smith, Chang (to namethosemostoftencitedin the
engineeringliterature)

dxq

T fi(x1, z2, u(x1,x2)), =1(0) = 10
dxo

GE = fz(:cl,a:z,u(:cl,:cz)), 332(0) = I90

€ is a small positive parameter

whereu(x1(t), x2(t)) is the control variable.

The notion of singular perturbationshas beenextendedalso
to cover ordinary difference equationsand partial differential
equations.



One of the most important (from the engineeringpoint of
view) andmostwidely usedresultsof linear singularlyperturbed
systemsis thetransformatiorfor the exact(atleasttheoretically)
pure-slowand pure-fastdecompositiorof linear singularly per-
turbedtwo-point boundaryvalue problem,known asthe Chang
transformation (Chang, 1972)

Many real physicalsystemsare singularly perturbedfor ex-
ample, aircraft, robots, electrical circuits, power systems,nu-
clearreactors chemicalreactors,dc andinduction motors,syn-
chronousmachinesdistillation columns,flexible structuresau-
tomobiles. Sincethe middle of the 1960ssingularly perturbed
systemshave beenstudiedin engineering,primary due to the
work of Petar Kokotovic and his coworkers.

Singularly perturbedsystemsare characterizedby simultane-
ouspresenc®f smallandlargetime constantswhich introduces
clusteringof linear (or linearized) systemeigenvaluesnto two
disjointgroups:(a) eigenvaluesorrespondingo largetime con-
stantslocatedcloseto theimaginaryaxis representinglow sub-
systemstatespacevariables(slow modes),and (b) eigenvalues
correspondindo smalltime constantdocatedfar from theimag-
inary axis representingast subsystenstatespacevariables(fast
modes).



Linear time invariant singularly
perturbed system eigenvalue clusters




The approachegakenin engineeringduring the 1970sand
1980s in the study of singularly perturbedcontrol systems,
were basedon expansionmethods(power series, asymptotic
expansions]aylor series) the methodsdevelopedoy previously
mentionednathematiciansThe approachesgvere,in mostcases,
developednly for anO(€) accuracywheree is asmallpositive
singular perturbationparameter.

O(€e") standsfor O(€") < ce”, wherec is a boundedconstant
and r is any real number.

Generatinghigher order expansionsfor those methodshas
beenanalytically pretty cumbersomend numericallypretty in-
efficient, especiallyfor high-dimensionatontrol systems.

Evenmore,it hasbeendemonstratedh severalpublications,
that for someapplicationsan O(e€) accuracyis eithernot suffi-
cient or evenmore, it doesnot solvethe problemat all

Grodt and Gajic, (1988)

Gajic, Harkara,and Petkovski,(1989)

Skataricand Gajic (1992)

Gajic and Shen (1993)

Mizukami and Suzumura,(1993)
severalrecentpapersby Mizukami, Mukaidani,and Xu

In what follows, the complete solutions to the linear-
guadratic optimal control and filtering continuous-time prob-
lems will be given in detail. Solutions of the related control
and filtering problemswill be only outlined.



Pure-Slow and Pure-Fast Decomposition of
the Linear-Quadratic Optimal Control Problem

The linear singularly perturbedcontrol systemis given by

:i:l(t) = Ala:l(t) + Azwz(t) + Blu(t), a:l(t()) = X190

Gdjz(t) = A3£131(t)-|—A4:132(t)—|—B2u(t), :Cz(t()) = &2

wherez;(t) € R™, ¢« = 1,2, u(t) € R™ are stateand
control variables respectivelyande is a small positive singular
perturbationparameter.

With the abovelinear systemwe considerthe performance
criterion to be minimized

o= mio} [{[260] @ [25] - romuo

with positive definite R and positive semidefinite@.

The open-loop optimal control problemhasthe solution
u(t) = —R™'BTp(t)

wherep(t) € R™11"2 s a costatevariablethat satisfies

s = 12 x| [28

v



A1 Ay ], Q= [g;}" g;] _ [‘ﬁ% QfCIz]

G q qiq2

and 7 (t) = [27(t) =1(t)].
The optimal closed-loopcontrol law hasthe well known form
u(xz(t)) = —R'BTPx(t) = —Fx(t)

where P is the positive semidefinitesolution of the algebraic
Riccati equationgiven by

_ T _ _ | PL eP;

0=PA+A"P+Q— PSP, P= LP2T €P3]

The Riccati equation plays the central role in optimal linear
control and filtering. The positive semidefinitestabilizing so-
lution of the algebraicRiccati equationexistsunderthe standard
stabilizability-detectabilityconditions.

SystemStabilizability and Detectability Assumption:
Thetriple (A, B,+/Q) is stabilizableand detectable.

In the following show how to find the solution of the above
algebraicRiccati equationin termsof solutionsof the reduced-
order, pure-slowand pure-fast,algebraicRiccati equations.
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Partitioning and appropriately scaling p(t) as
pT(t) = [pT(t) epS(t)] with pi(t) € R™,i = 1,2,
and interchangingsecondand third rows in the state-costate
system,we get

&1 (t) | @1 (t)

pi(t) | _|T1 Tz ||pi(?)

:i:z(t) o %Tg %T4 :Cz(t)

| p2(t) |  p2(t) |

where

A —S A —7
ne e S e T

A —zT A —S
ne g b me e 3

It is importantto noticethattheabovesystenretainsthe singular
perturbatiorform. Also, the matrix T is the Hamiltonianmatrix
of the fast subsystemandit is nonsingulamunderstabilizability-
detectabilityconditionsimposedon the fast subsystem.

Fast SubsystemStabilizability and Detectability Assump-
tion: Thetriple (A4, B2, g2) Is stabilizableand detectable.

