
Linear-Quadratic Optimal Controller

10.3 Optimal Linear Control Systems
In Chapters8 and 9 of this book we have designeddynamic
controllerssuch that the closed-loopsystemsdisplay the desired
transient responseand steady state characteristics. The design
techniquespresentedin thosechaptershavesometimesbeenlimited
to trial anderrormethodswhile searchingfor controllersthatmeet
the best given specifications. Furthermore,we have seen that
in some casesit has been impossibleto satisfy all the desired
specifications,due to contradictoryrequirements,and to find the
correspondingcontroller.

Controllerdesigncanalsobe donethroughrigorousmathemat-
ical optimizationtechniques.Oneof these,which originatedin the
sixties (Kalman, 1960)—calledmodernoptimal control theory in
this book—isa time domaintechnique.During thesixtiesandsev-
enties,the main contributorto modernoptimal control theorywas
MichaelAthans,a professorat theMassachusettsInstituteof Tech-
nology (AthansandFalb, 1966). Another optimal control theory,
known as � , is a trendof the eightiesandnineties. � optimal
control theorystartedwith thework of Zames(1981). It combines
both the time and frequencydomain optimization techniquesto
give a unified answer,which is optimal from both thetime domain
andfrequencydomainpointsof view (Francis,1987). Similarly to� optimalcontroltheory,theso-called � optimalcontroltheory
optimizessystemsin both time and frequencydomains(Doyle et
al., 1989,1992;Saberiet al., 1995)andis thetrendof thenineties.
Since � optimalcontrol theoryis mathematicallyquite involved,
in this sectionwe will presentresultsonly for the modernoptimal
linear control theory due to Kalman. It is worth mentioningthat
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very recentlya newphilosophyhasbeenintroducedfor systemop-
timization basedon linear matrix inequalities(Boyd et al., 1994).

In the contextof the modernoptimal linear control theory,we
presentresultsfor the deterministicoptimal linear regulatorprob-
lem, the optimal Kalman filter, and the optimal stochasticlin-
ear regulator. Only the main results are given without deriva-
tions. This is donefor bothcontinuous-anddiscrete-timedomains
with emphasison the infinite time optimization(steadystate)and
continuous-timeproblems. In someplaces,we also presentthe
correspondingfinite time optimizationresults.In addition,several
examplesareprovidedto showhow to useMATLAB to solvethe
correspondingoptimal linear control theory problems.

10.3.1Optimal Deterministic Regulator Problem

In modernoptimal control theory of linear deterministicdynamic
systems,representedin continuous-timeby

� �
we use linear statefeedback,that is

and optimize the value for the feedbackgain, , suchthat the
following performancecriterion is minimized
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This choice for the performancecriterion is quite logical. It re-
quires minimization of the “square” of input, which means,in
general,minimization of the input energy required to control a
given system,and minimization of the “square” of the statevari-
ables.Sincethe statevariables—inthe casewhena linear system
is obtainedthroughlinearizationof a nonlinearsystem—represent
deviationsfrom the nominalsystemtrajectories,control engineers
areinterestedin minimizing the“square”of this difference,i.e. the
“square” of . In the casewhenthe linear mathematicalmodel
(10.27) representsthe “pure” linear system,the minimization of
(10.29) can be interpretedas the goal of bringing the systemas
close as possibleto the origin ( ) while optimizing the
energy. This regulationto zerocaneasilybemodified(by shifting
the origin) to regulatestatevariablesto any constantvalues.

It is shown in Kalman (1960) that the linear feedbacklaw
(10.28) producesthe global minimum of the performancecrite-
rion (10.29). The solution to this optimizationproblem,obtained
by using one of two mathematicaltechniquesfor dynamic opti-
mization—dynamicprogramming(Bellman,1957)andcalculusof
variations—isgiven in termsof the solutionof the famousRiccati
equation(Bittanti et al., 1991; Lancasterand Rodman,1995). It
canbe shown(Kalman,1960;Kirk, 1970;SageandWhite, 1977)
that therequiredoptimalsolutionfor thefeedbackgain is givenby

����� ���� �
where is the positive semidefinite solution of the matrix
differential Riccati equation

� � ���� �
�
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In the caseof time invariant systemsand for an infinite time
optimization period, i.e. for � , the differential Riccati
equationbecomesan algebraicone�  !  

