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Abgtract — In this paper we presenta unified approach
for optimal control and filtering of linear continuous-timesin-
gularly perturbed linear systemsthat facilitates completeand
exactdecompositionof optimal control and filtering tasksinto
pure-slowand pure-fasttime scales. The presentedmethodol-
ogy eliminatesnumerical ill-conditioning of the original singu-
larly perturbedproblems,introducesparallelisminto the design
proceduresallows independentparallel processingof informa-
tion in slow and fast time scales,and reducesboth off-line and
on-line computation requirements. The presentationis done
for the classiclinear-quadratic open- and closed-loopoptimal
regulators, Kalman filter, H . -optimal linear-quadratic regu-
lator, H.-optimal linear filter, and the correspondinglinear-
quadraticoptimal stochasticegulators. In addition, weindicate
relatedcontrol problemssolvableby the presentednethodology.
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I. INTRODUCTION

Theoryof singularperturbationsvasintroducedto control
audienceby Kokotovic by the end of the sixties. Due
to the fact that many real physical systemsare singu-
larly perturbedfor example aircrafts,robots,electricalcir-
cuits, power systems nuclearreactors,chemicalreactors,
dc and induction motors, synchronousmachines distilla-
tion columns,flexible structuresautomobiles this theory
has becomevery popularin control systemengineering,
[1]-[7]. Singularly perturbedsystemsare characterizedy
simultaneougpresenceof small and large time constants,
which introducesclustering of linear (or linearized) sys-
tem eigenvaluesnto two disjoint groups: (a) eigenvalues
correspondingo large time constantdocatedcloseto the
imaginary axis representingslow systemstatespacevari-
ables(slow modes),and (b) eigenvaluesorrespondingo
small time constantdocatedfar from the imaginary axis
representindast systemstatespacevariables(fast modes).
In the lastthirty yearsalmostonethousandournal papers
andmorethantwentybookswerepublishedby engineering
and mathematicgesearcher®n the subjectof singularly
perturbedcontrol systems.

The notion of singular perturbationsn mathematics
standdfor systemsf differentialequationghathavesome
derivativesmultiplied by small positive parameters Such

akind of system=f differentialequationsvasextensively
studiedin the fifties andsixtiesby well-known mathemati-
cianssuchas Tikhonov, Levin, Levinson, Vasileva,Butu-
zov, Wasov,Hoppendsteadt)’Malley, Chang.Oneof the
mostimportantandmostwidely usedresultsof mathemat-
ical theoryof singularperturbationds the developmenbf
thetransformatiorfor theexactpure-slowandpure-fasde-
compositionof linear singularly perturbedsystemsknown
as the Changtransformation,[8].

The approachesakenin engineeringduring the sev-
entiesand eighties, in the study of singularly perturbed
control systemswerebasedon expansiommethodspower
series, asymptotic expansions,Taylor series),the meth-
ods developedby previously mentionedmathematicians.
The approachesvere, in most cases,accurateonly with
an O(¢)! accuracy,where ¢ is a small positive singular
perturbationparameter. Generatinghigher order expan-
sionsfor thosemethodshasbeenanalytically pretty cum-
bersomeand numerically pretty inefficient, especiallyfor
high-dimensionatontrol systems.Even more,it hasbeen
demonstrateth severalpapers]9]-[12], thatfor someap-
plicationsan O(¢) accuracyis eithernot sufficient or even
more, it doesnot solve the problemat all.

Thedevelopmenof high accuracyefficienttechniques
for singularlyperturbedcontrol systemsstartedin the mid-
dle of the eightiesalong the lines of the slow-fast mani-
fold approactof Sobolev,[13], andtherecursiveapproach
basedn fixed-pointiterationsof Gajic, [14]. At thebegin-
ning of the nineties the fixed-pointrecursiveapproactcul-
minatesn the so-calledHamiltonianapproackor theexact
pure-slowand pure-fastdecompositionof singularly per-
turbed, linear-quadratic deterministicand stochastic,op-
timal control and filtering problems. The classof prob-
lems solvable by the Hamiltonian approachare steady
statelinear-quadratioptimal controlandfiltering problems
whoseHamiltonianmatricesunderappropriatescalingand
permutationpreservesingularly perturbedforms suchthat
they canbe exactlyblock diagonalizednto pure-slowand
pure-fastHamiltonian matrices. Thatis why, we call this
approachthe Hamiltonianapproacto singularlyperturbed

1 AnO(e") standsfor O(e”) < ce”, wherec is a boundedconstant
andr is any real number.



optimal linear control systems.Note that the study of sin-
gularly perturbedlinear-quadrati@ptimal control systems
via the useof the Hamiltoniansystemof differentialequa-
tions have beendone in the pastin different set ups by
severalresearchersfor example,[15]-[20].

The problems presently solvable by the Hamilton-
ian approachare: linear-quadraticoptimal regulatorand
Kalman filter in continuous-and discrete-timedomains,
optimal open-loop control of continuous-and discrete-
time linear systemsmultimodelingestimationandcontrol,
H ., -optimal control andfiltering of linear systemslinear-
guadratic zero-sum differential games, linear-quadratic
high gain, cheapcontrol, and small measuremenhoise
problems,sampleddatacontrol systemsand nonstandard
linearsingularlyperturbedptimalcontrolandfiltering sys-
tems. Someother classeof linear-quadratidype optimal
control problemsthat can be solved by the methodology
consideredn this papermay emege in the nearfuture.

The work of [13] basedon slow-fastmanifold theory
resultedalsoin the exactpure-slowand pure-fastdecom-
positionof thelinear-quadratioptimal control problemsas
demonstratedn [21]-[22]. However,it remainsan open
guestionwhetheror not the integral manifold approacho
decompositiorof singularly linear-quadraticcontrol prob-
lems[21]-[22] leadsto the sameresultsasthoseobtained
by the Hamiltonianapproach.

This paperrepresentsa comprehensiveview of the
currentstateof the knowledgeof the Hamiltonianapproach
to singularlyperturbedinearcontinuous-timeoptimal con-
trol and filtering problems. The presentatioris basedon
the recentresearchwork of the authorsand their cowork-
ers. The paperpresentsa unified themeaboutthe exact
pure-slowpure-fastdecouplingof the correspondingpti-
mal control andfiltering problemsowing to the existence
of atransformatiorthat exactlydecoupleghe nonlinearal-
gebraicRiccati equationinto the pure-slowand pure-fast,
reduced-orderalgebraicRiccati equations. At the same
time, the paperdemonstratethe powerof the Hamiltonian
approachclearly indicating the unified themethat can be
usedfor the most efficient and most accuratesolution of
variety of optimal control andfiltering problems.

A. ExactDecompositiorof the Riccati Equation

In this section,it is shownhow to exactly decomposéhe
algebraicRiccati equationof singularly perturbedcontrol
systemsinto two reduced-orderalgebraic Riccati equa-
tions correspondingto slow and fast time scales. The
reduced-ordealgebraicRiccatiequation®btainedarenon-
symmetric. The Newton algorithm is very efficient for
solving these nonsymmetricalgebraic Riccati equations
since excellentinitial guessesare readily available from
the reduced-ordersymmetric,algebraicRiccati equations
that representO(¢) perturbationsof the nonsymmetric,
reduced-orderpure-slowand pure-fast,algebraicRiccati
equations.Dueto completeandexactdecompositiorof the
Riccati equation,and due to order-reductionwe havean

efficient parallel algorithm for solving this equatior—the
most important equationof the linear-quadraticoptimal
control and filtering theory.

The procedureusedfor the time-scaledecomposition
of the algebraicRiccati equationsinto the pure-slowand
pure-fastalgebraic Riccati equationsfacilitates new in-
sightsinto optimal filtering and control problemsof sin-
gularly perturbedlinear systems. It is demonstratedn
the subsequensectionsthat correspondingeduced-order
linear optimal filters and controllersare completely and
exactly decoupled. The slow/fast filters and controllers
work in paralleland processnformationindependentlyin
slow andfasttime scaleswith the correspondingampling
rates—theslow oneswith the slow samplingrate and the
fast oneswith the fast samplingrate.

A linear singularly perturbedcontrol systemis given
by

i?l(t) = Alxl(t) + Agl?g(t) + Blu(t), CCl(to) =10
Eiifz(t) = A3l’1(t) + A4l’2(t) + Bzu(t), x2(t0) = Z9p ( )
1
wherez;(t) € R, ¢ = 1,2, u(t) € R™ are stateand
control variables, respectively,and ¢ is a small positive
singularperturbationparameter As a parameter tendsto
zero, the solution behavesonuniformly, producinga so-
called singularly perturbedstiff problem (huge slope for
the fast state variable at the initial time), which implies
numericalill-conditioning.
With (1), considerthe performancecriterion to be
minimized by the choiceof the optimal control strategy

oo

7 _mln%/{[z;g;]TQ [28] +u ()R u(t)}dt

to
(2)
with positive definite R and positive semidefinite). The
open-loopoptimal control problemof (1)-(2) hasthe so-
lution

u(t) = —R™'BTp(t) 3)

wherep(t) € ®"11"2 js a costatevariablesatisfying[23]

i) [A -8 ][0
[zﬁ(t)]‘[—@ AT | |p(1) )
with
A:[Al AQ] Q:[Q1 Qz]:[tﬁpm t]ﬂlz]
tAs tAL] Q7 Qs TR

and 27 (¢t) = [27(¢) z¥(t)]. The optimal closed-loop
control law hasthe very-well known form

u(z(t)) = —R™'BT Pe(t) = —Fe(t) (6)



where P satisfiesthe algebraicRiccati equationgiven by

_ T - o P1 €P2
0=PA+A"P+Q—- PSP, P= [fpzT €P3] (7)
The positive semidefinitestabilizing solution of the al-
gebraic Riccati equation (7) exists under the standard
stabilizability-detectabilityconditions[23].