It shouldbe emphasizedhat the presentegrocedurds valid
for both the so-calledstandard (matrix A4 is nhonsingularjand
nonstandard (matrix A4 is singular)singularly perturbedinear
control systems. Note that nonstandardsingularly perturbed
control systemsare the recenttrend in theory of singularly
perturbedlinear control systems.
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The celebratedransformatiorof Chang,usedfor decomposi-
tion of linear singularly perturbedsystemsjs definedby

Iz, —eHL —eH

T, =
! L Ion,

where L and H satisfy

T4 — T3 — 6L(T1 — TzL) =0

—H(T4 + GLTz) + 15 + €(T1 — TzL)H =0

The uniquesolutionsof the abovealgebraicequationsexist for
sufficiently small valuesof e underconditionthat T4 is nonsin-
gular, thatis, underFastSubsystenttabilizability-Detectability
Assumption.Thesealgebraicequationscanbe solvedefficiently
with very high accuracyaslinearalgebraicequationsisingeither
the fixed-point algorithm or the Newton method.

The correspondingfixed point and Newton algorithms for
solving the L-equationare respectivelygiven by

L@thﬂm+fnﬁﬂﬂﬁy—ﬁLW)

LO =113, i=0,1,2,..

and
Dgi)L(iH) 4 L(z‘+1)D§i) _ QW
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L(O) — T4_1T39 1= 0,1,2,...
Dfi) =Ty + eLOTy

The Newton method conveges quadratically,henceif it con-
verges, it requiresin averageonly four to five iterations. The
fixed-pointiterationsconvege linearly and sometimegequirea
lot of iterations. In addition, the L-equationcan be efficiently
solvedby usingthe eigenvectormethod of (Kecman,Bingulac,
and Gajic, 1999) and the Taylor seriesexpansionf (Derbel,
Kamoun, and Poloujadof (1994). Once the solution for the
L-equationis obtained,the H-equationcan be solved either
directly asa linear Sylvesterequationor recursivelyas

i+ — To(Ty + eLTz)_l
+e(Th — ToLYHW(Ty 4 eLT2) ™

HO =11, i=0,1,2,..
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The applicationof the Changtransformationto state-costate
equationgproduceswo completelydecoupledsubsystems

#(t) = (T — TeL)n(t)

and
e€(t) = (Ta + eLT2)E(t)
where
.
)=
| p2(t) _

Let us definethe permutationmatrix £ by

(x1(t) | In,, O 0 x1(t) |
pl(t) . 0 0 In1 0 :Cz(t)
a:z(t) |0 I,, O 0 pl(t)
 pa(t) | 0 0 0 iI,, | |ep2(t)
_ z(t)
= [p(t)]

Note that the inverseof F; canbe easily obtainedanalytically,
hence this matrix is not numericallyill-conditionedwith respect
to the matrix inversionfor small valuesof e.
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The relationshipbetweenthe original and new coordinatess

(1n1(t) |
2| =m0
| 2(t) _
-n;3]=[m 2]58]

where F» is a permutationmatrix of the form

I, 0 0 ©

o o I, o©

B2=1, In, 0 0O
0 0 0 Iy |

Sincep(t) = Px(t), where P is the solution of the algebraic
Riccati equation,it follows that

i) | = m(t)] _
lsi(t)] = (II; + Iy P)xz(t), [£Z(t)] = (I3 + I, P)x(¢)

In the original coordinates,the required optimal solution has
a closed-loopnature. We have the sameattribute for the new
systemg(pure-slowand pure-fastsubsystems)hat is

) = [0 p L)
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It can be shown that

0 Pf] = (I13 + Iy P)(II; + I P)~*

We canalsofind P reverselyby introducing

—1mp—1p -1 _ o |1 Q2
E;"T{ Ey =11 _ﬂ_[ﬂ3 ﬂ4]
where
(I,, O 0 |
1_ |0 0 I, O
Eim =1y I,, 0 0O
0 0 0 ey,
and it yields

~1
Ps 0 Ps 0
N ) [CEEA )

It was shownin (Su, Gajic, and Shen, 1992) that the above
definedmatrix inversionsexist for sufficiently small valuesof e.
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Partitioningthe pure-slowandpure-fastsubsystemasfollows

8] -2 2] - -y

12(t) a3z aq | |n2(1) n2(t)

e = 0] [60] = o am[E)]

andusingtherelationsnz(t) = Psn1(t) andé2(t) = Pr&1(t)
yield to two reduced-ordemonsymmetricpure-slowand pure-
fast, algebraicRiccati equations

0 = Psa1 — a4 Ps — a3 + Psaz Py

0= bel — b4Pf — b3y + besz
with a;,b;,@ = 1,2, 3,4, definedby above.

The pure-fastalgebraicRiccatiequationis nonsymmetricput
its O(e) approximationis a symmetricone, that is

PfA4 + AZPf + Q3 — PfS2Pf + 0(6) =0
We canobtainan O(e) approximationfor Py as
0 0 0 0

P As+ ATPY 4 Qs — PV s, P = 0

The uniquepositive semiddinite solution of this equationexists
under Fast Subsystem Stabilizability-Detectability Assump-
tion.
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Hence,we have Py = P( ) + O(€e). The pure-slowalge-
braic Riccati equationis also nonsymmetric. It can be also
shownthat the pure-slowalgebraicRiccati equationis an O(e)
perturbatiorof thefirst-orderapproximateslow algebraicRiccati
equationobtainedin (Chow and Kokotovic, 1976)

POA;+ ATPO) 4 @, — POs, PO =0

with P, = P{") + O(e), whereAg, Qs, andSs canbe found
either using the methodologyof (Chow and Kokotovic, 1976)
or from the resultsof (Wang and Frank, 1992) as

[ As _SS

-1
_Q, _sz] =11 — 12T, T3

Note that we have

as

(0) o0
(0) (0)] [al ZZ] + O(e)
=T; — ToLY 4 0(e) = Ty — ToT; ' T3 + O(e)

which implies

(0) (0) A, -8,
(0) (0) —Q, —AT

S
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The unique positive semiddinite stabilizing solution of the ap-
proximateslow algebraicRiccati equationexistsunderthe fol-
lowing standardassumption.

