Frequency Domain Controller Design

9.2 Frequency Response Characteristics

Thefrequencytransferfunctionsaredefinedfor sinusoidainputshavingall possible
frequenciesv € [0, +o00). They areobtainedfrom (9.1) by simply settings = jw,
that is
Gw)
1 +G(jw)H (jw)
Typical diagramdor the magnitudeandphaseof theopen-loopgrequencytransfer
function are presentedn Figure 9.1.

— M(jw) (9.1)

Open—loop: G(jw)H (jw),  Closed—loop:

|G(wH(o)|
A

av

oM

-180

Figure 9.1: Magnitude (a) and phase (b) of the open-loop transfer function
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System Bandwidth: Thisrepresentthefrequencyrangein whichthe magnitude
of the closed-loopfrequencytransferfunction dropsno morethan 3 dB (decibels)
from its zero-frequencyalue. The systembandwidthcan be obtainedfrom the
next equality, which indicatesthe attenuationof 3dB, as

M (jwpw)| = %w(on = wpw 9.2)

Peak Resonance: This is obtainedby finding the maximum of the function
|M(jw)| with respectto frequencyw. It is interestingto point out that the
systemshaving large maximum overshoothave also large peak resonance.This
Is analytically justified for a second-ordesystemin Problem9.1.

Resonant Frequency: Thisis thefrequencyatwhichthe peakresonanceccurs.

It can be obtainedfrom

d
%|M(jw)|20 = Wy

v
€

0 10)r Wy
<« Bandwidth ——»|

Figure 9.2: Magnitude of the closed-loop transfer function
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9.3 Bode Diagrams

Bodediagramsrepresentthe frequencyplots of the magnitudeand phaseof the
open-loopfrequencytransfer function G(jw)H (jw). The magnitudeis plottedin
dB (decibels)on the log w scale. We first study independentijthe magnitudeand
frequencyplots of eachof theseelementaryfrequencytransferfunctions. Sincethe
open-loopfrequencytransferfunction G(jw)H (jw) is givenin termsof products
and ratios of elementarytransfer functions, it is easyto see that the phaseof
G(jw)H(jw) is obtainedby summingand subtracting phasesof the elementary
transfer functions Also, by expressingthe magnitudeof the open-looptransfer
function in decibels, the magnitude|G(jw)H (jw)|,p IS obtainedby adding the
magnitudef the elementaryfrequencytransferfunctions. For example

K(jw+ z1)(Jw + 22)
(jw)(Jw + p2)(Jw + p3)

|G(jw)H (jw)|,p = 201ogy

= 20logg | K| + 20logq |jw + 21| + 201logyq |jw + 22|

+ 20 logm + 20 loglo

Jw + p3

Jw + p2

1
‘ + 20 logm

jw

and

arg {Gjw)H(jw)} = arg {K} + arg {juw + 21} + arg {jw + 2}
— arg {jw} — arg {jw + po} — arg {jw + ps}
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Constant Term: Since

. ) positive number K >1
Kap = 20logig K = {negative number K <1
(9.3)
0°, K >0

arg K = { ~180°, K <0

the magnitudeand phaseof this elementare easily drawn and are presentedn
Figure 9.3.

A Klas VA S

K>1

0 0 arg{K>0}

»

> logw » logw

K<1
arg{K<0
180 g{K<0}

Figure 9.3: Magnitude and phase diagrams for a constant

Pure Integrator: The transferfunction of a pure integrator,given by
, 1
Gjw) = — (9.4)

Jw

has the following magnitudeand phase

1
|G(jw)|;p = 20logy — = —20logyw, argG(jw) = —90° (9.5)
w
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It can be observedthat the phasefor a pure integratoris constant,whereasthe
magnitudes representedby a straightline intersectingthe frequencyaxisatw =1
and havingthe slopeof —20 dB/decade. Both diagramsarerepresentedn Figure

9.4. Thus,a pure integratorintroducesa phaseshift of —90° anda gain attenuation
of —20dB/decade.

00

01 i 0 > logw

-90°

Figure 9.4: Magnitude and phase diagrams for a pure integrator

Pure Differentiator: The transferfunction of a pure differentiatoris given by

G(jw) = jw (9.6)

Its magnitudeand phaseare easily obtainedas

|G(jw)|;p = 201logyw, arg G(jw) = 90° (9.7)
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The correspondingfrequency diagramsare presentedin Figure 9.5. It can be
concludedthat a pure differentiator introducesa positive phaseshift of 90° and
an amplification of 20 dB/decade.

Real Pole: The transferfunction of a real pole, given by
p B 1
pt+jw 1474

G(jw) = (9.8)

has the following magnitudeand phase

VALC)

90°

° : : » logw
0 0.1 1 10

Figure 9.5: Magnitude and phase diagrams for a pure differentiator

1/2

1+(%)2]  argG(jw) = —tan (%) (9.9)

|G(jw)|gp = —20logy
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The phasediagramfor a real pole can be plotted directly from (9.10). It can
be seenthat for large valuesof w, w > p, the phasecontributionis —90°. For w
small, v < p, the phaseis closeto zero,andfor w = p the phasecontributionis
—45°. This informationis sufficient to sketcharg G(jw) asgivenin Figure9.6.

