8.6 Linearization of Nonlinear Systems

In this sectionwe show how to perform linearization of systemsdescribedby
nonlineardifferential equations. The procedureintroducedis basedon the Taylor
seriesexpansionand on knowledgeof nominal systemtrajectoriesand nominal
systeminputs.

We will startwith a simple scalarfirst-ordernonlineardynamicsystem
i(t) = F(a(t), £(t)), z(to) given
Assumethat under usual working circumstanceghis systemoperatesalong the

trajectoryxy, (t) while it is driven by the systeminput f,,(t). We call z,,(t) and

fn(t), respectivelythe nominal system trajectory andthe nominal system inpuit.
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On the nominaltrajectorythe following differentialequationis satisfied
Zn(t) = F(2n(t), un(t))
Assumethat the motion of the nonlinearsystemis in the neighborhoodof the
nominal systemtrajectory, that is
x(t) = zn(t) + Ax(t)
where Ax(t) represents small quantity. It is naturalto assumethat the system

motion in close proximity to the nominaltrajectorywill be sustainedby a system

input which is obtainedby addinga small quantityto the nominal systeminput

f(t) = fa(t) + AF(2)
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For the systemmotion in closeproximity to the nominaltrajectory,we have

Tn(t) + Az(t) = F(axn(t) + Az(t), fu(t) + Af(1))

SinceAz(t) and A f(t) aresmall quantities the right-handside canbe expanded

into a Taylor seriesaboutthe nominal systemtrajectoryandinput which produces
CBn(t) + Aw(t) = -,F(wna fn) + —(wna fn)Aw(t) ‘|‘ (wna fn)Au(t)
+ higher—order terms

Canceling higher-order terms (which contain very small quantities

Ax?, Af2, AxzAf, Ax3,..), the linear differential equationis obtained

Az(t) = oF (ar;n, fn)Az(t) —|— (ar;n, frn)AF(L)
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Thepartial derivativesin thelinearization procedure are evaluated at the nominal

points. Introducingthe notation

OF dF
aO(t) - _E(wnafn)a bO - a—f(wnafn)

the linearized systemcan be representeds

Ad(t) + ao(t)Az(t) = bo(t)Af(t)

In general,the obtainedlinear systemis time varying. Sincein this coursewe
studyonly time invariantsystemswe will consideronly thoseexampledor which
the linearizationprocedureproducegime invariantsystems.It remainsto find the

initial conditionfor the linearizedsystem,which can be obtainedfrom

Aw(to) = w(to) — wn(to)
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Similarly, we canlinearizethe second-ordenonlineardynamicsystem
% = :F(wac f, f), z(to), #(to) given
by assumingthat
z(t) = zn(t) + Az(t), 2(t) = (1) + Az()
F() = fa(t) + AF(E), F(t) = fa(t) + AF(2)
and expanding

i+ AF = f (20 + Az, i+ Ad, fo + Af, fo + Af)

into a Taylor seriesaboutnominal points x,,, £, fn, f, which leadsto

AZ(t) + a1 Ad(t) + apAx(t) = biAF(t) + boAf(t)
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wherethe correspondingoeficients are evaluatedat the nominal points as

a; = —Z—.:(wn,wn,fn,fn> ag = —Z—::(wn,wn,fn,fn>
by = Zj;(wn,wn,fn,fn> by = Zj;(wn,wn,fn,fn>

The initial conditionsfor the second-ordelinearizedsystemare obtainedfrom

Aw(t()) = w(to) — wn(to), Aw(to) = C'B(to) — C'Bn(t(])

Example 8.15: The mathematicamodel of a stick-balancingoroblemis

6(t) = sin6(¢) — £(¢) cos B(t) = F(8(1), £(t))

wheref(t) is thehorizontalforce of afingerand@(t) representshestick’s angular

displacemenfrom the vertical.
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This second-ordedynamicsystemis linearizedat the nominal points

0,.(t) = 0,(t) = 0, fn(t) = 0, producing

oF (8.7-'
= 0, ag = —

—_ — —— == — — 9 ] 9 n = f— _].
ay Y 59 ) ] (cos @ + fsin )|3n53=g
oOF oOF
b = — =0, by = (—) = —(cos 9)| = —1
Bf 3f In On (£)=0

The linearizedequationis given by

6(t) — 6(1) = —F(t)

Note that AG(t) = 6(t), Af(t) = f(t) sinceb,(t) = 0, fn(t) = 0. Itis
importantto point out that the samelinearizedmodelcould havebeenobtainedby

settingsin 6(t) = 6(t), cos8(t) = 1, which is valid for small valuesof 6(t).
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We can extendthe presentedinearization procedureto an n-order nonlinear
dynamicsystemwith oneinput andoneoutputin a straightforwardwvay. However,
for multi-input multi-output systemsthis procedurebecomescumbersome.Using
the statespacemodel, the linearizationprocedurefor the multi-input multi-output
caseis simplified.