Slow SubsystemStabilizability-Detectability Assumption:
Thetriple (As, v/'Ss, v/Q5) is stabilizableand detectable.

Lemma(Su, Gajic, and Shen,1992)
Let the aboveassumptionde satisfied. Then, de¢g > 0 such
that Ve < ¢g theuniquesolutionsof thepure-slowandpure-fast
algebraic Riccati equationsexist

Having obtaineda good initial guessfrom the approximate
symmetricpure-fastalgebraicRiccati equation,the Newton al-
gorithm can be usedvery efficiently finding the solution of the
nonsymmetriqoure-fastalgebraicRiccati equation.The Newton
algorithm is given by

Pj(zi-l_l) <b1 + bzP}”) — <b4 — Pj(zi)b2>P;i+1)

= b3 + P{'b:P{), i=0,1,2,..

Similarly, the pure-slow nonsymmetric algebraic Riccati
equationcan be solved

Ps(i_H) <a1 + azPs(i)> — <a4 — Ps(i)a2> Ps(i_H)

= a3+ PMay,P),  i=0,1,2,...
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It is importantto notice that the total numberof the scalar
guadratic algebraic equationsin the pure-slow and pure-fast
algebraicRiccati equationsis nf + n2. The global algebraic
Riccati equation contains %(nl + n2)(n1 + n2 + 1) scalar
algebraicequations. Thus, the presentedmethod, in addition
of eliminating ill-conditioning, can evenreducethe numberof
algebraicequationsif

1
ni + nj < ~(n1+ n2)(n1 4 n2 + 1)

or
(ny — n2)? < ny + no

which is the casewhenn; andng arecloseto eachother.

Using solutionsof the pure-slowand pure-fastRiccati equa-
tions, we can get completelydecoupledslow and fast feedback
subsystemsas

m(t) = (a1 + a2Ps)m(t)

e€1(t) = (b1 + baPr)€a(t)

The interpretationof the above result is that the optimal
processingof information for this class of systems(filtering
and/orcontrol) can be completelyperformedat the local levels
(slow and fast subsystems).The global solutionin the original

18



coordinateds then obtainedat any time instantas
t) = (I + TIP)~? ’71(t)]
o(t) = (11 + P) | 71

The quadraticperformancecriterion to be minimized, in the
new coordinatesbecomes

+

oo

J = <a:T(t)Qa:(t) + uT(t)Ru(t))dt

DO | =
[
o

+00
1
= / 2T(£)(Q + PSP)a(t)dt

to

+ o0

=y [g;ggf(nl £ 11,P)-T

to

«(Q + PSP)(II; + MyP)~ [Zigg ] dt

3 [ 28T [ 2][n8)e

19



The value of the aboveintegralis obtainedas

_ 1 n1(t) | |m(2) g
Jopt—gtriv £1(t)] £1(t) }

_L IV Ve (m1(to)ni (to) n1(to)&] (to)
=5t {LVZT 6V3]_£1(t0)n?(t0) £1(t0)€1}r(t0)”

1
Jopt = Etr{vml(to)nf(to)}
+§t’r <V2T771(t0)£r{(t0) + V2£1(t0)77r{(t0)+>

+otr(Vaéa (to)€] (t0)) = Js + €I

wherethe matrix V' satisfiesthe algebraicLyapunovequation

(a1 + az2P) 0 TV
0 %(bl + bng)
(a1 + a2P1) 0 O Oz _
+V[ 0 %(bl + bsz) T G‘)g’ ®3 | 0

It canbe concludedhatthe pure-slowcomponenof the perfor-
mancecriterionis O(1) andthatthe fast subsystentontributes
only anO(¢) to theperformanceriterionof alinearcontinuous-
time deterministicsystem. However, the proper designof the

fast feedbackmust assuresystemstability.

20



Open-Loop Optimal Control Problem

The optimal open-loopcontrol problemis a two-point boundary
value problemwith the associatedtate-costatequationsform-

ing the Hamiltoniansystemof linear differentialequations.The

two-pointboundaryvalue problemof linear singularlyperturbed
systemsgs transformednto the pure-slowandpure-fastyeduced-
order,completelydecouplednitial value problemsby following

the methodologyof Chang (1972)

The stiffness (numerical ill-conditioning) of the original
singularly perturbed two-point boundary value problem is
convertedinto the problem of an ill-defined linear systemof
algebraic equations

Considerthe linear singularly perturbedcontrol systemand
the performancecriterion to be minimized over the time period
from to to 5 is definedby

o= mip 2[00 2]+ vrom o

rxlm) e [ erzo

where Q) ¢ is the terminal time penalty matrix.

21



The open-loop optimal control problemhasthe solution
u(t) = —R BT p(t)
wherep(t) € R™T"2 costatesatisfies
z(t)| | A =8 ||=z(t)
[ﬁ(t)] - [—Q —AT] [p(t)]
with the boundaryconditionsgiven by

M[ﬂf(tO)] _|_N[$(tf)] —

p(to) p(ty)
with
e R A

n =mni+ n2
The terminal penaltymatrix is appropriatelypartitionedas

1 Qn 6Qf2]
Qr= [eQ}’z Qs

22



Let us partition and appropriatelyscale the co-statevector
p(t) aspT(t) = [pT(t) epl(t)] with p1(t) € R™ and
p2(t) € R™2. By interchangingsecondand third rows in
the correspondingtateco-stateequationswe getthe singularly
perturbedsystemasin the caseof the closed-loopcontrol, thatis

1 (%) w1(%)
pi(t) | _ [ Tn T> ] p1(t)
:i:z(t) o %Tg %Tz} :Cz(t)
() palt)

with the boundaryconditions

o) = [20 ] = [20], a(ey) = Qo)