For the magnitude,we see from (9.10) that for small w the magnitudeis
very closeto zero. For large valuesof w we can neglectl comparedio w/p
so that we have a similar result as for a pure integrator, i.e. we obtain an
attenuationof 20 dB/decade. For small and large frequencieswve have straight-
line approximations.Thesestraightlines intersectat w = p, which is also known
as a corner frequency The actual magnitudecurve is below the straightline

approximations. It hasthe biggestdeviation from the asymptotesat the corner
frequency(seeFigure 9.6).

i
1+jwlp dB

L.l 1

10
- 1 » log(w/p)

1
I 1+jwip

» log(w/p)

-45°

-90°

Figure 9.6: Magnitude and phase diagrams for a real pole
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Real Zero: The transferfunction of an elementrepresentinga real zerois

Gjw) = é(z +iw) =1+4() (9.10)

Its magnitudeand phaseare

1/2
,  argG(jw) = tan™! (f) (9.11)

z

Gl3)lap = 20logay |1+ (2)”

For smallfrequenciesan asymptotefor the magnitudes equalto zeroandfor large
frequencieshe magnitudeasymptotéhasa slopeof 20 dB /decade andintersectghe
realaxisat w = z (the cornerfrequency).The phasediagramfor small frequencies
alsohasanasymptoteequalto zeroandfor large frequenciesan asymptoteof 90°,

|14 @z
20

0

» log(w/z)

01 1

90° 1

45° 4

» log(w/2)

Figure 9.7: Magnitude and phase diagrams for a real zero
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Complex Conjugate Poles. The transferfunction is given by

w% 1

o _ 9.12
(j ) (jw)2 + QCWn(jw) + w% (1 — %) ‘|‘j2C5—n ( )

The magnitudeand phaseof this second-ordesystemare given by

1/2
, 2Cw 2 w2\’
|G(jw)|sp = —201ogy [( o ) + (1 - w—%) ]

arg G(jw) = —tan™! ( 20wne )

w%—wQ

(9.13)

For large valuesof w the correspondingapproximationsof (9.14) are

2
. w w
|G(jw)|gp = —201og)g (E) = —401log (w—)

n n

arg {G(jw)} ~ — tan™" (QCwn) — —tan”! (07) = —180°

At low frequencieghe approximationsanbe obtaineddirectly from (9.13),thatis
Gjw)~ — =1 = |G(jw)|;p =0, arg{G(jw)}=0°
The asymptotesfor small and large frequenciesare, respectively, zero and

—40dB/decade (with the cornerfrequencyat w = w,) for the magnitude,and
zeroand —180° for the phase. At the cornerfrequencyw,, the phaseis equalto



390 FREQUENCY DOMAIN CONTROLLER DESIGN

—90°. Notethattheactualplotin theneighborhoodf thecornerfrequencydepends
on the valuesof the dampingratio (. Severalcurvesare shownfor 0.1 < { < 1.
It canbe seenfrom Figure 9.8 that the smaller(, the higher peak.

|G(j(‘°)|dB A =01
s\

// ,z\:p.s
RN 10
0 —10.1 e | At ; » log(w/wy)

20 ¢ N

» log(a/oy)

Figure 9.8. Magnitude and phase diagrams for complex conjugate poles
Complex Conjugate Zeros. The complexconjugatezerois given by

. 2 2
G(jw) =14 2¢j (wi) + (iﬁ) —1- (wi) +j2c(wi) (9.14)

so that the corresponding8dode diagramswill be the mirror imagesof the Bode
diagramsobtainedfor the complexconjugatepolesrepresentethy (9.13). Here,the
asymptotegor smallfrequenciesareequalto zerofor boththe magnitudeandphase
plots; for high frequencieghe magnitudeasymptotehasa slopeof 40 dB/decade
andstartsat the cornerfrequencyof w = w,,, andthe phaseplot asymptotdas 180°.
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9.3.1 Phase and Gain Stability Margins from Bode Diagrams

Bearingin mind the d€finition of the phaseandgainstability maginsgivenin (4.54)
and (4.55), andthe correspondingphaseand gain crossovefrfrequenciesdefinedin
(4.56)and(4.57),it is easyto concludethatthesemaigins canbe found from Bode
diagramsas indicatedin Figure 9.9.