Considernow the generalnonlineardynamiccontrol systemin matrix form

%X(t) = F(x(¢),f(t)), x(to) given

wherex(t), f(t), and F are, respectively the n-dimensionalsystemstatespace
vector, the r-dimensionalinput vector, and the n-dimensionalvector function.
Assumethat the nominal (operating)systemtrajectory x,,(t) is known and that

the nominal systeminput that keepsthe systemon the nominal trajectoryis given

by fn(t).
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Using the samelogic as for the scalarcase,we can assumethat the actual
systemdynamicsin the immediateproximity of the systemnominaltrajectoriescan

be approximatedy the first termsof the Taylor series.Thatis, startingwith

x(t) = xu(t) + Ax(t), £(t) = fa(t) + AL(2)

and

d
aXn(t) = .'F(Xn(t)a fn(t))

we expandthe right-handside into the Taylor seriesas follows

d d
Exn + EAX = F(xn + AXx, f, + Af)

Jx of / xn(t)

fn(t)

oF oOF )
= F(Xn,fn) + | — ()AX + | — A f + higher—order terms
I |

n
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Higher-ordertermscontainat leastquadraticquantitiesof Ax and Af. Since Ax

and Af are small their squaresare evensmaller,and hencethe high-orderterms

canbe neglected.Neglectinghigher-orderterms,an approximationis obtained

Xn (t)
fn(t)

X xn (t)

fn (1)

%Ax(t) = (Z—f)l Ax(t) + (%—f)l Af(t)

The partial derivativesrepresenthe Jacobianmatricesgiven by

- OF, OF; OF71 7
—awl —8:1:2 e o e o —awn
9F2 OF>
BT _ An><n _ Oz aF, Ox,
BX |xn(t) o o o o o o Bwj o o o o o o
fn(t) .o .o cee e .o
OF, OF, OF,
| Oz Oxs M *te oz, |Xn(t)

fn(t)
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- OF OF1 OF1 T

afl a‘fz o o o o o o a‘fT

AFo AFo>

OF _ gnxr _ | 08 o of
af |Xn(t) e o o e o o 8_-f]‘

fn(t) o o o o o o o o o o o o

oOF, OF, oOF,

LAf1  Of af, 1 x»®

fn (t)

Note that the Jacobianmatriceshave to be evaluatedat the nominal points, that

is, at x,(t) andf,(t). With this notation,the linearizedsystemhasthe form

—AX(t) = AAx(t) + BAu(t),  Ax(to) = x(to) — xn(to)

The outputof a nonlinearsystemsatisfiesa nonlinearalgebraicequation thatis

y(t) = G(x(1),£(?))
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This equationcan also be linearized by expandingits right-handside into a

Taylor seriesaboutnominal points x,,(t) andf,,(¢). This leadsto

0g 0g
yn+ Ay =9g(x )+ (Bx) xn (t) Xt (Bf)|xn(t)

+ higher—order terms

Note that y,, cancelsterm G(x,,f,). By neglecting higher-orderterms, the

linearizedpart of the output equationis given by

Ay(t) = CAx(t) + DAf(t)

wherethe JacobianmatricesC and D satisfy
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Example 8.16: Let a nonlinearsystembe representedy

dar:l(t) . .
e x1(t) sinxa(t) + x2(t) f(t)
o = acl(t)e (£) + f (t)

y(t) = 2z1(t)aa(t) + 25(2)
Assumethatthe valuesfor the systemnominaltrajectoriesandinput areknownand

given by x1,, x2,, and f,. The linearizedstatespaceequationof this nonlinear

systemis obtainedas

Azqi(t)| _ [sin@an @1ncoswa, + fr | [Azy(2) Tom
Kang| = [m el A0 + 5 |are

Ay(t) = [2@2n  2@1n + 2220 ] [22%3]

Having obtainedthe solutionof this linearizedsystemunderthe given systeminput

A f(t), the correspondingpproximationof the nonlinearsystemtrajectoriesis
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xn(t) + Ax(t) = [wln(t)] + [Awl(t)]

wzn(t) sz(t)

Example 8.17: Considerthe mathematicaimodel of a single-link robotic ma-

nipulator with a flexible joint given by

I61(t) + mglsin0;(t) + k(01(t) — 82(t)) = 0
JOs(t) — k(61(t) — 62(t)) = F(2)

whereé (t), 82(t) areangularpositions,I, J aremomentsof inertia, m andl are,
respectively link massandlength,and k is the link spring constant. Introducing

the changeof variablesas
z1(t) = 61(t), @2(t) = 61(t), z3(t) = O2(t), wa(t) = 62(t)
the manipulator’'sstatespacenonlinearmodel is given by
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C'Bl(t) = wz(t)

i) = — 9 Ginwy(t) — ;(wl(t) — 23(t))
23(t) = z4(t)

: k 1

B4(t) = —(21(t) — ws(t)) + S5 (1

Takethe nominal pointsas (1n, £2n, 3n, £4n, fn), thenthe matricesA andB

are _ - _ -
. Ol 1 0 0 0
__ktmglcosz,, k
A — . 0 7 0| p_|0
0 0 0 1 0
k k 1
! 7 0 =5 0 |7

Assumingthat the output variableis equalto the link's angularposition, that is

y(t) = x1(t), the matricesC and D are given by

C=[1 0 0 0], D=o
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