20

The original boundaryconditionscan be written in a compact
form as follows

_:cl(t()) | _wlgtfg |
p1(to) Pty
M N —
1 :Cz(t()) + M :Cz(tf) €1
| p2(to) | p2(ty) |
where
I,, 0 0 O] (210 |
0 0 0 O 0
Mi=19 0 I, o 7 |2

0 0 0 O | 0 |




0 0 0 0

_|—Qf1 In, —€Qyp2 O
N1 = 0 0 0 0

—Q% 0 —Qp3 Iy,

The Changtransformatiorappliedto the correspondingtate-
costateequationroducesgwo completelydecoupledoure-slow
and pure-fastsubsystemslefinedearlier. The boundarycondi-
tionsin the new coordinatesorrespondingo thosesystemsare
given by

Mala |+ N[l | =

where

My = MiT;', Np=NT{'
Sincesolutionsthe pure-slowand pure-fastsubsystems
A(t) = (T1 — TaL)n(t)
and
ef(t) = (Ty + eLT2)E(t)
are given by

n(t) = NIl )

24



£(t) — e%(T4+€LT2)(t—t0)£(t0)

we caneliminaten (t5) and¢ (¢ ) from theboundaryconditions,
which leadsto

o(T=TL) (1—t0) 0 NEER

{MZ + N2 0 e%(T4+eLT2)(tf—t0) €(t0)

The systemof linear algebraicequationsbtainedis of the form

a(€)

n(to) | _
s(tg)] -

It canbe shownthat a(e) is invertible, hencen(to) and&(to)
can be obtained.

It should be emphasizedhat in the caseof a large interval
t—ty, ill-conditioning of thelinearsystemof algebraicequations
occurssince both matricesT) — T>L andTy + eLT5> contain
unstablemodes. As a matterof fact they are the Hamiltonian
matricesof the pure-slowand pure-fastsubsystemsandassuch
have the eigenvaluessymmetrically distributedwith respectto
the imaginary axis.
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Kalman Filtering for Systemswith Slow and Fast Modes

Considetthelinearcontinuous-timesingularlyperturbedstochas-
tic systemdriven by a white noise stochasticprocess

:i:l(t) = Ala:l(t) + Azwz(t) + Gl’wl(t)

€Ty = Agwl(t) + A4:132(t) + Gz’wl(t)

with the correspondingneasurements

y(t) = Clwl(t) + C2:132(t) + ’wz(t)

wherez;(t) € R™, ¢ = 1,2, arestatevectors,w;(t) € R
are zero-meanstationary,mutually uncorrelated white Gauss-
lan noise stochasticprocesseswith intensities W; > 0, and
y(t) € R" are system measurements. In the following
A;,Gj,C5, 1 =1,2,3,4, 3 = 1,2, areconstantmatrices.

The optimal Kalmanfilter driven by the innovation process
v(t), is given by

é}(t) = A& (t) + Azda(t) + Kyv(t)
Giz(t) = Agifjl(t) + A4§32(t) + sz(t)
’U(t) = y(t) — Cliﬁl(t) — szi:z(t)

where the optimal filter gains K; and K2 are obtainedfrom
(Khalil and Gajic 1984)

K, = (Plpcf + PZFC;‘") w, !

26



K3 = (ePfCT + P3pCT )Wy

with matrices P, Por, and Psp representingthe positive

semidefinitestabilizing solution matrix of the filter algebraic
Riccati equation

APr + PFAT — PrSPr + GWlGT =0

where
A1 Az G!1
A= [1 1 ] G = |1
cAs A4 G2
_ P P
sS=ctw;'c, pr= |} 12F
2 T o P2TF %P3F

For the decompositionand approximationof the singularly
perturbedKalmanfilter the Changtransformatiorhavebeenused
in (Khalil and Gajic, 1984; Gajic 1986)

_ [Inl — eHL —eH] [z&l(t)]

L I, Z2(t)

M1(t)
M2(t)

where L and H satisfy algebraicequations

A4L — A3 — GL(Al — AzL) =0

—HA4 -|— Az — GHLAZ -|— G(Al — AzL)H =0

27



The Changtransformationappliedto the optimal Kalman filter
produces

11(t) = (A1 — A2L)Ai(t) + (K1 — HK2 — eHLK1)v(t)
eflz2(t) = (As + eLA2)M2(t) + (K2 + eLK1)v()

In the new coordinateghe innovation processis given by

v(t) = y(t) — (C1 — C2L)in(t)

—[C2 + €(C1 — C2L)H]2(1)

Thealgebraidilter Riccatiequationhasthe uniquestabilizing
solutionsunderthe following assumptions.

The fast subsystemtriple (A4,C2,G2) is stabilizable and
detectable

The slow subsystem triple (Ao,Co,Go) Iis stabiliz-
able and detectable where A9 = A; — A2A;'Aj,
Co = C1 — C2A; ' A3, and Go = G1 — A2A;'Go.

In the Kalman decompositionprocedure given above the
slow and fast filters require someadditional communication
channelsnecessaryto form the innovation process.

In thefollowing, we presentthe decompositionschemefor
the optimal Kalman filter suchthat the slow and fast filters
are completely decoupled and both of them are driven by
the system measurements.

28



We canusethe regulator-filterduality to decouplethe optimal
Kalman filter into the pure-slow and pure-fastreduced-order
Kalman filters.

The optimal regulatorgain is definedby

F=[F F]

= [RYB¥P, + BIP]) R 1(eBIP,+ BIP;)]

The resultsof interestthatwe need,which canbe deducedrom
the linear regulatorptoblem, are summarizedn the following
lemma.