" �

If the original systemis both controllableandobservable(or only
stabilizableanddetectable)the uniquepositivedefinite (semidefi-
nite) solutionof (10.32)exists,suchthat the closed-loopsystem

!  
" � # $

is asymptoticallystable. In addition, the optimal (minimal) value
of the performancecriterion is given by (Kirk, 1970;Kwakernaak
and Sivan, 1972; Sageand White, 1977)

%'&)( *,+.- �$ $

Example 10.2: Considerthe linear deterministicregulatorfor
the F-8 aircraftwhosematrices and aregiven in Section5.7.
Thematricesin theperformancecriterion togetherwith thesystem
initial conditionare takenfrom TeneketzisandSandell(1977) "

$ �

The linear deterministicregulatorproblem is also known as the
linear-quadraticoptimal control problemsincethe systemis linear
andtheperformancecriterionis quadratic.TheMATLAB function
lqr and the correspondinginstruction

[F,P,ev]=lqr(A,B,R1,R2);

producevaluesfor optimalgain , solutionof thealgebraicRiccati
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equation , and closed-loopeigenvalues. Thesequantitiesare
obtainedas

/

02143 5�16/
Theoptimalvaluefor theperformancecriterioncanbefoundfrom
(10.34),which produces 7�8�9 .

APPENDIX C. Some Results from Linear Algebra

Linear algebraplaysa very importantrole in linear systemcontrol
theory andapplications(Laub, 1985; Skeltonand Iwasaki,1995).
Herewe reviewsomestandardandimportantlinearalgebraresults.

Definite Matrices
Definition C.1: A squarematrix is positivedefinite if all

of its eigenvalueshavepositive real parts, : . It is
positivesemidefiniteif : . In addition,negative
definite matricesaredefinedby : andnegative
semidefinite by : .

Null Space
Definition C.2: The null spaceof a matrix of dimensions

is the spacespannedby vectors that satisfy .
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Systemsof Linear AlgebraicEquations
Theorem C.1 Considera consistent(solvable)systemof linear

algebraic equationsin unknowns

(c.1)

with . Equation(c.1) hasa solutionif andonly
if (consistencycondition)

(c.2)

In addition, if , then (c.1) alwayshas a solution.
For and thesolutionobtainedis unique.

Determinantof a Matrix Product
The following results hold for the determinantof a matrix

product ; < ; <
(c.3)

For the proof of the above statementthe reader is referred to
Stewart(1973). This result canbe generalizedto the productof a
finite numberof matrices.

Determinantof Matrix Inversion
By using the rule for the determinantof a productwe areable

to establishthe following formula

=
;

(c.4)

This can be provedas follows
=
;

=
;

=
;
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Inversionof a Matrix Product
Considertheproblemof finding thematrix inversionto > ? .

The inversionis a matrix whoseproductwith > ? producesan
identity matrix, that is

> ? (c.5)

It can be checkedthat the inverseof the form @ >? @ >> satisfies
(c.5). This inversionof a productformulacanbeeasilygeneralized
to the productof a finite numberof matrices.

SpectralTheorem
Theorem C.2 If is a symmetricmatrix, thenits eigenvalues

are real and is diagonalizable,i.e. there existsa similarity
transformation such that @ > is diagonal. Furthermore,
the transformationis unitary, i.e. @ > A .

Proof of this theoremcan be found in many standardbooks
on linear algebraand matrices(see for exampleLancasterand
Tismenetsky,1985).

Integral of a Matrix Exponent
The following matrix integral formula is useful in someappli-

cations A

B
CED C A @ >

(c.6)

provided that the matrix is nonsingular. In addition, if all
eigenvaluesof matrix areasymptoticallystable,then

F

B
CED @ >
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Vector Derivatives
Thefollowing formulasfor vectorderivativesareusedin Chap-

ter 10.

G G G

G G

8