Assumptiori.1: Thetriple (A, B, /Q) is stabilizable
and detectable.

In the following we follow the resultsof [24] and
showhowto find the solutionof (7) in termsof solutionsof
the reduced-orderpure-slowand pure-fast,algebraicRic-
cati equations It is well knownthatthe solutionof the Ric-
catiequationcanbe obtainedrom the Hamiltonianmatrix.
It will be shownthatfor singularly perturbedsystemsthe
Hamiltonian matrix retainsthe singularly perturbedform
by interchangingand appropriatelyscalingsomestateand
costatevariables,henceit can be block diagonalizedvia
the nonsingulartransformationsf [8], [25].

Partitioning and appropriately scaling p(t) as
p(t) = [pF(t) epl(t)] with p;(t) € ®":,i = 1,2, and
interchangingsecondand third rowsin (4), we get

z1(t) z1(1)

pit)y| | Ty Tp | |pu(?) ®)

l‘g(t) - %Tg %T4 $2(t)

pa2(t) p2(t)
where

A -S 4y -7
le[él A?]’ TQ:[@?Z A%]

%)

As -7 _ Ay — 8y

n=lg Al omell

It is importantto notice that (8) retainsthe singular per-
turbation form. Also, the matrix 7, is the Hamiltonian
matrix of the fast subsystemand it is nonsingularunder
stabilizability-detectabilityconditionsimposedon the fast
subsystem.

Assumptiorl.2: Thetriple (A4, Bs, ¢2) is stabilizable
and detectable.

It shouldbe emphasizedhat the presentedrocedure
is valid for both the so-calledstandardmatrix A4 is non-
singular) and nonstandardmatrix A4 is singular) singu-
larly perturbedlinear control systems.Note that nonstan-
dard singularly perturbedcontrol systemsare the recent
trendin theory of singularly perturbedlinear control sys-
tems[20], [26]-[28], [39].

The celebratedransformatiorof [8], usedfor decom-
position of linear singularly perturbedsystemsjs defined
by
In,, —€eHL —eH

T, = L Lo,

(10)

where L and H satisfy

T4L — T3 — €L(T1 — TQL) =0 (11)

The uniguesolutionsof (11) and(12) existfor sufficiently
small valuesof ¢ under conditionthat 7 is nonsingular,
thatis, under Assumptionl.2. Thesealgebraicequations
canbe solvedaslinearalgebraicequationaisingeitherthe
fixed-pointalgorithmof [29] or the Newtonmethodof [9].
The correspondingalgorithmsfor solving the L-equation
are respectivelygiven by

L+ — O L ep=1r@ (7 — 75 L0
| O (17 TL) (13)
LO =77y, i=0,1,2,...

DWLG+D 4 [G+D) pl) — )
LO =T7'Ty, i=0,1,2

D) =Ty + LTy

Dy = 76<T1 - TZL(i)) QW = Ty + LT, L0

(14)
The Newton method conveges quadratically,henceif it
conveges,it requiresn averagenly four to five iterations.
Thefixed-pointiterationsconvege linearly andsometimes
requirea lot of iterations.In addition,the L-equationcan
be efficiently solvedby using the eigenvectormethod of
[30] and the Taylor seriesexpansionsof [31]. Oncethe
solution for the L-equationis obtained,the H-equation
canbe solvedeitherdirectly asa linear Sylvesterequation
or recursivelyas

HO+D = Ty(Ty + eLT,)" !
+e(Ty — ToLYHO(Ty + eLTy) ™
HO =777 i=0,1,2, ..

(15)

TheChangtransformatior(10) appliedto (8) produces
two completelydecoupledsubsystems

n(t) = (T — T2 L)n(t) (16)
and
€€(t) = (Ty + eLT3)E(t) (17)
where
z1(t)
)| o i)
KR RE a8
pa2(t)

The rearrangemenand modification of the original vari-
ablesin (8) is done by using the permutationmatrix £
of the form

z1(t) I, 0 0 0 z1(1)
pi(t) 0 0 I, 0 ||zt
)| |0 In, 00 1 (1)
mil Lo 0 o0 Lo @@
_p 20
_El[p(t)]



Notethatthe inverseof £, canbe easilyobtainedanalyti-
cally, hence this matrix is not numericallyill-conditioned
with respecto the matrix inversionfor small valuesof e.

Combining (18) and (19), we obtainthe relationship
betweenthe original and new coordinatesas

’”E?
S| _ pa T
()| =72 TlEl[ ( )]
£2(t) (20)
_ H|:£C(t) _ |:H1 H2:| |:$(t):|
-~ Le(d) Iz 14| [p(t)
where E, is a permutationmatrix in the form
I,, 0 0 0
0 0 I, 0
Er=1 L, 0 0 (1)

0 0 0 I,

Sincep(t) = Pz(t), whereP satisfieghealgebraicRiccati
equation(7), it follows that

[2118;] = (I} + 2 P)z(t), [g;g;] = (I3 + M4 P)z(t)
(22)

In the original coordinatesthe required optimal solution
hasa closed-loopnature. We havethe sameattribute for
the new systems(16) and (17); that is

)| [Ps 0] [m()
[sm]‘[o Py [a(t)] (23)
Then, (22) and (23) yield
[’;5 gf] = (3 4 MM, P)(I, + I,P)~* (24)

Following the samelogic, we can find P reverselyby
introducing

Al =1 |21 Q2
ETTI E,=1""=Q= [93 Q4 (25)
where
I,, O 0 0
1|0 0 I, 0
By = 0 I, O 0 (26)
0 0 0 el
and it yields
-1
_ P, 0 P, 0
p=(oorall p])(arall 5])
(27)

It is shownin [24] that the matrix inversionsin (24) and
(27) exist for sufiiciently small valuesof e.

Partitioning (16) and (17) as

] R e | ) R 2 [2;5?1
28)

~—

[0l ] -meamin]

andusing(23) yield to two reduced-ordemonsymmetric,
pure-slowand pure-fast,algebraicRiccati equations

t
t

0=Psa, — asPs — as + Psas P (30)

with a;, b;,7 = 1,2, 3,4, definedby (28)-(29). Let us point
out that the nonsymmetricalgebraicRiccati equationwas
studiedby severalresearchersseefor example[32] and
referencegherein. An algorithm for the solving general
nonsymmetricalgebraic Riccati equationwas derived in
[33]—seealso [34].

The pure-fastalgebraicRiccati equation(31) is non-
symmetric,butits O(e) approximationis a symmetricone,
that is

PiAs+ AT Py + Q3 — P;SaP; +0(e) =0 (32)

From (32) onecanobtainan O(¢) approximatiorfor P; as

PV As+ ATP® + Qs - P8, P" =0 (33)
The unique positive semidefinite stabilizing solution of
(33) exists under Assumption 1.2. Hence, we have
P; = Pf(o) + O(e). The pure-slowalgebraicRiccati equa-
tion (30) is also nonsymmetric.It can be also shownthat
(30) is an O(¢) perturbationof the first-orderapproximate
slow algebraicRiccati equationobtainedin [35] and [19]

POA, 4+ ATPO) 4@, - PSP =0 (34)
with P, = P{” + O(e), where A;,@;, and S; canbe
found either using the methodologyof [35] or from the
resultsof [19] as

A S5 -
[Q #é,,_ =T, - TyT;'Ts (35)
Note that from (11) and (28) we have
(0 (0 r
al 02 ay ao
= 0
Lgp |~ s ] o) (36)
=T, — oL + O(e) = Ty — Ty 'Ts + O(e)
which implies
0,0
a;”’ ay’ | | A =S ] 37
o | =% i )

The uniquepositive semidefinitestabilizingsolutionof the
approximateslow algebraic Riccati equation(34) exists
underthe following assumption.

AssumptioriL.3: Thetriple (A,,/Ss, V@) is stabi-
lizable and detectable.



Notethatin the casewhenthe matrix A4 is nonsingu-
lar (standardsingularly perturbedinear system),Assump-
tion 1.3 can be replacedby a simpler assumptionof the
form [35].

Assumptionl.3a: The triple (Ao, Bo,qo) is sta-
bilizable and detectable,with A4y = A; — A, A7 ' A3,
By = By — A3A7' By, qo = q1 — q2A7 ' As.

Assumptionsl.2, 1.3, and 1.3a are the standardas-
sumptionsin theory of singularly perturbedlinear control
systems[4]-[5].

Using the fact that the unique solutionsof (33) and
(34) exist, then by the implicit function theorem,[36],
the existenceof the unique solutionsof (30) and (31) are
guaranteedy the following lemma[24].

Lemmal.l. Let Assumptiond.2 and 1.3 be satisfied.
Then, J¢; > 0 suchthat Ve < ¢; the uniquesolutionsof
(30) and (31) exist

Having obtaineda goodinitial guessthe Newtontype
algorithmcanbeusedvery efficiently for solving(31). The

Newton algorithm is given by
(¢+1) (%) (&) (i+1)
Py (bl +b, P’ ) _ (b4 — Py bQ)PfZ a8)
=bs+ Pb P, i=0,1,2

y Ly &y

with an initial guessobtainedfrom (33).