G(WHW)| 45
A

20logKp
Y
v Weg

(a) - v

argG(jw)H(jw)

A

00
-90°|

-180°

Figure 9.9: Gain and phase margins and Bode diagrams
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Example 9.1. Considertheopen-loodgrequencytransferfunction
(Jw+1)

jwoljw +2)[(jw) + 2(jw) + 2]

Gw)H (jw) =

Using MATLAB
num=[1 1];d1=[1 0];d2=[1 2];d3=[1 2 2]
denl=conv(dl,d2); den=conv(den1,d3);
bode(num,den);[Gm,Pm,wcp,wcg]=margin(num,den);

The phaseand gain stability mamgins and the crossovelfrequenciesare
G'm = 8.9443dB, Pm = 82.2462°, w., = 1.7989rad/s, w, = 0.2558 rad/s

<
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Shijme
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1
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Figure 9.10: Bode diagrams for Example 9.1
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9.3.2 Steady State Errors and Bode Diagrams

Steadystateerrors can be indirectly determinedfrom Bode diagramsby reading
the valuesfor constantsk,, K, K, from them. Knowing theseconstants,the
correspondingerrorsare easily found by usingformulas(6.30), (6.32),and (6.34).
The steady state errors and correspondingconstantsk,, K,,, K, are first of all
determinedby the systemtype, which representshe multiplicity of the pole at the
origin of the open-loopfeedbackiransferfunction, in general,representedy

K(jw+ 21)(jw + 22) -+
(jw) (Jw + p1)(Jw + p2) -

G (jw)H (jw) = (9.15)

This can be rewritten as

Kzizo--- (1_|_j_w>

G(jw)H (jw) = ' -
pip2- - (Jw) (1 + &2

(9.16)

where

Kp=—"—2__ (9.17)

Is known as Bode’sgain, andr is the type of feedbackcontrol system.
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For control systemsof type r = 0, the position constantaccordingto formula
(6.31) is obtainedfrom (9.17) as
Kp(1+2)(1+2) ...
Ky = — - : : ’ = Kp (9.18)
It follows from (9.17)—(9.19)that the correspondingnagnitudeBode diagram of

type zerocontrol systemdor smallvaluesof w is flat (hasa slopeof 0 dB) andthe
valueof 20log Kp = 20log K,,. Thisis graphicallyrepresentednh Figure9.12.

20logK, \
y » logw

N\
N\
\

IGGWH( 45 A

Figure 9.12: Magnitude Bode diagram of type zero control systems at small frequencies

For control systemsof type » = 1, the open-loopfrequencytransferfunctionis
approximatedat low frequenciesby

KB(1+£—°5>(1+];—°§>"' ~ BB (9.19)
(jw)1(1+%>(1+%>"'

(jw)'

It follows that the correspondingmagnitudeBode diagram of type one control
systemdor small valuesof w hasa slopeof —20 dB/decade andthe valuesof
Kp

Jw

= 20log |Kp| — 20log |w| (9.20)
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From (9.20)and(6.33)it is easyto concludethat for type one control systemshe

velocity constantis K, = Kp. Usingthis fact andthe frequencyplot of (9.21),we

concludethat K, is equalto the frequencyw* at which the line (9.21) intersects
the frequencyaxis, that is

0=20log |Kp| —20log|w*| = Kp=w"=K, (9.21)

This is graphicallyrepresentedn Figure 9.13.

IGGH() g GGGy
A A

-20dB/dec
o =K, -20dB/dec
w=1 | . 20logKy
‘ » log w ~
2010g Ky |- ‘é\/m* =K
o= 1\ Y 3 logw
1 K,>1 \

@ (b)

Figure 9.13: Magnitude Bode diagram of type one control systems at small frequencies

Notethatif K, = w* > 1, the correspondindgrequencyw* is obtainedat the point
wherethe extendednitial curve,which hasa slopeof —20 dB/decade, intersects
the frequencyaxis (seeFigure 9.13b).

Similarly, for type two control systemsy = 2, we haveat low frequencies

KB(l-I-i—f)(l"'%) . Ks (9.22)

(jw)2(1 + ;-‘j) (1 + ;—j> e (jw)
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which indicatesan initial slopeof —40 dB/decade anda frequencyapproximation
of

201log

= 20log | K| — 20log |w”| = 20log | Kp| — 40logw  (9.23)

From (9.23)and (6.35)it is easyto concludethat for type two control systemshe
accelerationconstantis K, = Kp. From the frequencyplot of the straightline
(9.24), it follows that K5 = (w**)?, wherew** representshe intersectionof the
initial magnitudeBode plot with the frequencyaxis asrepresented Figure9.14.

y [C0ONEOlgg R
-40dB/dec o m odBdes
u_)_l » logw X /
20|09Ka - [T . .- / QFl ; Iogw
20logKy, [ \ aRy
() ®)

Figure 9.14: Magnitude Bode diagram of type two control systems at small frequencies

It can be seenfrom Figures9.12—-9.14that by increasingthe valuesfor the
magnitudeBodediagramsat low frequenciegi.e. by increasingKk ), the constants
K,, K,, and K, areincreased.Accordingto the formulasfor steadystateerrors,
given in (6.30), (6.32), and (6.34) as

1 1 2

€ss = ) €ss = ) €55 arabolic —
step 1 _|_Kp ramp KU parabolic KCL
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we concludethatin this casethe steadystateerrorsaredecreasedThus,the bigger
Kp, the smallerthe steadystateerrors.