Lemma: Considerthe optimal closed-loofinear system

d)l(t) = (A1 — B1F1)£C1(t) -|— (A2 — B1F2)332(t)
Gdjz(t) = (A3 — BzFl)a:l(t) + (A4 — Bze):Cz(t)

Under corresponding stabilizability-detectability assumptions
there existsa nonsingulartransformationT

0] =T,

suchthat

£5(t) = (a1 + a2P;)&s(t)
e€r(t) = (b1 + b2Py)&5(t)

whee P, and Py are the uniquesolutionsof the exactpure-slow
and pure-fastcompletelydecoupledalgebraic regulator Riccati

29



equations ThenonsingulartransformationT is givenby
T = (Hl + HzP)

Even more, the global solution P can be obtainedfrom the
reduced-ader exact pure-slow and pure-fastalgebraic Riccati
equations,that is

—1
P, 0O P, 0O
P:<ﬂ3+ﬂ4[0 PfD<ﬂ1+ﬂ2[0 PfD

Knownmatrices€?;, « = 1,2,3,4, andII;, Il are givenin
termsof solutionsof the Changdecouplingequations.

Considerthe optimal closed-loopKalman filter driven by
the systemmeasurements thatis

21(t) = (A1 — K1C1)#1(t) + (A2 — K1C2)E2(t)
. + Kiy(t)
e:?:z(t) = (A3 — KzCl):ﬁl(t) + (A4 — KzCz)féz(t)
+ Koy(t)

By duality betweenthe optimal filter and regulator,the alge-
braic filter Riccati equationcan be solved by using the same
decompositiormethodfor solving the algebraicregulatorRic-
cati equationwith

A—- AT Q- ewiGT, FT = K
Z=BR'BT - s=cTw,'C

30



In that procesgthe following matriceshaveto be formed

Top = AT —cTw,'c,
—G’1VV1G"%1 —Al
—1
Typ — AT . —CIw, 02]
—G1W1 Gl — Ay
Tup — AT —CcTw; ey
—G2W1GT —As
—1
Typ = AT —~CIw, C,
—G2W1GYE — Ay

Note that on the contrary to the results from the optimal
regulator problem, where the state-costatevariables have to
be partitioned and scaledas zT'(t) = [zT(¢) zI(¢)] and
pT(t) = [pl(t) epk(t)], in the caseof the dual filter vari-
ables, we have to use the following partitions and scaling
2T(t) = [a¥(t) exT(#)] and pT(t) = [pF(t) pT(1)].
Since matricesTyr, Tsrp, T3, Tyr correspondto the
systemmatricesof a singularly perturbedlinear system, the
slow-fastdecompositions achievedby usingthe Changdecou-
pling equations

T4FM — T3F — 6M(T1F — TZFM) =0

—N(Tyr + eMToF) + Tor + e(Thp — TopM)N = 0

By usingthe permutatiommatricesdualto thosefrom the optimal
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regulator problem

I,j O 0 O
o 0 I, O
Etr=149 15, o o
0 0 0 In2
(I,1 O 0 0 |
o o I, o
Exr=| g I.o 0 O
0 0 0 Iy

we can define

Then, the desiredtransformationis given by

To = (II1r + Il2r Pr)

The transformationT's appliedto the filter variablesas

Ms(t) | _ p-T ff?l(t)]
fif(t) 2 |22(¢)
produces
[ﬁs(t)] _ T, A1 — K1Cq ) Az — K1C3 ]
N (t) 7 [e(As — K2C1)  ¢(As — K2C2)
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111((12 ] y(t)

€

T
xTa

Ms(t) —T
ﬁf(t)] M

suchthat the completeclosed-loopdecompositions achieved,
that is

15(t) = (arp + azrPor) 0s(t) + Koy(t)
ens(t) = (bir + bZFPfF)Tﬁf(t) + Kry(t)

with
aijfF Q2F
= (Tv\p — Tor M
a3f Q4F (Tir 2r M)
bir baF
= (T. MT:
bap bap (Tyr + eMTsF)
1 2 le
e™f €

0 = Pspa1F — aspPsgp — asp + Pspasp P
0 = Pypbip — byp Pyp — b3p + Prrpbop Py
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Pure-slow and pure-fast Kalman filters
driven by the system measurements
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Optimal Linear-Quadratic GaussianControl

Considerthe singularly perturbedinear stochasticsystem
:bl(t) = Alajl(t) + Aza:z(t) + Blu(t) + Gl’w(t)
Gdjz(t) = A3:131(t) + A4:132(t) + Bzu(t) + sz(t)

y(t) = Clwl(t) + Czwz(t) + ’wz(t)

with the performancecriterion
ty
— i & T T
J = lim E z7 (t)z(t) + u” () Ru(t)

tf—>OO tf

dt

—

to

wherez;(t) € R", ¢ = 1,2, compriseslow andfaststatevec-
tors, respectivelyu(t) € R™ is thecontrolinput, y(t) € R"2
IS the observedoutput, w;(t) € R" are zero-mearstationary,
mutually uncorrelated Gaussianwvhite noise processesvith in-
tensitiesW; > 0 and Wy > 0, respectivelyandz(t) € R®, is
the controlled output given by

Z(t) = Dlajl(t) + Dza:z(t)

All matricesare of appropriatedimensionsand assumedo be
constant. The optimal control law for the above optimization
problemis given by

uopt(t) = —Flfl\Zl(t) — Fz:f:z(t)
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where z1(¢t) and z2(t) are the optimal estimatesof the state
vectorszi(t) and zy(t) obtainedfrom the Kalmanfilter

é}(t) = A1&1(t) + Azda(t) + Bru(t) + Kyv(t)
€§32(t) = Agifjl(t) + A4§32(t) + Bzu(t) + sz(t)
’U(t) = y(t) — Cliﬁl(t) — szijz(t)

The optimal regulatorgains Fy, F» andfilter gains K7, Ko are
previuosly obtained.