The pure-slow Riccati equation(30) can be solved
by using the Newton algorithm also, with an initial guess
obtainedfrom (34). The Newton algorithm for (30) is
given by

P (ay + 4, PO) — (ag — POay) P

39
= a3+ P&y PY), %)

i=0,1,2,..

It is importantto noticethatthe total numberof scalar
quadraticalgebraicequationsn (30) and (31) is n? + n2.
Ontheotherhand,theglobalalgebraicRiccatiequation(7)
contains%(nl + ny)(ny + na + 1) scalaralgebraicequa-
tions. Thus, the presentedmethod can even reducethe
numberof algebraicequationsif

1
ni +n3 < =(ny 4+ na)(ng +na + 1)

3 (40)

or

(ng — n2)2 < ng+no (41)

which is the casewhenn; andn, arecloseto eachother.

Using solutionsof both pure-slowand pure-fastRic-
cati equationsandformulas(23) and (28)-(29),we canget
completelydecoupledslow andfastsubsystems theform

m(t) = (a1 + a2 Ps)ni(t)
efl(t) = (b1 + b2 P; )& (1)

The interpretationof the result presentedby (42) is
that the optimal processingof information for this class

(42)

of systems(filtering and/or control) can be completely
performedat the local levels (slow and fast subsystems).
The global solution in the original coordinatesis then
obtainedat any time instantby using formula (22), thatis

43
where P is obtainedfrom (27). The use of the results
givenin (42) in optimal filtering (first of all) and control
of singularly perturbedinear systemsawill be presentedn
the next sections.

The quadraticperformancecriterion to be minimized,
(2), in the new coordinateds given by

z(t) = (I + M,P) ™" [’71“)]

400
J = % / (2T ()Qz(t) + u” (t) Ru(t))dt
400

/ 2" (¢)(Q + PSP)z(t)dt

to

_1
2
4 3] e

to

x(Q + PSP)(Tl; + My P) ™" [gi(t;]

t dt
Tl &)

The value of the aboveintegralis obtainedas

1 n@®][no]"
Jopt = §tr{v[£1(t)] [fl(t)] }
1 Vi eVa | [m(to)nt (to) m(to)€T (to)
= ‘“{ LVQT evi] [siug)nf (t0) si(t?)&%’(tﬁ)]}
= S {Vim oyt (t)

+%tr (V2T7]1(to)fip (to) + V&1 (t0)77ir(t0)+)

+%t7”(V3£1(t0)£?(t0)) = JS + EJf

(44)

(45)
wherethe matrix V' satisfieshe algebraicLyapunovequa-
tion

[(al +axPy) 0 ]T
0 %(bl + b2 Ps)
(ay + axPy) 0 0, O,
Vv : =0
+ [ 0 Liby+byPy) | T [0 05

whichimpliesthreeindependentieduced-orden, yapunov
(Sylvester)algebraicequations
(a1 4 azP) Vi + Vi(ar + asP1) + 0, = 0
e(ar + a2P1)TV2 + Va(b1 + b2P2) + 02 =0
(by + b Po)" Vs + Va(by + by Py) + O3 = 0

(46)



Formula (45) exactly decomposeslow and fast compo-
nentsof the optimal performancecriterion. It canbe con-
cludedfrom (45) thatthe pure-slowcomponenbf the per-
formance criterion is O(1) and that the fast subsystem
contributesonly an O(e) to the performancecriterion of
a linear continuous-timedeterministicsystem.

B. Open-LoopLinear Contol Problem
The optimal open-loop control problem is a two-point
boundaryvalue problemwith the associatedtate-costate
equationsforming the Hamiltonian systemof linear dif-
ferential equations. In this section,the two-point bound-
ary value problemof linear singularly perturbedsystems
is transformedinto the pure-slowand pure-fast,reduced-
order,completelydecouplednitial value problemsby fol-
lowing methodologyof [37]. By doing this, the stiffness
(numericalill-conditioning) of the original singularly per-
turbedtwo-pointboundaryalueproblemis convertednto
the problem of an ill-defined linear systemof algebraic
equations.

Considerthe linear singularly perturbedcontrol sys-
tem (1). The associategperformancecriterion to be mini-
mized over the time periodfrom ¢, to ¢; is definedby

T T R

sl e i) e
(47)

where@); is the terminaltime penalty matrix. The open-
loop optimal control problem of minimizing (47) along
trajectoriesof dynamicsystem(1) hasthe solution given
by (3)-(4) with boundaryconditionsgiven by [23]

M x(to)] N[x(tf)- _ 48
b+ Bn] - )
with
[, 0 o o] ~ [=(to)
C (IR A
n=mnj;+ny
(49)
The terminal penaltymatrix is appropriatelypartitionedas
_ Qfl 6Qf2:| 50
Qf |:€Q}’2 €Qf3 ( )

The approximateoptimal solution of the open-loop
control for linear singularly perturbedsystemshas been
studiedin [18], wherethe problemorderwasreducedand
the stiff problem was avoided successfullyby using the
classic approachbasedon the power-seriesexpansions.
The theorydevelopedn [18] wasbasedon the dichotomy
transformatiorof [38], which requiresthe positive definite
and negativedefinite solutionsof the correspondingalge-
braic Riccati equation. It was concludedin [18] that the

developednethodis efficientfor anO(¢) accuracyonly. In
this section,the solution to the optimal open-loopcontrol
problemof singularly perturbedsystemswith an arbitrary
order of accuracyis presented.

Let us partition and appropriatelyscalethe co-state
vectorp(t) asp” (t) = [pf (1) ep} (1)] with py(1) € R
and p»(t) € ®"2. By interchangingecondandthird rows
in the correspondingstate co-stateequations(4), we get
the singularly perturbedsystem(8)-(9) with the boundary
conditions

z(to) =

z2(to) Z20

The original boundaryconditionscanbe written in a com-
pactform consistento (8) as follows

z1(to) z1(ty)
p1(to) pi(ty)
M N = 52
1 $2(t0) + 1 J?2(tf) C1 ( )
pa(to) p2(ty)
where
I,, 0 0 O Z10
0 0 0 0 0
M=t o 1, o' 97 |
0 0 0 0 0
(53)

Q1 In, —€Qpp2 0
M=1 0 0 0
o 0 —Qps Iny

The Changtransformatior(10) appliedto (8) producegwo
completelydecoupledpure-slowand pure-fastsubsystems
definedby (16)-(18). The boundaryconditionsin the new
coordinatexorrespondingo (16)-(18) are given by

altin] +wliip] = e
where
My = M;T;', No=NT;* (55)
Sincesolutionsof (16) and (17) are given by
n(t) = MBI (1) (56)
§(t) = e Tureb=t0)g ) (57)

we caneliminaten(t) and{(t) from (54), which leadsto

e(Ti=T2L)(ty—to) 0
{MZ + Ny |: 0 o L(TateLT5)(ty —to) }
U(tO)]
X =
[f(to) “

(58)
The systemof linear algebraicequationsobtained,(58), is
of the form

(59)



It is provedin [37] that «(¢) is invertible, hencer(to)
andé&(tg) canbe obtainedfrom (59). The corresponding
lemmaof [37] is given below.

Lemmal.2. Under Assumptionsl.2 and 1.3, the
matrix a(e) is invertible.

Now we areableto find 7(¢) and&(¢) from (56) and
(57). Using(18), we cangetthevaluesfor p, () andp.(t).
The costatevariablesp(¢) andthe optimal controllaw are
thereforefound.

The only difficulty encounteredn the procedureis
to computea(e) in the casewhen an ill-defined problem
occurseitherfor ¢ beingextremelysmall or for (¢; — ¢p)
beingverylarge. Notethatthe matrix 7, containsboth sta-
ble andunstablemodes.In thatcasethe O(¢)-approximate
resultsof [18] haveto be used.

C. Linear Kalman Filtering Problem

In this sectiona methodthatfacilitatescompletedecompo-
sition of the optimal global Kalman filter of linear singu-
larly perturbedsystemsinto pure-slowand pure-fastlocal
optimalfilters both driven by systemmeasurements pre-
sented. The methodis basedon the exactdecomposition
of the global singularly perturbedalgebraicfilter Riccati
equationas presentedn Sectionl.1 andthe duality prop-
erty that existsbetweenthe linear-quadratioptimal filters
and regulators.

Filtering problem of linear singularly perturbed
continuous-timesystemshas been well documentedin
the control literature [40]-[44]. In Haddad[40]-[42] the
suboptimalslow and fast Kalman filters were constructed
producingan O(¢) accuracyfor the estimatesof the state
trajectories,where a small positive singular perturbation
parametere representghe separationbetweenslow and
fastphenomenaln [43]-[44] boththe slow andfast (local)
Kalmanfilters were obtainedwith anarbitraryorderof ac-
curacy thatis O (¢*), wherek standsfor eitherthe number
of terms of the Taylor series[43] or the numberof the
fixed-pointiterations[44] usedto calculatecoeficients of
the correspondindilters. It is importantto point out that
thelocal slow andfastfilters of [43]-[44] aredriven by the
innovation processso that the additional communication
channelsare requiredto form the innovation process. In
the techniquepresentedn this section,the local filters are
driven by the systemmeasurementsnly. In addition, the
optimal filter gains are completely determinedin terms
of the exact pure-slowand exact pure-fastreduced-order
algebraicfilter Riccati equations.