Example 9.3: ConsiderBode diagramsobtainedin Examples9.1and9.2. The
Bodediagramin Figure9.10hasaninitial slopeof —20 dB/decade whichintersects
the frequencyaxis atroughly w* = 0.2rad/s. Thus,we havefor the Bodediagram
in Figure 9.10

K,=o00, K,~02 K,=0

Using the exactformula for K,, given by (6.33), we get

1
K,=1lm<«<s (s + ) = 0.25
s—0 | s(s+2)(s% + 25+ 2)

In Figure9.11 the initial slopeis 0dB, andhencewe havefrom this diagram

20log K, ~15 = K,~562, K,=0, K,=0

Using the exactformula for K, asgiven by (6.31) produces

. 10(s + 4) B
Ky = lli%{(s T2t 3)} =007

Note that the accurateresultsaboutsteadystateerror constantsare obtainedeasily
by using the correspondingormulas; hencethe Bode diagramsare usedonly for
quick and rough estimatesof theseconstants.
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9.4 Compensator Design Using Bode Diagrams

Contwoller designtechniquesn the frequencydomainwill be governedby the
following facts:

(a) Steadystateerrors are improvedby increasingBode’sgain K.
(b) Systenstability is improvedby increasingphaseand gain margins.
(c) Overshootis reducedby increasingthe phasestability margin.

(d) Risetimeis reducedby increasingthe system’sboandwidth.

The first two items, (a) and (b), havebeenalreadyclarified. In orderto justify
item (c), we considerthe open-looptransferfunction of a second-ordesystem

w?

(o) (o + 2Can) (9-24)

whosegain crossovelfrequencycan be easily found from

w2

G(Jweg VH (Fwey)| = n =1 9.25
o o) = S (©.25

Gw)H(jw) =

leading to

Weg = wn\/\/l +4¢2 — 2(2 (9.26)

The phaseof (9.25) at the gain crossoverfrequencyis

) : o 1 Ywe
arg {G(jweg) H(jweg) = —90° — tan™ QC:J] (9.27)

so that the correspondingphasemamin becomes

1 2¢
JVITAZ -2

= Pm(() (9.28)

Pm = tan™
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Plotting the function Pm/((), it canbe shownthatit is a monotonicallyincreasing
function with respectto (; we thereforeconcludethat the higher phasemarin, the
larger the dampingratio, which impliesthe smallerthe overshoat

Item (d) cannotbe analytically justified since we do not have an analytical
expressionfor the responserise time. However, it is very well known from
undegraduatecourseson linear systemsand signalsthat rapidly changingsignals
have a wide bandwidth. Thus, systemghat are able to accommodatéast signals
musthave a wide bandwidth

9.4.1 Phase-Lag Controller
The transferfunction of a phase-lagcontrolleris given by

- 1+52
Glag(Jw) = (E) S = s 21> Pl (9.29)

. - . 9
2)prt+jw 1+
, 1Geillyg
p, z log w
0 ! y >
20log(p1 / z1)
4 4G}
Wmax log w
0 v ]
Pmax

Figure 9.15: Magnitude approximation and exact phase of a phase-lag controller
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Due to attenuatiorof the phase-lagcontrollerat high frequenciesthe frequency
bandwidthof the compensategdystem(controllerand systemin series)is reduced.
Thus,the phase-lagcontmllers are usedin order to decreasethe systenbandwidth
(to slow downthe systenresponse).In addition, they can be usedto improvethe
stability margins (phaseand gain) while keepingthe steadystateerrors constant

Expressiondor w,,,, and¢,,,, of a phase-lagcontrollerwill be derivedin the
next subsectionn the contextof the study of a phase-leadontroller.

9.4.2 Phase-Lead Controller
The transferfunction of a phase-leactontrolleris

- 1+j52
Glead(jw) = (]2) 2 1 Jw = : p2 > 29 (930)

. - . 9
2)pptjw 1+
Gl
20log(po/z )
; A » logw
0 2 b2
4 ArG{GL(0)}
Pmax
/\ l0g o
0 Wmax

Figure 9.16: Magnitude approximation and exact phase of a phase-lead controller
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Due to phase-leacontroller (compensatoramplificationat higher frequenciesjt
increaseshe bandwidth of the compensatedystem. The phase-leadcontrollers
are usedto improvethe gain and phasestability maginsandto increasethe system
bandwidth(decieasethe systenresponseise time).

It follows from (9.31) that the phaseof a phase-leaatontrolleris given by

arg {Geqa(Jw)} = tan "t (ﬁ) — tan! (ﬁ) (9.31)
22 D2
so that
d .
%arg {Greaa(jw)} =0 = wnae = V22P2 (9.32)
Assumethat
pr=az, a>1 = Wy = 5—25 (9.33)
Substitutingwy,.. in (9.32) implies
a—1
t maxr — 9.34
an ¢ NG ( )
The paramete canbe found from (9.35)in termsof ¢,,.. as
1 I max
_ 1tsmé (9.35)

- 1 - Sin qb',nax

Note that the sameformulasfor w,,.., (9.33),andthe parametew, (9.36), hold
for a phase-lagcontroller with py, z; replacingps, zo andwith p; = az;, a < 1.
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9.4.3 Phase-Lag-Lead Controller

The phase-lag-leadtontroller has the featuresof both phase-lagand phase-lead
controllersand canbe usedto improve both the transientresponseand steadystate
errors. The frequencytransferfunction of the phase-lag-leadontrolleris given by

Gt )Gt 2) _ mz (1475)(1455)
(Jw+p)(Jw+p2)  pip2 (1 "’jp%> (1 +jp%>

(1+3%) (1+2)
- . — Rl =pip2, P2 > 2> 21 > Pl
(1 —|—jp%> (1 —|—jp%>

The Bode diagramsof this controller are shownin Figure 9.17.