The optimal global Kalman filter can be put in the form
in which the filter is driven by the systemmeasurementand
optimal control inputs, that is

21(t) = (A; — K1C1)#1(t) + (A2 — K1C2)E(t)
+ Blu(t) + Kly(t)

eia(t) = (A3 — K2C1)i1(t) + (Ag — K2C)da(t)
+ Bzu(t) + sz(t)

We have shown alreadythat there exists a nonsingulartrans-
formation suchthat the optimal Kalman filter is decouplednto
pure-slowand pure-fastocal filters both driven by systemmea-
surementsand systemcontrol inputs

ﬁs(t) — (alF + GZFPSF)Tﬁs(t) + Bsu(t) + Ksy(t)
enf(t) = (bir + barPyr) ip(t) + Byu(t) + Kyy(t)

The pure-slowandpure-fasffilter gains, K s, K¢, arepreviously
obtained.The pure-slowandpure-fastsysteminput matricesare
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given by

The optimal controlin the new coordinatess given by, (Lim,
1994)

vt = P20 = P12

-t A

where F; and Fy are obtainedfrom
[Fs Ff]l=FT] = R'BTP(Il1r 4+ Npy Pp)”’
The optimal value of J is given by
Jopt = tr{PszKT + PFDTD}

— tr{PGleT + PFFTRF}
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Parallel pure-slow and pure-fast controllers for
linear-quadratic Gaussian stochastic control problem
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Discrete-Time Singularly Perturbed Linear Control Systems

The first paperson singularly perturbeddiscrete-timesystems
were publishedin the 1970s(ButuzovandVasileva,1971;Hop-

pensteadiand Mirankar, 1977). Discrete-timesingularly per-

turbed control systemshave beenthe subjectof intensivere-

searchsincethe early 1980s Severalresearcherbaveproduced
importantresultson differentaspect®f control problemsof de-

terministicsingularlyperturbedliscretesystemssuchasPhillips,

Blankenship,Mahmoud, Sawan,Khorasani,Naidu, Khalil and

their coworkers.

Linear-Quadratic Optimal Control

Considerthe singularly perturbedlinear time-invariantdiscrete
control systemusingthefast time scalerepresentatiofiLitkouhi
1983, Litkouhi and Khalil 1984, 1985)

x1(k+1) = (In, + €A1)z1(k)+ cAsxa(k) + eBiu(k)
:Cz(k -|— 1) = Agwl(k) -|— A4$2(k) -|— Bzu(k)

£1(0) = z10, x2(0) = 20

with slow variablesz; € R™!, fast statevariableszo, € ™2,
control inputsu € R™, where e representsaa small positive
singular perturbationparameter. The performancecriterion of
the correspondingdinear-quadraticoptimal control problemis
defined by
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oo

J = % > [2(k)"Qu(k) + u(k)” Ru(k)]

k=0
where
_ 931(’6)] _ [Ql Qz]

The solution of the optimal regulationproblemis given by
u(k) = —R'BTA(k + 1)
~1
- _ <R n BTPB> BT P Az (k)
where (k) is a costatevariableand P is the positive semiddi-

nite stabilizingsolutionof the discretealgebraicRiccatiequation
(Doratoand Levis 1971, Lewis 1986) given by

-1
P=Q+ ATPA — ATPB [R + BTPB] BTPA

-l

Pl P

The state-costatedifference equationscan be written as the
forward recursion(Lewis 1986)

iD= ER
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with

H_ |AT BR'BTA-TQ —-BR'BTA-T

— —A_TQ A—T
where the HamiltonianH is the symplecticmatrix, which has
the property that the eigenvaluesof H are groupedinto two
disjoint subsetd™; andI'2, suchthatfor every A, € I'y there
exists Ay € I'g, which satidies A\ X Ay = 1, and we can
chooseeitherI'y or I's to containonly the stableeigenvalues

(Salgadoet al. 1988). The correspondingmatricesintroduced
in H are given by

. Inl-l—GAl GAZ_ . €B1
A= A3 A4_,B_[B2]

S = BR BT —

(28, €Z
_GZT S

S1 = BiR"'B], Sa=B:R™'B], Z=B1R 'B]

The assumptiorthat the matrix A is invertible is used,which
requiresthe invertibility of the matrix A4. In thatcase

_ I, 0
A7 = iA A7l + O(e)

Hence,the presentatiorrequiresthe following assumption.
The fast subsystemmatrix A4 is nonsingular.
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In the following, we show how to obtain exactly the solu-
tion of the discrete-timealgebraicRiccati equationof singu-
larly perturbedsystemsin terms of solutionsof two reduced-
order continuous-time, pure-slowand pure-fast,algebraicRic-
cati equations.

Partitioningthe vector A(k) asA(k) = [AT (k) Al(k)
with A1(k) € R™ and X2(k) € R™2, we get

]T

:cl(k + 1) :cl(k)
:Cz(k + 1) —H :Cz(k)
Al(k + 1) o Al(k)
Dok +1) | [k

It canbeenshownaftersomealgebrathatthe Hamiltonianmatrix
(181) hasthe following form (Lim 1994a)

[ L, +_€A—1 €Az €2£1 @ |
H — & ﬂ €S3 Sy
- Ql QZ In1 _IiAcfl A_%vl
I Q3 Q4 GATZ Agz i

Notethatin theremainingpartof this sectionthereis no needfor
analytical expressiondor the baredmatrices. Those matrices
have to be formed by the computer in the processof calcu-
lations, which can be done, for example,using MATLAB.