Considerthe linear continuous-timeinvariant singu-
larly perturbedstochasticsystem

21(t) = Arz1(8) + Asza(t) + Grwi(t)

. (60)
€Xs = Agﬂil(t) + A4]32(t) + Ggwl(t)
with the correspondingneasurements
y(t) = Clxl(t) + szQ(t) + U)2(t) (61)

wherez; (t) € ®"¢, i = 1,2, arestatevectors,w;(t) € R":

are zero-meanstationary, mutually uncorrelated, white
Gaussian noise stochastic processeswith intensities
W; >0, and y(t) € R"= are systemmeasurements.In

the following A;,G;,C;, ¢ = 1,2,3,4, 7 = 1,2, are
constantmatrices. We assumethat the systemundercon-
siderationhasthe standardsingularly perturbedorm, [28],

thatis, the following assumptioris satisfied.

Assumptionl.4: The fast subsystemmatrix A, is
nonsingular.

Theoptimal Kalmanfilter, correspondingo (60)-(71),
driven by the innovationprocessy(t), is given by

#1(t) = Ar#1(t) + Aga(t) + Kyv(t)
Eig( ) = A3$1( ) + A4$2( ) + [(ZU(t)
v(t) = y(t) — Crz1(t) — Coa(2)

where the optimal filter gains K; and K, are obtained
from (Khalil and Gajic 1984)

(62)

Ky = (PipCT + PopCT )Wyt

: 63

Ky = (ePSpCl + PopCT )Wy ©3
with matricesP, p, P>, and Psp representinghe positive
semidefinitestabilizing solution matrix of the filter alge-
braic Riccati equation

APp + PrAT — PpSPr + GWGT =0 (64)
where
A= 1A1 IA2 ) G= IG1
_A3 _A4 T2
€ € P € P (65)
S=CTW;'C, Pr = [ v T ]
2T Pl tPar

For the decompositiorand approximationof the sin-
gularly perturbedKalmanfilter (62) the Changtransforma-

tion have beenusedin [43]-[44]
—eH | |&1(t)

[771(15)] B [Inl —€eHL

772(t) - L

where . and H satisfy algebraicequations
A4L — A3 — EL(Al — AQL) = O

(67)
~HA;+ Ay —eHLA, + €(A1 — AQL).H =

The Changtransformationdefinedby (66) and appliedto
(62) produces

() = (A — ALY () + (K, — HKy — eHLK,)o(t)
€rjy(t) = (Aa +€LA2)77 (t) + (K2 + eLK1)u(t) .

68
In the new coordinateghe innovationprocesds given by

v(t) = y(t) — (C1r = C2 L)1 (1)

—[Cy +€(Cy — CyL)H]a(2) (69)



Equations(67) are solvableand producethe unique
solutionsunder Assumptionl.4. The algebraicfilter Ric-
cati equation(64) hasthe uniquestabilizingsolutionsunder
the following assumptions.

Assumptiorl.5: Thetriple (A4,C2, G2) is stabilizable
and detectable.

Assumption1.6: The triple (A Co,Go) is stabi-
lizable and detectable,with 4y = A; — AA;'As,

Co=C) — CaA7 A3, and Gy = Gy — A3 A7 ' Go.

In thedecompositiorproceduregivenby (68)-(69)the
slow andfast filters (68) require someadditionalcommu-
nicationchannelsecessaryo form the innovationprocess
(69). In this section,we presenta decompositiorscheme
of [45]-[46] suchthat the slow and fast filters are com-
pletely decoupledand both of them are driven by the sys-
tem measurementsThis methodis basedon the pure-slow
and pure-fastdecompositiortechniquefor solving the fil-
ter algebraicRiccati equationof singularly perturbedsys-
tems—derivedy using duality betweenthe optimalfilters
and regulatorsand the methodologypresentedn Section
1.1. In thatrespectwe give anadditionalinterpretationof
the resultspresentedn Sectionl1.1.

Using (5)-(7), the optimal regulatorgainis definedby
F=[F F]
= [R~Y(BTP,+BIPT) R~'(eBT P, + BT P;)]
(70
The resultsof interestthat we need,which canbe deduced

from Section1.1, are given in the form of the following
lemma.

Lemmal.3. Considerthe optimal closed-looplinear
system

i‘l(t) = (Al — BlFl)a:l(t) + (Ag — Bng)x2(t)
€i’2(t) = (Ag — BgF]_)l’l(t) + (A4 — BQF2)$2(t)

Under Assumptiond..2 and 1.3 there existsa nonsingular
transformationT

(71)

E
suchthat
Es(t) = (a1 + as Py)Eq(t)
€€1(t) = (b1 + baPy)Es (1)

whee P, and P; are the unique solutionsof the exact
pure-slow and pure-fast completelydecoupledalgebraic
regulator Riccati equations(30)-(31) The nonsingular
transformationT is given by

T = (Hl +H2P)

(73)

(74)

Even more, the global solution P can be obtainedfrom
the reduced-ader exactpure-slowand pure-fastalgebraic
Riccati equations,that is

-1
P, 0 P 0

S GG ()
(3 40 Pf 1 20 Pf

(75)

KnownmatricesQ2;, i = 1,2,3,4, and I, II, are given
in terms of solutionsof the Changdecouplingequations,
and definedin (20) and (25).

The desiredslow-fastdecompositionof the Kalman
filter (62) will be obtainedby producinga dual lemma
to Lemmal.3. Considerthe optimal closed-loopKalman
filter (62) driven by the systemmeasurementshat is

21(t) = (A — K101)#1(t) + (Ay — K1Cy)&9(2)
+ Kqy(t)

€in(t) = (As — KoCh)a1 (1) + (As — KoCo)io(t)
+ Kay(t)

with the optimal filter gains Ky and K, calculatedfrom
(63)-(65). By duality betweerthe optimalfilter andregula-
tor, the algebraicfilter Riccati equation(64) canbe solved
by using the samedecompositiormethodfor solving the
algebraicregulatorRiccati equation(7) with

A— AT Q—-aewmGT, FT =K
Z=BR'BY —s=ctw;C

By invoking theresultsfrom Sectionl.1 andusingduality,
the following matriceshaveto be formed

(76)

(77)

[ Af —ctw;tey )
Tip = |-G GT A
he| A ciwro)
|-G GT ~Ay ]
[ Af —cfw;tey ] (78)
Tsp = 2 72 Wo 1
|-G W, G ~A; ]
_ [ AZ *CgW2_1C2-
Tar = |- GaW, GY — Ay

Note that on the contrary to the results from Sec-
tion 1.1, where the state-costatevariables have to be
partitioned and scaled as z*(¢t) = [z{(¢) z4(¢)] and
p’(t) = [pl (t) epZ(t)], in the caseof the dualfilter vari-
ables,we haveto use the following partitions and scal-
ing 27 (t) =[] (t) ez3 ()] andp™(t) = [p] (t) p3 (1)].
SincematricesTr, Tor, T3r, Tyr correspondo the
systemmatricesof asingularlyperturbedinearsystemthe
slow-fastdecompositionis achievedby using the Chang
decouplingequations
T4FM — T3F — €M(T1F — TQFM) =0

—N(Tar + eMTop) +Top + e(Tir — Top M)N :(gg)
By using the permutationmatrices dual to those from
Sectionl.1 (note E, ¢ is differentthanthe corresponding
one from Section1.1)

Lu 0 0 0
o0 Ly oo
Eir =1y Y 00
0 0 0 I
ILm 0 0 0 (80)
0 0 ILu 0
Esr = !

0 I, O 0
0 0 0 Ino



we can define

Hp = =FgT o E
s [HSF Myp 2 M Ion, |7HF
(81)
Then, the desiredtransformationis given by
Ty = (yp + Mop Pr) (82)

ThetransformatiorI', appliedto thefilter variablesas
[ﬁs(t)] _peT [ifl(l‘)]
05 (1) 2 |#2(t)
produces

[z’?s(t)] :T_T[ Ar—KiC1 Ay — KiCy ]
N (t) 21 YAs - K201 LA — Ko (o)
T ﬁs(t) -T A/71
<[] 7|, o
(84)

such that the complete closed-loop decompositionis
achieved,that is

(83)

0s(t) = (arp + asp Pop) 1s(1) 4+ Koy(t)

: T . (85)
enp(t) = (b + bop Prp) ns(t) + Kpy(t)
The matricesin (85) are given by
aip  Qzfp
=(Tyr —TorM
[w W] (Tor — Tor M)
b b
[ 1P ZF] = (Tup + eMTyp) (86)
bsp  bap
K] vl K
=)
0= Pspaip — aypPsp — azp + Pypasp Pep (87)

0= Pspbip —bapPrp —bsp + Prpbop Prp

A methodfor solvingnonsymmetridRiccati equationg87)

is consideredn Sectionl.1. Notethatthe matricesneeded
for the O(¢) approximateslowfilter algebraidRiccatiequa-
tion dual to (34) and definedby

P Alp + Asr Py + GaWL G

(88)
0) ~T 177 — 0
*Ps(F)CgWQslcsPs(F) =0

can be obtainedfrom [20]

Alp —ctwite,] B
—GsWi,GY —Agp =Tir — TorTyp Tsr

(89)
Evenmore,we canobtainedthe analyticalexpression$or
Asp, Cs, G5, Wys, Wy using the methodologyof [43]. It
is importantto point out that the matrix Pg in (82) can
be obtainedin termsof P,z and P;r by using formula
(75) with

P; = Psp, P; = Pir (90)

and 2, Q,, Q3, Q4 obtainedfrom

By
(91)

A lemmadual to Lemma1.3 canbe now formulated
as follows.

