Linear-Quadratic Optimal Controller

10.3 Optimal Linear Control Systems

In Chapters8 and 9 of this book we have designeddynamic
controllerssuch that the closed-loopsystemsdisplay the desired
transientresponseand steady state characteristics. The design
techniquepresentedn thosechapterdravesometimedeenlimited
to trial anderror methodswhile searchingor controllersthat meet
the best given specifications. Furthermore,we have seenthat
In some casesit has beenimpossibleto satisfy all the desired
specfications, due to contradictoryrequirementsand to find the
correspondingcontroller.

Controllerdesigncanalsobe donethroughrigorousmathemat-
ical optimizationtechniques.Oneof these which originatedin the
sixties (Kalman, 1960)—calledmodernoptimal control theory in
this book—isatime domaintechnique.During the sixtiesandsev-
enties,the main contributorto modernoptimal control theorywas
Michael Athans,a professomat the Massachusettimstitute of Tech-
nology (Athansand Falb, 1966). Another optimal control theory,
known as H., is atrendof the eightiesandnineties. H,, optimal
control theory startedwith the work of Zames(1981). It combines
both the time and frequencydomain optimization techniquesto
give a unified answerwhich is optimal from boththe time domain
andfrequencydomainpointsof view (Francis,1987). Similarly to
H.. optimalcontroltheory,theso-calledH> optimalcontroltheory
optimizessystemsin both time and frequencydomains(Doyle et
al., 1989,1992; Saberietal., 1995)andis the trendof the nineties.
Since H,, optimalcontroltheoryis mathematicallyquite involved,
in this sectionwe will presentresultsonly for the modernoptimal
linear control theory due to Kalman. It is worth mentioningthat
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very recentlya new philosophyhasbeenintroducedfor systemop-
timization basedon linear matrix inequalities(Boyd et al., 1994).

In the contextof the modernoptimal linear control theory, we
presentresultsfor the deterministicoptimal linear regulatorprob-
lem, the optimal Kalman filter, and the optimal stochasticlin-
ear regulator. Only the main results are given without deriva-
tions. This is donefor both continuous-anddiscrete-timedomains
with emphasison the infinite time optimization (steadystate)and
continuous-timeproblems. In some places,we also presentthe
correspondindinite time optimizationresults. In addition,several
examplesare providedto showhow to use MATLAB to solvethe
correspondingoptimal linear control theory problems.

10.3.1Optimal Deterministic Regulator Problem

In modernoptimal control theory of linear deterministicdynamic
systemsrepresentedn continuous-timeby

x(t) = A(t)x(t) + B(t)u(t), x(to) = x,
we use linear statefeedback,that is
u(t) = —F(t)x(t)

and optimize the value for the feedbackgain, F(¢), suchthat the
following performancecriterion is minimized

J = min % / 5 (Rx(t) + u () Rou(r)] di

to
R >0, Ry >0



This choice for the performancecriterion is quite logical. It re-
quires minimization of the “square” of input, which means,in
general, minimization of the input enegy requiredto control a
given system,and minimization of the “square” of the statevari-
ables. Sincethe statevariables—inthe casewhena linear system
Is obtainedthroughlinearizationof a nonlinearsystem—represent
deviationsfrom the nominal systemtrajectoriescontrol engineers
areinterestedn minimizing the “square”of this differencej.e. the
“squaré of x(t). In the casewhenthe linear mathematicamodel
(10.27) representghe “pure” linear system,the minimization of
(10.29) can be interpretedas the goal of bringing the systemas
close as possibleto the origin (x(t) = 0) while optimizing the
enegy. This regulationto zerocaneasilybe modified (by shifting
the origin) to regulatestatevariablesto any constantvalues.

It is shown in Kalman (1960) that the linear feedbacklaw
(10.28) producesthe global minimum of the performancecrite-
rion (10.29). The solution to this optimization problem, obtained
by using one of two mathematicakechniquesfor dynamic opti-
mization—dynamigrogramming(Bellman, 1957)and calculusof
variations—isgivenin termsof the solutionof the famousRiccati
equation(Bittanti et al., 1991; Lancasterand Rodman,1995). It
canbe shown(Kalman, 1960; Kirk, 1970; Sageand White, 1977)
thatthe requiredoptimal solutionfor the feedbackgainis given by

Fop(t) = —R;'BY (1)P(t)
where P(t) is the positive semiddinite solution of the matrix
differential Riccati equation
—P(t) = AT(t)P(t)+P(H)A(t) + R —P(t)B(t)R, ‘BT (t)P(t)
P (tf) =0



In the caseof time invariant systemsand for an infinite time
optimization period, i.e. for t; — oo, the differential Riccat
equationbecomesan algebraicone