Interchangingsecondandthird rows and usingthe following
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scaling[pi(k) p2(k)]T = [ehi(k) A2(k)]T yields

ik +1)]  [In te€Ar €S1 €Az €53 ]
pi(k+1) | _ €Q1 In, + €A]] €Q2 eAp
w2k +1) As S3 As Sy
p2(k+1) ] | Qs AT, Q: AL, |
(k) z1(k)
o |PL(R) | _ | I2n, + €Tt €T | | p1(k)
:Cz(k) T3 T4 :Cz(k)
| p2(k) | p2(k)
where
Al S1 | A2 S2
T, = |[Z=2 S T — |22 =4
! Ql Acfl 1 ’ 2 _QZ Agll
As S3 Ay Sy
T pu— —_— T p— -
3 _Q3 A’{,z ’ : Q4 Ag'z

Introducing the notation

wl(k)], V(k) = [wz(k)

Uk) = | pa (k) pa (k)

we obtainthe singularly perturbeddiscrete-timdinear system

Uk +1) = (Inn, + e))U(k) + €TbV (k)

V(k+1) = T3U(k) + TyV (k)
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Applying the discrete-timeversionof the Changtransforma-
tion (Chang1972, Shen1990) definedby

__ |I2n, —eHL —eH
s = [ L Iz, ]
S —L Isy, —€eLH

] =\ |

producesn the new coordinateswo completelydecoupledsub-
systems

[z;glz i ig] =n(k 4+ 1) = [I2n, + €(T1 — T2L)]n(k)

E1(k+ 1
égk + 1%] = &(k + 1) = (T4 + eLT2)&(k)

The matricesL and H satisfy

—L+T4L — T35 — 6L(T1 — TzL) =0

H4+ T — HT4 + €(T1 — TzL)H —eHLT> =0

The unique solutions of the above algebraic equationsexist,
by the implicit function theorem(Ortegaand Rheinboldt1990),
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underthe conditionthatthe matrix Ty — I25, IS nonsingular.It
can be shownthe matrix Ty is given by

Ay + S24,7Q3 —S,A7T

- _ 0,
—4;7Q, AT +0(e)

Ty = T\V4+0(e) =

We seethat Tio) representshe Hamiltonianmatrix of the fast
subsystem. The nonsingularity of Tf)) — I2n, requiresthe
following assumption.

The triple (A4, B2,+/Q3) is stabilizable-detectable.

It follows that underthis assumptionthe matrix Ty — Ia,,
Is nonsingularfor sufficiently small valuesof e.

The algebraicL-H equationscan be solved using the New-
ton method, similarly to the solution of the corresponding
continuous-timealgebraic equations(Grodt and Gajic 1988).
The Newton method conveges quadraticallyin the neighbor-
hood of the soughtsolution, that is, its rate of convegenceis

0, <€2z>. The initial guessrequiredfor the Newton methodis

easily obtainedwith the accuracyof O(e), by settinge = 0 in
the original equation,that is

LO = (Ty — )7'T3 = L 4 O(e)

The Newtonalgorithm can be constructedoy setting L{+1) =
L® + AL® andneglectingO(AL)?* terms. This leadsto a
Lyapunov-typeequationof the form

DI+ 4 pE+) pld — @)
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with

D%i) = Ty — Ipn, + eLOT, Déi) = _6<T1 _ TzL(t’))

Q¥ =15+ LWL, i=0,1,2, ..

TheNewtonsequenceill beO (€?), O(e*), 0(68)""’0<€2i>

close to the exact solution, respectively, in each iteration.
Having found the solution of the L-equationup to the desired
degreeof accuracy,one canget the solution of the H-equation
by solving directly the algebraic Lyapunov-like (Sylvester)
equationof the form

gOpW 4 pW O = 1,

which implies H®) = H + 0<ezi>.

The rearrangemenand modification of variablesis done by
using the permutationmatrix £, of the form

(1 (k) | I., 0 0 0 |[zi(k)]
p1(k) _ |0 0 eI, O x2(k) — B [a:(k)
zo(k) 0 In, 0 0 ||[A(k) A(K)
p2(k) | |0 0 0 In, | [A2(k) |

We havethe following relationshipbetweenthe original co-
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ordinatesand the new ones

m (k) |
1(k)
n2(k)

€2(k) |

z(k)

= [A(k)

spron i)

= w56

where F» is a permutationmatrix of the form

I, 0 0 ©

o o I, o

B2=1o¢ In, 0 O
0 0 0 I |

SinceX(k) = Pxz(k), where P satisfiesthe discretealgebraic
Riccati equation,it follows from that

(n1(k) |
&1(k) |

(n2(k) |
&2(k) |

= (H1 + HzP)a:(k)

= (H3 -|— H4P)£B(k)

In the original coordinatesthe requiredoptimal solution hasa
closed-loopnature.We havethe samecharacteristidor the new
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systemsthat is,
el =10 e 6w

which implies

[PS 0

0 Pf] = (I13 + I, P)(II; + I P)~*

Following the samelogic, we can find P reverselyby intro-
ducing

E{'Ty'E, =Q = [g; gﬂ =11}

and it yields

-1
Ps O P, O
p=(oaraiq p ) (el p )

It can be shown, by estimatingthe order of quantity for the
entriesin matricesIly, Il2, 21, 22, that the requiredmatrices
are invertible.

Partitioning the systemmatricesas

me ] =l @) me)]

— (I2n1 + €17 — GTzL) :z;glzgl
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s Eataali

= (T4 + eLT3) E;gg]

yields to two reduced-ordenonsymmetric pure-slowand pure-
fast, algebraicRiccati equations

bel — b4Pf — bs + bezpf =0

It is very interestingthat the algebraicRiccati equationof sin-
gularly perturbeddiscrete-timecontrol systemsis completely
and exactly decomposednto two reduced-ordenonsymmetric
continuous-time algebraicRiccati equations.

The pure-fastalgebraicRiccati equationis nonsymmetricput
its O(e) perturbationis symmetricone. This can be observed

from the fact that

b1 b
[b; bZ] = (Ta + el T3)

RO b%m] +0(9) = 1,") + 0(e)

[b(m p(©

The coeficients of the Hamiltonianmatrix Tf)) imply the fol-
lowing approximatefastsubsystemdiscrete-timealgebraicRic-
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cati equation

P = ATP"V 44 + Qs

0 0 -1 0
—A7P" By (R + BIP{"B;) BT P" A,

suchthat Py = P}O)-l—O(e). Notethatthe positivesemidefinite
stabilizing solution of existsunderthe given assumption.The
last equationis identical to the approximatefast discrete-time
algebraicRiccati equationof Litkouhi and Khalil (1984,1985).