Ge(jw) =

(9.36)

[Ge(jw)l
A C dB

by 2] 2 P> log w

0 \ ‘ g

4 ArG{GW)

Figure 9.17: Bode diagrams of a phase-lag-lead controller
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9.4.4 Compensator Design with Phase-Lead Controller
The following algorithm can be usedto designa controller (compensatoryvith a
phase-leachetwork.

Algorithm 9.1:

1. Determinethe value of the Bode gain K given by (9.18) as
pip2---
suchthat the steadystateerror requirements satidied.

2. Find the phaseand gain magins of the original systemwith Kp determined
in step 1.

3. Find the phasedifference,A¢, betweenthe actualand desiredphasemamgins
and take ¢,,,, to be 5°-10° greaterthan this difference. Only in rare cases
shouldthis be greaterthan 10°. This is dueto the fact that we haveto give an
estimateof a new gain crossoverfrequency,which cannot be determinedvery
accurately(seestep 5).

4. Calculatethe value for parameter from formula (9.36),i.e. by using
1+ Sin @paz

1 — sin dpman

5. Estimatea value for a compensator'gole suchthat w,,,, is roughly locatedat
the new gain crossoverfrequency w,q: ~ Wegnew- AS arule of thumb,addthe
gain of AG = 20log(a)[dB] at high frequenciego the uncompensatedystem
andestimatethe intersectionof the magnitudediagramwith the frequencyaxis,

say w;. The new gain crossoverfrequencyis somewheran betweenthe old
weg andw;. Someauthors(Kuo, 1991) suggestfixing the new gain crossover

> 1
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frequencyat the point where the magnitudeBode diagram has the value of
—0.5AG[dB]. Usingthevaluefor parameter obtainedin step4 find the value
for the compensatopole from (9.34) as —p. = —wmaz+/a and the value for
compensator'zeroas —z. = —p./a. Note that one canalsoguessa value for
p. and then evaluatez. and w,,,,. The phase-leaccompensatonow can be
representedy

as + pe
s+ pe

6. Draw the Bodediagramof the given systemwith controllerandcheckthevalues
for the gain and phasemaumins. If they are satisfactory the controllerdesignis
done, otherwiserepeatsteps1-5.

Ge(s) =

Example 9.4: Considerthe following open-loopfrequencytransferfunction
K(jw +6)
(Jw+1)(Jw+2)(jw + 3)
Stepl. Let the designrequirementde setsuchthatthe steadystateerror dueto a
unit stepis lessthan 2% andthe phasemamin is at least45°. Since
1 1 K x6
GSA — — 8 el —
*T1+K, 1+Kpg 7 Ix2x3

we concludethat K > 50 will satisfythe steadystateerror requirementof being
lessthan 2%. We know from the root locus techniquethat high static gainscan
damagesystemstability, andsofor therestof this designproblemwe take K = 50.
Step2. We draw Bode diagramsof the uncompensatedystemwith the Bode gain

obtainedin step 1 and determinethe phaseand gain mamgins and the crossover
frequencies. This can be donevia MATLAB

Gw)H (jw) =

=K
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[den]=[1 6 11 6];

[num]=[50  300];
[Gm,Pm,wcp,wcg]=margin(num,den);
bode(num,den)

The correspondingBode diagramsare presentedn Figure 9.18a. The phaseand
gainmamginsareobtainedasGm = co, Pm = 5.59° andthe crossovefrequencies
are we, = 7.5423rad/s, we = oo.

Step3. Sincethedesiredohasds well abovetheactualone,thephase-leadontroller
mustmakeup for 45° — 5.59° = 39.41°. We add 10°, for the reasonexplainedin
step3 of Algorithm 9.1, so that ¢,,,,, = 49.41°.

50

Gain dB

10" 10° 10" 10°
Frequency (rad/sec)

-90+

Phase deg

-180+

10" 10° 10 10°
Frequency (rad/sec)

Figure 9.18: Bode diagrams for the original system
(a) and compensated system (b) of Example 9.4
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The aboveoperationscan be achievedoby using MATLAB asfollows

% estimate  Phimax with Pmd = desired phase margin ;

Pmd=input('enter desired value for phase margin’) ;

Phimax=Pmd-Pm+10;

% converts Phimax into radians ;

Phirad=(Phimax/180)*pi :
Step4. Herewe evaluatethe parameter accordingto the formula (9.36) and get
a = 7.3144. This canbe donein MATLAB by

a=(1+sin(Phirad))/(1 —sin(Phirad)) ;
Step5. In order to obtain an estimatefor the new gain crossoverfrequency
we first find the controller amplification at high frequencies,which is equal to
20log (a) = 17.2836dB = AG,p. The magnitudeBode diagramincreasedby
AG,p at high frequenciesintersectsthe frequencyaxis at wy,.; ~ 10.5rad/s.
We guess(estimate)the value for p. as p. = 25, which is roughly equal to
wmazy/a. By using p. = 25 andforming the correspondingcompensatorywe get
for the compensatedystemPmc = 48.2891° at wegnew = 13.8519rad/s, whichis
satisfactory. This stepcanbe performedby MATLAB as follows.