_ Ql QQ _ -1 Ian €N
= |:Q3 Q4:| o ElF |:]\4— Ignz —eMN

Lemmal.4: Giventhe closed-loopoptimal Kalman
filter (76) of a linear singularly perturbedsystem. Thee
existsa nonsingulartransformation(82), which completely
decoupleg76)into pure-slowandpure-fastiocal filters (85)
both driven by the systemmeasuements. The decoupling
transformation(82) andthe filter coefficientgyivenin (86)
can be obtainedin termsof the exactpure-slowand pure-
fastreduced-ader completelydecoupledalgebraic Riccati
equations(87).

It can be seenfrom the previous analysisthat the
new filtering methodallows completedecompositiorand
parallelismbetweenpure-slowand pure-fasffilters.

D. Optimal Linear-QuadraticGaussianControl

In this sectionan approacHor solving the linear-quadratic
optimal Gaussiarcontrol problemof singularly perturbed
continuous-timestochasticsystemds presentedThe algo-
rithm proposeds basedn theresultspresentedh Sections
1.1and1.3. It is shownthat the optimal linear-quadratic
Gaussiarcontrol problemtakesthe completedecomposi-
tion andparallelismbetweerpure-slowandpure-fasfilters
and controllers.

Singularly perturbedlinear-quadraticoptimal control
problem of stochasticcontinuous-timesystemshas been
studiedin the pastby severalresearcherft1]-[44]. In this
section,we presenta completelynew approachto the sto-
chasticcontrol of linear singularly perturbedsystemsthat
is pretty muchdifferentthanall othermethodsusedso far
in the study the sameproblemby following the resultsof
[45], [47]. Theapproachs basedon a closed-loopdecom-
positiontechniquethatguaranteesompletedecomposition
of the optimal filters and regulatorsand distribution of all
requiredoff-line and on-line computations As a matterof
fact, the presentedpproachcombinesresultspresentedn
Sectionsl.1 and 1.3 and usesthe separatiorprinciple for
linear stochasticcontrol [23]. This decompositiorallows
usto designthe linear controllersfor slow andfastsubsys-
temscompletelyindependentlyof eachother and thus, to
achievethe completeand exactseparatiorfor the linear-
guadraticstochasticregulatorproblem.

Consider the singularly perturbed linear stochastic
system

z1(t) = A1z (1) + Aszo(t) + Bru(t) + Gruw(?)
63'32(t) = Agxl(t) + A4a:2(t) + Bgu(t) + Gg’w(t)
y(t) = Crai(t) + Caza(t) + walt)

(92)



with the performancecriterion

J = lim iE{/[zT(t)z(it)+u:”(t)Ru(t)]a’t} (93)

tf—roo tf
J b

wherez;(t) € ®"+,i = 1,2, compriseslow and fast state
vectors, respectively,u(f) € R™ is the control input,
y(t) € N is the observedoutput, w;(¢t) € R"* arezero-
mean stationary, mutually uncorrelated,Gaussianwhite
noise processeswith intensitiesiW; > 0 and W» > 0,
respectivelyandz(t) € *, is the controlledoutputgiven
by

Z(t) = Dlxl(t) =+ Dgl’g(t) (94)

All matricesare of appropriatedimensionsand assumed
to be constant. The optimal control law for (92) with the
performancecriterion (93) is given by

Uopt(t) = —Flfl(t) — ng?g(t) (95)

wherez, (t) andz,(t) aretheoptimalestimate®f the state
vectorsz, () andz»(¢) obtainedfrom the Kalmanfilter

By (1) = A1y (1) + Ayo(t) + Byu(t) + Kyv(t)
g(t = A3£‘1(t) + A4£‘2(t) + Bgu(t) + ng(t)
(1) = y(t) — Crz1(t) — CoZa(t)

The optimalregulatorgains Fy, F» andfilter gainsK, K
are given, respectively,by (70) and (63). The required
positive semidefinitestabilizing solutionsof the algebraic
regulatorand filter Riccati equations(7) and (64) can be
obtainedin terms of reduced-orderpure-slowand pure-
fast, regulatorand filter, algebraicRiccati equations,re-
spectively,given by (30)-(31) and (87).

The optimal global Kalman filter (96) can be put
in the form in which the filter is driven by the system
measurementand optimal control inputs, that is

(96)

™
B =

<

21(t) = (A — K101)&1(t) + (Ay — K1Co)io(t)
+ Byu(t) + K1y(t)
eiy(t) = (A3 — KoCy)i1(t) + (Ag — KoCy)ia(t)
+ Bou(t) + Ky(t)

(97)

It is knownfrom Sectionl.1thatthereexistsa nonsingular
transformatiordefined by (82) suchthat (97) is decoupled
into pure-slowand pure-fastlocal filters both driven by
systemmeasurementand systemcontrol inputs

0,(8) = (@17 + aar Por) il (t) + Bu(t) + K, y(t)
€np(t) = (bup + bar Pp) iip(t) + Byu(t) + Kfy(t()%

The pure-slowand pure-fastfilter gains, K, K;, are de-
fined by (86). The pure-slowand pure-fastsysteminput
matricesare given by

By | o7l| B1
5 =]

€

(99)
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As a result, the coeficients of the optimal pure-slowfil-
ter arefunctionsof the solution of the pure-slowalgebraic
Riccati equationonly andthoseof the pure-fastfilter are
functions of the solution of the pure-fastalgebraicRic-
cati equationonly. Thus, thesetwo filters can be imple-
mentedindependentlyin the different time scales(slow
and fast). It should be noted that the filtering method
proposedor singularlyperturbedinear stochasticsystems
allows complete decompositionand parallelism between
pure-slowand pure-fastfilters.

The optimal control in the new coordinateds given
by, [47]

Uopt(t) = —Fi(t) = —FTY [2.;(t)]

(t)
=-in. £ 0]

where F; and F; are obtainedfrom

(100)

[F, F;]=FT} =R "'BTP(Ilyp + Mz Pr)” (101)

The optimal value of J follows from the known formula
(23]
Jopt = tr{ PKW, K" + PpDT D}

: 102
= tr{ PGW\G" + PpF" RF} (102)

[I. Hoo-OPTIMAL CONTROL AND FILTERING

Singularly perturbedH ., -optimal linear-quadratiacontrol

and filtering problemshave beenstudiedin the past by

severalresearcherf21]-[22], [48]-[54]. Relatedproblems
for singularly perturbedifferentialgamesanddisturbance
attenuatiorhave beenconsideredn [55]-[58].

In this sectionwe study the algebraicRiccati equa-
tion of singularly perturbedH ., -optimal linear-quadratic
control problemsby generalizingthe resultsof [24] and
presentan efficient reduced-ordealgorithm that removes
ill-conditioning of the original problem. Anotherapproach
to decompositiorof the algebraicRiccati equationfor the
sameclassof systemsbhasedn atransformatiorderivedin
[13], hasbeenconsideredn [21]-[22]. However,the prob-
lem of derivinganalgorithmfor solvingthe corresponding
algebraicRiccati equationis not addressedn [21]-[22].

It is well known [4]-[5] that the singularly per-
turbed algebraic Riccati equationis ill-conditioned. In
this section,we show how to exactly decouplethe alge-
braic Riccati equationof H.,-optimal control of singu-
larly perturbedsystemsin terms of pure-slowand pure-
fast, reduced-orderwell-conditioned H . -algebraicRic-
cati equations. We also establishconditions that allow
sucha decompositionandformulatethe correspondingl-
gorithm. Even though, the obtainedreduced-orderH -
algebraicRiccati equationsarenonsymmeticthey are effi-
ciently solvedin termsof Lyapunoviterationsby usingthe
Newtonmethod. Theiterativealgorithmof [59], alsogiven
in termsof Lyapunoviterations,is usedto obtain numeri-
cal solutionsof the correspondingeduced-orderslow and



fast, symmetric, H., algebraicRiccati equations,which
containindefinite matricesin quadraticterms,and whose
solutionsproduceexcellentinitial guessegor the Newton
method.

Theresultspresentedn this sectionwill facilitate ex-
actandcompletetime-scaledecompositiorof H ., -optimal
control andfiltering tasksof singularly perturbedsystems,
and reduced-ordemparallel processingof all off-line and
on-line computationalrequirements.

A. H,,—Optimal Linear Control

The linear singularly perturbedcontrol systemunder dis-
turbancess describedby
By
|+ o] o [32]
(103)

o Al AQ X1 (t)
o A3 xr
R™> are, respectively system

Aq

Dy
D,

(1)
s o+ [+
wherez(t) € R"*, z2(t) €
slow andfaststatespacevariablesu(t) € ®™ is a control
input, w(t) € R is a systemdisturbanceande is a small
positive singularperturbationparameter.The performance
criterion to be minimized is given by

/v
(104)

The H.,-optimal control problem associatedwith
(103) and (104) hasa solution given in termsof solution
of the following algebraicRiccati equation[60]-[62]

€P2
€P3

(105)

% (1)Qu(t) + uT (H)Ru(t)]dt, @ >0, R > 0

ATP+PA+QP(S - %Z) P=0,P= [
Y
Ay

%AJ’ 5—[

Z_[Zl iZS]ZO

LZ2T
R1BT S, =B R 'BI,

Py
ePf

where

Ay

-l

Sy

L4, lS2T

S, =B Ss = B,R~'BY

Zy=D,Dl, Zy=DDf¥ Z3=D,D¥
(106)
andry is arealpositiveparametethatrepresentanoptimal

disturbanceattenuationlevel in the sense

{n;§;|} !