0=A"P + PA + R, - PBR,'B’P

If the original systemis both controllableand observablgor only
stabilizableand detectableYhe unique positive definite (semidefi-
nite) solutionof (10.32) exists,suchthat the closed-loopsystem

x(t) = (A —BR;'B'P)x(t), x(t) =x,

Is asymptoticallystable. In addition, the optimal (minimal) value
of the performancecriterionis given by (Kirk, 1970; Kwakernaak
and Sivan, 1972; Sageand White, 1977)

1
Jopt = Jmin = §X0TPX0

Example 10.2: Considerthe linear deterministicregulatorfor
the F-8 aircraftwhosematricesA andB aregivenin Section5.7.
The matricesin the performanceeriterion togetherwith the system
initial conditionaretakenfrom Teneketzisand Sandell(1977)

R = diag{0.01 0 3260 3260}, Ry = 3260

X, =[100 0 0.2 0]

The linear deterministicregulator problemis also known as the
linear-quadraticptimal control problemsincethe systemis linear
andthe performanceeriterionis quadratic. The MATLAB function
| gr andthe correspondingnstruction

[F, P,ev]=lqgr(A B, Rl R2);
producevaluesfor optimalgainF, solutionof the algebraicRiccati
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equationP, and closed-loopeigenvalues. These quantitiesare
obtainedas

F =[-0.004 0.5557 —0.2521 0.0590]

[ 0.0000 —0.0016 —0.0003 —0.0003]
—0.0016  1.6934  0.1499  0.2199
—0.0003 0.1499  0.8211 —0.0713
|—0.0003  0.2199  —0.0713  0.1361

ALo = —0.9631 4 j3.0061, A3z4 = —0.0373 % 50.0837

Theoptimal valuefor the performancecriterion canbe foundfrom
(10.34), which produces/,,; = 743.9707.

P =10"

APPENDIX C. Some Results from Linear Algebra

Linear algebraplaysa very importantrole in linear systemcontrol
theory and applications(Laub, 1985; Skeltonand Iwasaki, 1995).
Herewe reviewsomestandardandimportantlinearalgebraresults.

Definite Matrices

Definition C.1: A squarematrix M is positivedefiniteif all
of its eigenvalueshavepositive real parts, Re{\;(M)} > 0. It is
positivesemidefinitdf Re{\;(M)} > 0, Vi. In addition, negative
definite matricesaredefinedby Re{\;(M)} < 0, Vi andnegative
semidéinite by Re{\;(M)} < 0, Vi.

Null Space

Definition C.2: The null spaceof a matrix M of dimensions
m x n IS the spacespannedy vectorsv that satisfy Av = 0.
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System®f Linear Algebraic Equations

Theorem C.1 Considera consisten{solvable)systenof linear
algebraic equationsin n unknowns

Mx =b (c.1)

with dim{M} = m x n. Equation(c.1) hasa solutionif and only
if (consistencycondition)

rank{[M b]} = rank{M} (c.2)

In addition, if rank{M} = m, then(c.1) alwayshasa solution.
For n = m andrank{M} = m the solutionobtainedis unique.

Determinantof a Matrix Product

The following results hold for the determinantof a matrix
product
det{MlMg} = det{Ml}det{Mg} (c.3)

For the proof of the above statementthe readeris referredto
Stewart(1973). This resultcanbe generalizedo the productof a
finite numberof matrices.

Determinantof Matrix Inversion

By usingthe rule for the determinanif a productwe areable
to establishthe following formula
1

et {M™} = g

(c.4)

This can be proved as follows
det{MM '} = det{I} = 1 = det{M}det{M '}

= det{M_l} = det{ll\/I}




Inversionof a Matrix Product

Considerthe problemof finding the matrix inversionto M M.
Theinversionis a matrix whoseproductwith M ;M producesan
identity matrix, that is

M Mj[Inverse] =1 (c.5)

It can be checkedthat the inverseof the form M; ‘M ! satidies
(c.5). Thisinversionof a productformulacanbe easilygeneralized
to the productof a finite numberof matrices.

SpectralTheoem

Theorem C.2 If M is a symmetricmatrix, thenits eigenvalues
are real and M is diagonalizable,i.e. there existsa similarity
transformationP suchthat P~'MP is diagonal. Furthermoe,
the transformationis unitary, i.e. P~! = P”,

Proof of this theoremcan be found in many standardbooks
on linear algebraand matrices (see for example Lancasterand
Tismenetsky,1985).

Integral of a Matrix Exponent

The following matrix integral formulais usefulin someappli-

cations
T

/eMtdt = (eMT — I> M~ (c.6)

0
provided that the matrix M is nonsingular. In addition, if all
eigenvalueof matrix M are asymptoticallystable,then

0. @}
/eMtdt =-M"!
0



Vector Derivatives

Thefollowing formulasfor vectorderivativesareusedin Chap-
ter 10.

%(MY) =M
%(YTMT> — M7

% (yTMy> =My +M'y