% Find amplification at high frequencies, DG
DG=20*logl0(a) ;
% estimate  value for pole —pc from Step 5;

pc=input(’enter estimated value for pole pc) ;
% form compensator’s numerator ;

nc=[a pc] ;

% form compensator’'s denominator ;

dc=[1 pc] ;

% find the compensated system transfer function
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numc=conv(num,nc) ;

denc=conv(den,dc) ;
[Gmc,Pmc,wcp,wcg]=margin(numc,denc) ,
bode(numc,denc)

The phase-leaccompensatopbtainedis given by
_ 7.3144s+25  as+pr

Ge =
(s) s+ 25 s + po

Step6. The Bode diagramsof the compensateaontrol systemare presentedn
Figure 9.18b. Both requirementsare satisfied,and thereforethe controller design
procedureis successfullycompleted.

Note that num, den, numc, denc representyespectivelythe numeratorsand
denominatorsof the open-looptransferfunctionsof the original and compensated
systems.In orderto find the correspondinglosed-looptransferfunctions,we use
the MATLAB function cloop , thatis

[cnum,cden]=cloop(num,den,-1);
% —1 indicates a negative unit feedback
[cnumc,cdenc]=cloop(humc,denc,-1);

The closed-loopstepresponsesre obtainedby

[y,x]=step(cnum,cden);

[yc,xc]=step(cnumc,cdenc);
and are representedn Figure 9.19. It can be seenfrom this figure that both
the maximum percentovershootand the settling time are drasticallyreduced. In

addition, therise time of the compensatedystemis shortenedincethe phase-lead
controllerincreaseghe frequencybandwidthof the system.
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9.4.5 Compensator Design with Phase-Lag Controller

Compensatordesign using phase-lagcontrollersis basedon the compensator’'s
attenuatiorat high frequenciesywhich causes shift of the gaincrossovefrequency
to the lower frequencyregion where the phasemamin is high. The phase-lag
compensatocan be designedby the following algorithm.

Algorithm 9.2:

1. Determinethe value of the Bode gain Ky that satisfiesthe steadystateerror
requirement.

2. Find on the phaseBodeplot the frequencywhich hasthe phasemargin equalto
the desiredphasemaigin increasedy 5° to 10°. This frequencyrepresentshe
new gain crossoverfrequency,wegnew-

3. Read the required attenuation at the new gain crossover frequency, i.e.
|AG(jwegnew)| 5, and find the parametera from

—201og (E) = —20log (a) = |AG(jwcgnew)|dB
Z1
which implies

1

1 .
a — 1O_E‘AG(]wcgneW)‘dB — -
|AG(,7wcgnew)|

Note that

Aoy = 5+ 21 g + 2]
cqnew )| = ; ;
g |.7wcgnew + pl||.7wcgnew + p2| T
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4. Place the controller zero one decadeto the left of the new gain crossover
frequency,that is

Wegnew

10

Find the pole locationfrom p, = az. = awegnew/10. The requiredcompensator
has the form

Zec =

as + pe
S + pe
5. Redrawthe Bode diagramof the given systemwith the controllerandcheckthe

valuesfor the gain and phasemamins. If they are satisfactory,the controller
designis done, otherwiserepeatsteps1-5.

Ge(s) =

Example 9.5. Considera control systemrepresentedy

K
s(s+ 2)(s + 30)

Design a phase-lagcompensatoisuch that the following specificationsare met:
€ssrampy < 0-05, Pm > 45°. The minimum value for the static gain that produces
the requiredsteadystateerroris equalto K = 1200. The original systemwith this
staticgain hasphaseandgain mamgins givenby Pm = 6.6449°, Gm = 4.0824 dB
and crossoverfrequencieof w., = 6.1031rad/s, wey = 7.746rad/s.

The new gain crossoveffrequencycanbe estimatetASwegney = 1.4rad/s since
for thatfrequencythe phasemamin of the original systemis approximatelys0°. At
wegnew = 1.4rad/s the requiredgain attenuationis obtainedby MATLAB as

G(s) =
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wcgnew=1.4,

d1=1200;

gl=abs(j*1.4);

g2=abs(j*1.4+2);

g3=abs(j*1.4+30);

dG=d1/(gl*g2*g3);
which produces|AG(j1.4)| = 11.6906 anda = 1/|AG(51.4)] = 0.0855. The
compensator'gole and zero are obtainedas —z, = —wegnew/10 = —0.14 and
—Pe = —QWegnew/10 = —0.0120 (seestep4 of Algorithm 9.2). The transfer
function of the phase-lagcompensators

~0.0855s 4+ 0.0120
a s+ 0.0120

Ge(s)

50

dB
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Figure 9.21: Bode diagrams for the original system
(a) and compensated system (b) of Example 9.5
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The new phaseand gain magins and the actualcrossoverfrequenciesare Pmc =
47.03°, Gmec = 24.82dB, wegnew = 1.405rad/s, wepnew = 7.477rad/s and
so the designrequirementsare satisfied. The stepresponse®f the original and
compensatedystemsare presentedn Figure 9.22.