In orderto establishthatan O(e) approximationof the pure-
slow algebraicRiccati equationis symmetric,we use the fol-
lowing arguments. It follows that

ar a2
[a3 a4] = Iopn, + €(T1 — T2L) = Iap, + €T

= Ion, + €<T1 — TzL(O)> + 0(6) = Iopn, + GTS(O) + 0(6)

a(O) a(O)
= %0) %0) + O(¢e) = I2n,
ag ay

-|—€<T1 — Tz(T4 — I2n2)_1T3> + 0(6)

On the otherhand, the approximateslow continuous-timealge-
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braic Riccati equationcan be obtainedfrom

:cl(k + 1) :cl(k)
pi(k+1) | _ |I2n, +€In €Ty | |p1(k)
:Cz(k + 1) o T3 Ty :Cz(k)
| p2(k + 1) | p2(k) |

by using the methodologyof Litkouhi and Khalil (1984,1985)
andassuminghatthe fastvariablesz2 (k) andp2(k) areatthe
steadystate.Usingthefactthatatthe steadystatexa(k + 1) =
x2(k) andp2(k + 1) = p2(k) we obtain

et = Cams =107 (2103

and

ek +2)]

_ {I2n1 4 €<T1 — To(Ty — Ian)_1T3>} [;ig:;]

_ <I2n1 + eT{") + 0(62)> [;gg]

The matrix TS(O) determineghe coeficientsfor the approximate

slow continuous-timealgebraicequationof Litkouhi andKhalil
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(1984). It can be observedthat

[am) NO

1 2 | = Iy, 7(0)
a,f;’) ago) 2n; T+ €l

—1
= Ipp, + ¢ (Tl(ﬂ) - (1" = Izn, ) T3(0)>

_ [In, + €eAs —eBsR; !B,
o _GQS Inl — GAZ—'

| In, + €Ag —eS
o _GQS Inl - GAZ

The correspondingapproximatecontinuous-timealgebraicRic-
cati equationis given by

POA,+ ATPO) 4 @, — POs, PO =0

suchthat P; = PS(O) + O(€). Theuniquepositivesemidefinite
stabilizing solution of the slow approximatecontinuous-time
algebraicRiccati equationof exists underthe assumptionthat
the approximateslow subsystems stabilizable-detectable.

The approximateslow subsystemdetermined by 5.,(0) IS
stabilizable-detectable,that is, the triple (As, v Ss, vQ5s)
Is stabilizable-detectable

We have establishedhat O(e) perturbationsof the derived
pure-slowand pure-fastalgebraicRiccati equationseadto the
symmetric reduced-ordeapproximateslow and fast algebraic
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Riccati equationsobtainedin Litkouhi and Khalil (1984). The
solutionsof theseequations(Litkouhi andKhalil 1984),canbe
usedas very good initial guessedor the Newton method for
solving the obtainednonsymmetricRiccati equations.

The Newton algorithmis given by
Ps(i+1) <a1 -|— azps(i)> — <a4 — Ps(i)a2> Ps(i+1)

= a3 + PWay, PV,  i=0,1,2,..

with the initial guessPs(O) obtainedfrom the continuous-time
approximateslow algebraicRiccati equation. The Newtonalgo-
rithm for the pure-fastRiccati equationis similarly obtainedas

P4 (b1 + by P)) — (by — P{by ) PV

= b3 + P{)bPy),  i=0,1,2,...

with the initial guessP}O) found by solving the discrete-time
approximatefast algebraicRiccati equation.
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Lemma Considerthe optimal closed-looginear discretesys-
tem

:cl(k + 1) = (I + €A1 — €B1F1)£131(k)
-|— G(Az — Ble)wz(k)
:Cz(k + 1) = (A3 — BzFl)icl(k) + (A4 — Bze):Cz(k)

Thee existsa nonsingulartransformationTg

600 =T mai®)

suchthat

£s(k + 1) = (al + a2Ps)£s(k)
Ep(k + 1) = (b1 + baPy) (k)

whee P, and Py are the uniquesolutionsof the exactpure-slow
and pure-fastcompletelydecoupledalgebraic regulator Riccati
equations ThenonsingulartransformationTyg is givenby

Te = (Hl + HzP)
Even more, the global solution P can be obtainedfrom the

reduced-ader exactpure-slowand pure-fastalgebraicregulator
Riccati equations,that is

—1
PS 0 PS 0
AICE )
Knownmatrices(?;, « = 1,2,3,4 andII;, II> are givenin
termsof solutionsof the Changdecouplingequations

P = (ﬂ3+ﬂ4
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Complete solutions to the Kalman filtering and linear-
guadraticoptimal stochastic Gaussiancontrol problem in the
discrete-timedomainare presentedn (Lim, 1994; Lim, Gajic,
and Shen,1995).

H,, optimal controller is consideredn (Hsieh and Gajic,
1998) and H filtering in (Lim and Gajic, 2000).

In (Kecman,Bingulac, and Gajic, 1999), an eigenvectorap-
proachis developedor simultaneoussolution of the L-H equa-
tions and pure-slow and pure-fast algebraic Riccati equa-
tions. The resultsare availablein the continuous-timeonly.

Conclusions

Many valuable and practically immpementablenhigh accurate
resultswere obtainedduring the past decadefor optimal con-
trol and filtering of linear singularly perturbedsystems. The
Hamiltonianapproachis simple and elegant,but of limited ap-
plicability.

Therecursiveapproacktanbe appliedto morecomplexprob-
lems, especiallygame-typesituations. The invariant manifold
approachis a powerful tool for nonlinearsingularly perturbed
systems.

Many “high accuracysingularly perturbed” open problems
remain in the domain of bilinear and nonlinear singularly
perturbedsystems.
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