The optimal controller that guaranteeshe v level of op-
timality is given by

inf su

107
Inf's (107)

Uope(t) = — (108)

] Px(t)

€

ThealgebraidRiccatiequation(105)with anindefinite
coeficient matrix in the quadraticterm appearsalso in
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zero-sumdifferentialgameq63], stabilizationof uncertain
systemg[64]-[65], disturbanceattenuationproblems[66],
and decentralizedstabilization[67].

B. SingularlyPerturbed H ., —AlgebraicRiccati Equation

The Hamiltonianform correspondingo the H ., algebraic
Riccati equation(105) is usedin further analysis. This
form is given by

o)
p(t) = Px(t) (110)

p(t)

Our goal is to find the solutionof (105) in termsof
solutions of the reduced-orderpure-slow and pure-fast,
H.-algebraicRiccati equationsby following the method-
ology of [24] and[68]. In addition,we establishconditions
for sucha decompositionand formulate the correspond-
ing algorithm.

By partitioning

A
—Q

- (SA TLZ)

(109)

with

the costate vector p(t) as

p(t) = [pi(t) ep2(t)] with pi(t) € R*, pa(t) € R** and
interchanginghe secondandthird rows in (109) we get
&1 (t) z1(t)
p@)| [T Tz ||p(d)

a(1) [%ﬂs iy | ()| D)
pa2(t) pa(1)
with
1
a4 (s m)
—@1 — A7
1
[t (5 22)
—Q2 —A3
(112)
1 T
|4 (% E7)
- -4
) -
T, = | *(53 B 7_223)
—Qs — A7

It is importantto notice that (111) retainsthe singularly
perturbedform. In the following, in orderto be able to
apply the Changtransformatiorto (111), we neednonsin-
gularity of the fast subsystemmatrix 74. It is established
in [21]-[22] that the matrix T4 is nonsingularunder the
following assumption.

Assumption2.1: The triple (As, B»,+/Q3) is con-
trollable and observable.

Applying the Changtransformatiorto (111) we getin
the new coordinategwo independenpure-slowand pure-

fast subsystems
ag ] [771('5) [771
ag | [n2(t) 2

[ﬁl(t)] _ [31

n2(t)

t

g

t

] = (T, — T»L)
13)



Gty = ez D)

-
C2(t) by ba

(114)
wherethematrix L is obtainedirom the Changtransforma-
tion equation(11) . Note thatonecanalsoapplyto (111)
the new version of the Changtransformationderived in
[25] that producescompleteindependencéetweenthe L
andH equations.However,in thatcasethe H equationis
weakly nonlinear. The uniquesolutionsof the correspond-
ing equations(11)-(12) exist for sufficiently small values
of e underthe assumptiorthatthe matrix 7, is nonsingular
(by the Implicit Function Theorem).

The relationshipbetweenthe new andold statevari-
ablesis determinedby the Changtransformatioras

o1 t—emr —ar o] o)
n _ — € —€ P1 _ P11,
Ko e il | B
pa(1) p2(1)

(115)

The relationshipbetweenthe original and new coor-
dinatesis given by

() M) w1(f)

| =220 | =1

0 G (1) ro(l)
_ (0] _p[=0] _ I L] [=()
= E3T3E, [p(t)] - H[p(t)] - [H3 H4] [p(tzl]m

wherethe permutationmatrices®; and F» areddinedin
(19) and (21).

Now we canproceedike in Sectionl.1,thatis, along
thelinesof (22)-(31). In the newcoordinatesthe stateand
costateequationsare relatedby

me(t)| _ |Ps 0 ||m(t)
[Cz(t)] B [U Pf] [Cl(t)]
Using (117)in (113)-(114)we gettwo reduced-ordenon-

symmetric,pure-slowand pure-fast,H ., -algebraicRiccati
equations respectivelygiven by

(117)

0= Psa; —agPs — ag + Psas P

(118)
0= bel — b4Pf — b3 + beQPf

The reduced-orderlgebraicnonsymmetricRiccati equa-
tions can be solved by using the eigenvectormethodin
termsof eigenvectorspanningthe stablesubspace|23].
Another approachfor solving equations(118), which is
more in the spirit of theory of singular perturbations,is
given below.

By usingthe samemethodologyasin Sectionl.1we
get

[Ps 0

0 Pf] = (M3 + M4 P)(I1; +T1,P) "

(119)
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Also, we canfind P in termsof P, and P; as

-1
P, 0 P, 0
p=(mraly p))(mrall p))
(120)
where

Qs Oy (121)

Q= [Ql QQ] =E'T3'E, =171
It canbe shownthat the inversionsdefinedin (119) and
(120) exist for sufficiently small values of the singular
perturbationparameter sincethe correspondingnatrices
areequalto I + O(e).

It is interestingto point outthat H ,-algebraicRiccati
equations(118) are nonsymmetric but their O(e¢) pertur-
bationsare symmetric. Namely, by closely examiningthe
coeficients in (114), the pure-fastH ,,—algebraicRiccati
equationis representedy

1
PiAs + AT P; + Qs — Py (53 — 7—223) P; +0(e) =0

(122)
It can be observedfrom (120) that

p= [’; 8] +0(e) (123)

It is knownfrom [49] thatthe natureof the solutionmatrix
of (105) is

p_ [ P; + O(e) e(Pr2 + O(e))]
(Pl +0(e))  €(P2+0(e))
P =pP' PpP,=P]

(124)

where P; satisfiesthe symmetricslow H ,-algebraicRic-
cati equation.lIt follows from [49] and (123)-(124) that

1
P5A5+AZP5 + Qs _P5<SS - 7_225>P5+O(€):0
(125)
From(122) and(125) onecanobtainO(¢) approximations
for P, and P; equationsby solving the following H.,
algebraicRiccati equations

PO A+ ATP) 4+ Q, — PO (Ss - %Zs) P =0
(126)
1 .
P4y + AT P + Q3 — P (53 - —223> P =0
(127)

The unique positive semiddinite stabilizing solution of
(127) exists under Assumption 2.1, [59]. The unique
positive semidefinitestabilizing solution of (126) exists
underthe following assumption[59].

Assumptior2.2 Thetriple (A, B, /@) is stabiliz-
able and detectable.



Matrices As, Bs, @5, canbe derived either by using
the methodologyof [49]-[50] or evenin a simplermanner
from the resultsof [20] as

A, f(ss . #Zs)

=T T, 'Ts
7Qs *AZ

(128)

An importantfeatureof equationg126)-(127),which
distinguishegheseequationsfrom the standardalgebraic
Riccati equationof the linear-quadraticoptimal control
problemis thatthe quadratictermsin (126)-(127)havein-
definite coeficient matrices. The algorithm of [59], given
in termsof Lyapunoviterations,convegesglobally to the
positivesemidefinitestabilizingsolutionof (126)-(127)un-
der Assumption2.1 and2.2. It hasbeendemonstratedéh
[69] that the Lyapunoviterationsare very efficient numer-
ical tool for solving many nonlinearalgebraicequations
arisingin optimal controlandfiltering problems.Usingthe
algorithmof [59], equation(127) is solvedby performing
the following Lyapunoviterations

(0)(i+1) (O)U)
P (A4 — 53 P )
o\ T (i+1)
+(40- 85P7) P

- (0)(»') (0)(») 1 (0)(i) (0)(i)
129)

with theinitial condition obtainedfrom the standardalge-
braic Riccati equation

)(0 )(0) )(0) 0)(0)

PO A+ AT PO 4.0y — PO 5, PO — 0 (130)
This choiceof the initial conditionis aninterestingfeature
of the algorithm of [59], and it is importantfor the effi-

ciency of the overall algorithm for solving the singularly
perturbedH , -algebraidRiccatiequation.Having obtained
an approximatesolution PJEO) = P; 4+ O(¢), we canimple-

menttheNewtonmethodfor solvingthepure-fastlgebraic
Riccati equationgivenin (118) sincea good initial guess
is available. The Newton methodleadsto the following

Lyapunov-like (Sylvester)iterations

B ) ()
= b3 + P b, P}”

and convepgesin only few iterations.

Similarly, the algorithmof [59] is appliedfor solving
(126) as

Ps(o)(i+1) (A.s B SsP_gO)(i))
+(As _ SSPSSO)U))TP;O)(»'H)

0)() @ 1 ©) 0y
- <Q5+P§°> S, PO +—72 PO 7z pO) >
(132)
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with the initial condition obtainedfrom the standardslow
algebraicRiccati equation

PO 4, + AT PO 1@, PO s, PO = (133)

Having obtainedan approximatesolution P = P +
O(e), we can implementthe Newton method for solv-
ing the correspondingpure-slow algebraicRiccati equa-
tion definedin (118)sincea goodinitial guesss available.
The Newtonmethoddeadsto thefollowing Lyapunov-like
(Sylvester)iterations

Ps(i‘*'l) (al + aQPS(i)) — (a4 — PS(O)GQ) P}i+1)

} ) (134)
=as+ PS(Z)(IQPS(Z)

which convege quadraticallyto the requiredsolution.