2
1.8f
16- (@)
14f

12F
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0.4r
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Secs,

Figure 9.22: Step responses for the original system
(a) and compensated system (b) of Example 9.5

It canbe seenfrom this figure that the overshootis reducedfrom roughly 0.83 to
0.3. In addition,it canbe observedhatthe settlingtime is alsoreduced.Note that
the phase-lagcontroller reducesthe systembandwidth (wegnew < wey) SO that the
rise time of the compensatedystemis increased.
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9.4.6 Compensator Design with Phase-Lag-Lead Controller

Compensatodesignusing a phase-lag-leadontroller can be performedaccording
to the algorithmgiven below, in which we first form a phase-leadompensatoand
thena phase-lagcompensatorFinally, we connectthemtogetherin series.

Algorithm 9.3:

1. Seta value for the static gain K suchthat the steadystateerror requirement
Is satisfied.

2. Draw Bode diagramswith Kp obtainedin step 1 and find the corresponding
phaseand gain mamgins.

3. Find the difference between the actual and desired phase mamgins,
A¢ = Pmd — Pm, and take ¢,,,, to be a little bit greaterthan A¢. Cal-
culate the parameteras of a phase-leadcontroller by using formula (9.36),
that is

. 1 + sin ¢max
B 1 —sin ¢max

4. Locatethe new gain crossoveirfrequencyat the point where

a3

20 log |G (jwegnew)| = —101og as (9.37)
5. Computethe valuesfor the phase-leadcompensator'pole and zerofrom
P2 = Wegnewy/@2,  Ze2 = Pea/ a2 (9.38)
6. Selectthe phase-lagcompensator'zero and pole accordingto

zet = 01202,  Pel = Zet/a2 (9.39)



414 FREQUENCY DOMAIN CONTROLLER DESIGN

7. Form the transferfunction of the phase-lag-leadompensatoas

S+ Zel y S+ ze
S+Pcl S+ P2

GC(S) = Glag(s) X Glead(s) =

8. Plot Bode diagramsof the compensatedystemand checkwhetherthe design
specificationsare met. If not, repeatsomeof the stepsof the proposedalgo-
rithm—in most casesgo back to steps3 or 4.

The phase-leadpart of this compensatohelps to increasethe phasemaigin
(increaseghe dampingratio, which reducesthe maximum percentovershootand
settling time) and broadenthe system’sbandwidth (reducesthe rise time). The
phase-lagoart, on the other hand, helpsto improve the steadystateerrors.

Example 9.6. Considera controlsystemthathasthe open-looptransferfunction

B K(s+10)
@) = 2 + 2)(s 1 20)

For this systemwe designa phase-lag-leadontroller by following Algorithm 9.3
such that the compensatedystemhas a steadystate error of lessthan 4% and
a phasemamgin greaterthan 50°. In the first step, we choosea value for the
staticgain K that producesthe desiredsteadystateerror. It is easyto checkthat
K = 100 = e;; = 3.85%, andthereforein the following we stick with this value
for the static gain. Bode diagramsof the original systemwith K = 100 are pre-
sentedin Figure 9.23.
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Figure 9.23: Bode diagrams of the original system

It canbe seenfrom thesediagrams—anavith help of MATLAB determinedaccu-
rately—thatthe phaseand gain magins and the correspondingrossoverfrequen-
cies are given by Pm = 31.61°,Gm = oo, andw,, = 7.668rad/s, we, = oo.
According to step3 of Algorithm 9.3, a controller hasto introducea phaselead
of 18.39°. We take ¢,,,, = 25° and find the required parameteras = 2.4639.
Taking wegnew = 20rad/s in step4 and completingthe designsteps5-8 we find
that Pm = 39.94°, which is not satisfactory. We go back to step 3 and take
Gmaz = 30° = 0.5236 rad, which implies a; = 3.