C. Singularly Perturbed H ,,—OptimalLinear Filtering

The Kalman filter has beenusedsince 1961 in all areas
of control systemengineering70]. It hasbeenalso used
in signal processingseefor example,[71]-[72] and ref-
erencegherein),image processingcommunicationsand
economics. In this sectionwe presenta methodthat al-
lows completetime-scaleseparatiorand parallelismof the
H,—optimal Kalman filtering problemfor linear systems
with slow and fast modes(singularly perturbedinear sys-
tems). The algebraicRiccati equationof singularly per-
turbed H—Kalman filtering problem is decoupledinto
two completelyindependentieduced-ordempure-slowand
pure-fast, H,—algebraicRiccati equationsby using the
methodologyfrom the previoussection. The corresponding
H,—Kalmanfilter is decouplednto independenteduced-
order, well-defined, pure-slowand pure-fast,Kalman fil-
tersdriven by systemmeasurementsThe proposedexact
closed-loolecompositiortechniqueproducesa lot of sav-
ings in both on-line and off-line computationsand allows
parallel processingf information with different sampling
ratesfor slow and fast signals.

During the last fifteen years the H.,—optimization
becameoneof themostinterestingandchallengingareasf
optimalcontrolandfiltering theoriesandtheir applications.
The main advantageof the H,—optimizationis that such
obtainedcontrollersand filters are robustwith respectto
internal and externaldisturbancesln the caseof Kalman
filtering, theadditionaladvantagef the H ,—Kalmanfilter
overthe standardalmanfilter is thatthe former onedoes
not require knowledge of the systemand measurement
noiseintensity matrices—datdardly exactly known.

It is knownthatthe singularlyperturbedKalmanfilter
is numericallyill-conditioned due to coupling of the slow
and fast modes(signals). Hence,the main goal in theory
of singularperturbationss to decouple(separatejhe slow
and fast signals and processthem independently. Diffi-
cultiesencounteredwvith the full-order H,—Kalmanfilter
of singularly perturbedlinear systemsarein the factsthat
the correspondingalgebraicfilter Riccati equationis also



ill-conditionedandthatit containsanindefinite coeficient
matrix multiplying the quadraticterm (which makesthis
equationmuch more difficult for studyingthan the cor-
respondingone of standardsingularly perturbedoptimal
filtering problems).

In the previoussectionthe algebraicregulatorRiccati
equationof H., optimal linear-quadraticregulator prob-
lemis decomposethto reduced-ordemure-slowandpure-
fast, algebraicregulatorRiccati equations.In this section,
we extendthoseresultsto the decompositiorof the corre-
spondingalgebraicfilter Riccati equationand usethemto
decompose¢he H, singularlyperturbedKalmanfilter into
independentwell-defined, reduced-orderKalman filters.
The filters obtainedare completelyindependentind can
work in parallel. Eachof them can processinformation
with different samplingrate—the fast filter requiressmall
samplingperiodandthe slow one canprocessnformation
with relatively large samplingperiod.

Considerthe linear singularly perturbedsystem

i?l(t) = Ala:l(t) + Agﬂ?g(t) + Dlw(t)
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cialt) = Agra (1) + Ago(t) + Dyw(t) o)

with the correspondingneasurements
y(t) = Cra (1) + Coms(t) +0(t)  (136)

wherez () € ®"* andz,(t) € ®"* areslow andfaststate
variables,respectively,w(t) € %" andv(t) € R are
systemandmeasurememndisturbancesandy(t) € R are
systemmeasurementsd;, D; , C;, i =1,2,3,4, j =1,2,
are constantmatricesof appropriatedimensions. ¢ is a
small positive singularperturbationparameter.

In this sectionwe designa filter to estimatesystem
statesr; (f) andz»(t). Thestatedo beestimatedaregiven
by a linear combination

Z(t) = G’lxl(t) + Ggl‘g(t) (137)

The estimationproblemis to obtain an estimatez(¢) of
z(t) € R¢ using the measurements(t), [72]-[74]. The
measureof the infinite horizon estimationproblemis de-
fined as a disturbanceattenuatiornfunction

Il — 2|t
J— 0

% (138)
[ (@l - + o) e
0

where R > 0,W > 0 andV > 0 arethe weighting

matricesto be chosenby designers.The H..—filter is to

ensurethat the enegy gain from the disturbancego the

estimationerrors, z(t) — 2(t), is lessthan a prespecified
level v2. That s,

sup J < 7?

w,v

(139)

where "sup" standsfor supremumand 2 is a prescribed
level of noiseattenuation.The H ., —filter associatedvith

singularly perturbedinear systemsgdriven by the innova-
tion process,is given by [46], [72]
B1(t) = A1&1(1) + Asia(t) + K (1)
eio(t) = Agiy(t) + Agis(t) + Kov(t)
v(t) = y(t) — Crz1(t) — Caia(t)

wherethe filter gains Ky and K, are obtainedfrom

(140)

Ky = (PirCT + PopCy )V ™!

141
Ky = (ePfpCT + PspC3 )V 1 (140)

with matricesP; ¢, P>y, and Pp representinghe positive
semidefinitestabilizing solution of the following algebraic
Riccati equation[72]-[73]

1
APp + Pp AT — P (CTV—lc - —QGTRG) Pp
Y
+DWDT =0
(142)
where
Ay A, D, ] [PlF Pyp ]
[%A %AJ’ [%Dz ST P P
C=[C; O], G=[G; Gy

(143)

In order to form the innovation processdefined in
(140), communication®f the filter estimatesare required,
thusadditionalcommunicationchannelsare necessaryin
the following, we will achievethe slow-fast H..—filter
decompositiorin which both filters are directly driven by
the systemmeasurementand thus, we will eliminatethe
needfor communicationof estimates. The problem of
solvingthe H, singularlyperturbedalgebraidilter Riccati
equation(142) will be solvedby usingduality betweerthe
optimal filters and regulatorsand the algorithm from the
previoussection.

Thedesireddecompositiorof the H , filter (140)will
be obtainedby first producingdual resultsto (118), (120).
Considerthe optimal closed-loogfilter (140) driven by the
systemmeasurements

Bi(t) = (A1 — K1C)E1(t) + (Az — K1C2) ()
+E1y(t)

Eig(t) = (A3 — KQC'l)il(t) + (A4 — I(QCg)ig(t)
+Eay(t)

(144)
with the optimal filter gains K; and K, calculatedfrom
(141)-(143). By duality betweenthe optimal filter and
regulator, the filter algebraicRiccati equation(142) can
be solvedby usingthe samedecompositiormethodasthe
one usedfor solving (105) with

A— AT Q— DWDT, FT—>K_[£(12]
€

S=BR;'BT -=cTv-lc, DD - GTRG
(145)



By invoking resultsfrom Sections1.3 and 2.2 and using
duality betweertheoptimallinear-quadraticontrollersand
optimal Kalman filters, the following matriceshaveto be
formed

ro| At f(cf’v—lcl -4 GTRGl)'
—D,w DY A

T, — AT f(ClTv—lcz — 7LZG{"RGQ) ]
- DywDE Ay

| A f(cg“v—lcl . V%G%"RGl) ]
D, W DY s

| A f(cg“v-lcz - V%G%"RGZ) ]
D, W DI Ay |

(146)

It can be shown after some algebra that matrices
(Ty, T, T3, Ty) comprisethe systemmatrix of a standard
singularly perturbedsystem,namely

Ty Ty
P1 T, Ty P1
. = 147
T2 [%TS %Tz}] T2 ( )
P2 P2

Note that in contrastto the resultsof Section2.2, where
the state-costatevariables have to be partitioned as
ol = [ 23] andp? = [p] epl], in the caseof the
dual filter variables,we haveto use the following parti-
tions ¥ = [¢] ezf] andp’ = [p{ p3]. Sincematrices
T, T», T5 , and Ty correspondto the systemmatrices
of a singularly perturbedlinear system,the slow-fastde-
compositionof (147) canbe achievedby usingthe Chang
decouplingtransformationobtainedfrom algebraicequa-
tions dual to (11)-(12). The unique solutions of these
equationsexist, by the implicit function theorem,for ¢
sufficiently small, under the assumptionthat the matrix
T, is nonsingular. Using the results of [21]-[22] and
duality betweenoptimal linear-quadraticregulators and
Kalmanfilters givenin (145),it follows thatthis matrix is

nonsingularunderthe following assumption.
Assumptior2.3: The triple (A4, Cy, D2) is control-
lable and observable.
The required Chang decoupling transformation is
given by

I—eNM

u (148)

I

e

where N and M satisfy algebraic equations(11)-(12).
Then, by duality, from Section2.2, we have

)

0 Pp

)

Pp = (QBF + Qup [

149
P, (149)

0

0

X (QlF + Qop [ Prp
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where, the pure-slow and pure-fast, well-conditioned,
reduced-orderalgebraic H, filter Riccati equationsare
given by

PsFal 7a4PsF - a3+PsFa2PsF =0

(150)
Pipby — byPip — b3+ PipbaPip =0
with
a2 on oy, | 02| o (1M
a3a4_1 2’63b4_‘4€2
(151)
The Q;,: = 1,2,3,4, matricesin (149) aredefinedby
QF QZF]
Qp - [
Q Q
3F 4F (152)
1 1 I eN
By Ty By =Ey { M IcMN]EZ

The permutationmatricest; and £, aredefinedin (80).
It can be shown that one can obtain O(¢) approxi-

mationsfor P;p and P;p by solving the following H.,

symmetricalgebraicfilter Riccati equations

POAT + A, PO + D,w, DY
1 v 153
~Py (C?chs - V—QGZRSGL(;) p@ gy 193

PYAT + AyPYY + D,W DY
| (154)
— P <C2Tv;102 - 7—2G§RG2> P =0

Thenewly definedmatricesappearingn (153)areobtained
from

A7
—D,W,DY

~(cTvrie, - 56T R,G,)
— A,
=T - TI;'Ty

(155)

An importantfeatureof equationg153)—(154) which dis-
tinguishegheseequationgrom the standardalgebraidilter
Riccatiequationjs thatthe quadraticcermshaveindefinite
coeficient matrices.

The algorithm of [59] developedfor solving the
H,—algebraicRiccati equationsn termsof Lyapunovit-
erations, conveges globally to the positive semidefinite
stabilizing solution of (153)-(154) under the following
stabilizability-detectabilityassumptions.

Assumption2.4: (As A CTV O /Dy W, D{)

is stabilizableand detectable.

Assumptior2.5: The triple (A4, C2, Dy) is stabiliz-
able and detectable.

Note that Assumption2.5 is weakerthan Assumption
2.3, hence,it is sufficient to usein this sectiononly As-
sumptions2.3 and 2.4. Also, Assumption2.4 canbe writ-
tenin a simplerform requiringthatthetriple (A4;, Cs, D;)



is stabilizable-detectableHowever,in that case,one has
to find C'; and D; matricesexplicitly. This canbedoneby
usingthe procedureof [49]-[50] for forming the reduced-
order slow approximatesystem.

Using the algorithm of [59], equation(154) is solved
by performingthe following Lyapunoviterations
0y (i+1) _ O
P (A4 — VLR )

(i) (i+1)
+(4s - cTv-rep) ) P

Ol ©) (156)
_ 7<D2WD§” + PR CTv=10,P() )
1 oy 0)(®)
—7—2P}F) GY RGP}y
with theinitial condition obtainedfrom the standardalge-
braic filter Riccati equation
0)(®
P
0© o 0)(®
—PCi VoL Pi =0

) 0)(®) T
AT 4+ 4,P" 4 D,WD
4T S (157)

This choice of the initial condition is an interestingfea-
ture of the algorithm of [59], andit is importantfor the
efficiency of the overall algorithm for solving the singu-
larly perturbed H .,—algebraicRiccati equation. Having
obtainedan approximatesolution P}%) = Psr + O(¢), we
can implementthe Newton methodfor solving the pure-
fast algebraicRiccati equationgivenin (150) sincea good
initial guessis available. The Newton methodleadsto the
following Lyapunov-like(Sylvester)iterations

pli+)

PUFD (b + 0o PR — (b0 — Pfbs) P

) ) (158)
= b3 + P{bs Py

with P}%) obtain in (156), and convepges in only few

iterations.

Similarly, the algorithmof [59] is appliedfor solving
(153) as

(i+1) i\ T
PR (4, —cTv e PR
_ 0)(9) 0)(i+1)
+(a, - crvie P PR
(159)

©) (1)
- (Ds w, DT + PO Ty -1c, Q)
1

72

)

pOY

0)(9)
Ps(F) GSTRSGS sF

with the initial conditionobtainedfrom the slow algebraic
Riccati equation

PO AT 4 4,PO” 4 D,w, DT

(160)
7PS(2’)(0) CST Vs_lcsps(%)w) —0
Having obtained an approximate  solution

Ps(lom) =P;r+ O(¢) we can implement the Newton
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method for solving the corresponding slow Riccati
equationdefined in (150) since a good initial guessis
available. The Newton methodsleadsto the following
Lyapunov-like(Sylvester)iterations

plith)

Pﬁ?’l) (a1 + azps(?) — (a4 — Pﬁ?az) N

) ) (161)
=a3+ PS(ZF?GZPS(}?

with PS(%) obtainedfrom (159). Theiterativeschemg161)
convegesquadraticallyto the requiredsolution.

C1. Slow-FastDecouplingof H.,—OptimalLinear Filter

It is interestingto point out thatfor the standardclassical)
Kalman filtering, the transformationthat relatesthe old
and new coordinatesdefined by

I'=(Ilip +2rPr) (162)
where
_ H1F H2F T I—eNM —eN
M = [H3F H4F:| =B [ M I :|E1
(163)

is usedto decoupleboth the algebraicfilter Riccati equa-
tion andthe Kalmanfilter into independenpure-slowand
pure-fastcomponentq46]. However,in the caseof the
H,—Kalmanfiltering the similarity transformation

0] o [0
0 (t) (1)

doesnot producein the new coordinateghe optimal pure-
slow and optimal pure-fastKalmanfilters, thatis

(164)

[z’?s(t)] _F_l[ A= KiCy Ay = Ky Ch ]
ny(1) H(Az — K2C1)  £(Ag — K3Cy)
1s(t) 1| K
o]+ o
(165)

doesnot leadto a block diagonalfilter matrix in the new
coordinates Thereasorfor thisis inconsistencyiesin the
factthatthe “closed-loopH ,—filtering problemmatrix” is

: 1
A-— Pp (CTv—lc - —2(;TRG>
. 7 (166)
=A-KC- S PpG"RG
Y

This matrix is indeedblock diagonalizedby the similarity
transformatiord’. However,the H, optimalKalmanfilter
definedin (144) hasthe feedbackmatrix given by

A-PrCTVv-lC=A - KC
. Ay — KOy Ay — K1 Oy
T [H(As — KaoCy) 1Ay — Ky(h)

(167)



This singularly perturbedmatrix can be diagonalizedby
using anotherChangtransformatiorof the form

I—eHL
L

—cH

e
I

—1 I
]’ T = [L I—¢LH
(168)
where I and H matrices satisfy the Chang decoupling
equations

T - |

(Ag — K2C)L — (Asz — K2Ch)

—€e[(Ay — K1C1) — (A — K1 Cy)L] =

—H(Ag — K2C3) + (A2 — K1C5)
—€eHL(Ay — K,C)

+e[(Ay — K1C) — (A — K1Cy) L) H

0
(169)

=0

The unique solutions of theseequationsexist under the
assumptionthatthematrix A, — K2 C'» is nonsingular.Note
thatbasedn theoryof singularperturbation$4] the matrix
A4 — PspC3V~1Cs— 25 Pap(G§ RG is nonsingulassince
it representshe fast feedbackmatrix. By the result from
[74], the stability of the matrix Ay — PspCIV =10y —
7%ngGg’]%C& impliesthatthematrix Ay —PspCT V=1,
is stablealso. Using (141) we seethat Ay — K2C2 + O(e)
is astablematrix. Thus,thematrix A, — KoC'5 is stablefor
sufficiently small valuesof the small singularperturbation
parametek. The uniquesolutionsof equationg(169) can
be easily obtainedeither by using the Newton methodor
the fixed point iterationsstartingwith the following initial
conditions

L = (A4 — K5C5) (A3 — KoCh)
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M(O) = (A2 — I{lCQ)(AL} - 1{202)_1 ( )

Hence theoptimalKalmanfilter obtainedby applying
the following similarity transformation

0] [0

producesn the new coordinateghe optimal pure-slowand
optimal pure-fast,reduced-orderf{,, Kalmanfilters, that

(171)

is
gs(t) A - KOy Ay — K1Cy
L}(t) [ (A3 — K2C1) (A4—A202)]
& Bl
_as [co )] " [ A]S“
_[0 EafHCf(t) +|:5Kf:|y(t)
‘ (172)

wherethe pure-slowand pure-fastKalmanfilter gainsare

given by
[ K, K, ]
1K K,

=

(173)

17

Using the expressiorfor the similarity transformationde-
fined in (168) we can obtain analytical expressiongor
as,a;, Ky, K; asfollows

a4, = (A — K1C1) — (Ay — K1 Co)L
a; = (Ag — KoCy) + €L(Ay — K1 Cy)
Ki =K, —HK>— ¢HLK,
K; = Ky + eLK,

(174)

The reduced-orderindependentpure-slowand pure-
fast, filtering equationg(172) representhe main result of
thissection.Dueto completendependencef theslowand
fastfilters, the slow andfast signalscanbe now processed
with different samplingrates. In contrast,the original,
full-order, filter (144) requiresthe fast samplingrate for
processingf both the slow and fast signals.

[ll. COMMENTS

In Sectionsl and 2 we have presentedsolutionsby the
Hamiltonianapproachto continuous-timeoptimal control
andfiltering steadystateproblemsof linear singularlyper-
turbedsystems.The discrete-timdinear-quadratidGauss-
ian control problem of singularly perturbedsystemsis

solvedvia the Hamiltonian approachin [45], [75]. The
open-loop discrete-timelinear-quadraticoptimal control
problemis solvedin [76]-[77]. The resultsfor the H,

optimal control and filtering for singularly perturbedsys-
temin discrete-timeby the Hamiltonianapproachare not

obtainedyet. This might be an interestingandchallenging
researchopic. In addition, the finite time feedbacksolu-
tion to the linear quadraticoptimal control by using the
presentednethodologyis an interestingsubjectfor future
research.

The open-loophigh gain (cheapcontrol) problemin
continuous-timeand the problem of completeand exact
decompositiorof the correspondindnigh gain (cheapcon-
trol) algebraicRiccati equationis presentedn [6]. The
small measurementoiseKalmanfiltering problemvia the
Hamiltonian approachis solvedin [78]. In a recentpa-
per [30], the eigenvectomethodis introducedfor simul-
taneouspure-fastand pure-slowblock diagonalizationof
the Hamiltonianmatrix and the solution of Chang’salge-
braic equationsrequiredfor such a decomposition. The
most fundamentalresultsfor the so-calledmultimodeling
control problem[5] have beenrecently obtainedin [79].
The solutionto the cheapcontrol problemof sampleddata
systemshashbeenobtainedin [80]. Severalotherresearch
problemremainopenin the contextof the Hamiltonianap-
proachto singularly perturbedlinear optimal control and
filtering problems.
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