Step4 of Algorithm 9.3 canbe executecefficiently by MATLAB by performing
the following search. Since—101log3 = —10.9861 dB we searchthe magnitude
diagramfor the frequencywherethe attenuatioris approximatelyequalto —11 dB.
We startsearchat w = 20rad/s sinceat that point, accordingto Figure 9.23, the
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attenuations obviously smallerthan—11 dB. MATLAB programused

w=20;

while  20*log10(100*abs(j*w+10)/

abs(((j*w) 2+2**w+2)*(j*w+20))) <-11;

w=w-1;

end
This programproduceSwegney = 10rad/s. In steps5 and 6 the phase-lag-lead
controllerzerosandpolesare obtainedas —p.» = —17.3205, —z.» = —5.7735 for
the phase-leaghartand —p.; = —0.1925, —z.; = —0.5774 for the phase-lagart;
hencethe phase-lag-leaadontroller hasthe form

(s) s+ 0.5774 N +17.3205
S) =
¢ s+0.1925 s+ 5.7735

Gm=Inf dB, (w=NaN) Pm=56.34 deg. (w=4.738)
50 T T T
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Figure 9.24 Bode diagrams of the compensated system
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It canbe seenthatthe phasemamgin obtainedof 56.34° meetshe designrequirement
and that the actual gain crossoverfrequency,4.738 rad /s, is considerablysmaller
than the one predicted. This contributesto the generallyacceptednaccuracyof
frequencymethodsfor controller designbasedon Bode diagrams.

The stepresponse®f the original and compensatedystemsare comparedin
Figure 9.25. The transientresponseof the compensatedystemis improvedsince
the maximum percentovershootis considerablyreduced. However, the system
rise time is increaseddue to the fact that the system bandwidth is shortened
(Wegnew = 4.738rad/s < wey = 7.668rad/s).

15
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Figure 9.25 Step responses of the original (a) and compensated (b) systems
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9.5 MATLAB Case Study

Considerthe problemof finding a controllerfor the ship positioningcontrol system
given in Problem7.5. The goal is to increasestability phasemamin above 30°.
The problem matricesare given by

—0.0546 0 0.5435 0
A= 1 o o0 |, B=|0 |, Cc=[01 0], D=0
0 0 -1.55 1.55

Thetransferfunction of the ship positioningsystemis obtainedby the MATLAB

instruction[num,den]=ss2tf(A,B,C,D) andis given by
0.8424
G(s) =
s(s + 1.55)(s + 0.0546)
The phaseand gain stability magins of this systemare Pm = —19.94° and
G'm = —15.86 dB, with the crossoverfrequenciesy,, = 0.2909 rad /s andw., =

0.7025rad /s (seethe Bode diagramsin Figure 9.26). From known valuesfor the
phaseand gain maigins, we can concludethat this systemhasvery poor stability
properties.

Sincethe phasemaumgin is well belowthe desiredone,we needa controllerwhich
will makeup for almosta 50° increasein phase.ln general,it is hardto stabilize
systemdhat havelarge negativephaseand gain stability maigins. In the following
we will designphase-leadphase-lagand phase-lag-leadontrollersto solve this
problemand comparethe resultsobtained.
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Figure 9.26: Bode diagrams of a ship positioning control system

Phase-LeadContoller: By using Algorithm 9.1 with ¢,,,4, = 50° + 10° = 60°
we get a phasemamin of only 23.536°, which is not satisfactory.It is necessary
to makeup for ¢,,,, = 50° + 27° = 87°. In the latter casethe compensatohas
the transferfunction

s + 0.2038

G.(s) = 76.31
e(s) s+ 15.55
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Figure 9.27: Bode diagrams for a ship positioning system:
(a) original system, (b) phase-lead compensated system

The gain and phasestability mamgins of the compensatedystemare found from
the above Bode diagramsas Gmc = 15.1603 dB, Pmc¢ = 30.0538°, and the
crossoverfrequenciesare wg,. = 1.7618rad/s, wey = 4.6419rad/s. The step
responsenf the compensatedystemexhibits an overshootof 45.47% (seeFigure
9.28).

Phase-Lag-Leadontoller: By using Algorithm 9.3 we find the compensator
transferfunction as

s +0.1599 s+ 0.016
G.(s) = 7.5245 2297 1399
e(3) s 11.203 s 1 0.002125




FREQUENCY DOMAIN CONTROLLER DESIGN 421

Amplitude

Time (secs)

Figure 9.28: Step response of the compensated system with a phase-lead controller
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Figure 9.29: Bode diagrams for a ship positioning control system:
(a) original system, (b) phase-lag-lead compensated system
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The phase and gain magins of the compensatedsystem are given by
Pmc = 39.6694°, Gmc = 14 dB and the crossoverfrequenciesare w.,. =
0.4332rad/s, wepe = 1.2401rad/s.

From the stepresponseof the compensatedystem(seeFigure 9.30), we can
observethatthis compensatedystemhasa smallerovershootanda largerrise time
than the systemcompensateanly by the phase-leadtontroller.

14

Amplitude

Figure 9.30: Step response of the compensated system with a phase-lag-lead controller

Phase-LagContmoller: If we chooseanewgaincrossovefrequencyatwegne, =
0.03 rad/s, thephasemamgin atthatpointwill clearlybeabove50°. Proceedingvith
a phase-lagompensatodesign,accordingto Algorithm 9.2, we get|AG(50.03)| =
290.7390 anda = 0.034, which implies z, = 0.003 andp. = 1.0319 x 10~°. Using
the correspondingphase-lagcompensatomproducesvery good stability mamgins
for the compensatedystem,i.e. Gm = 32.91 dB and Pm = 54.33°. The
maximumpercentovershootobtainedis much betterthanwith the previouslyused
compensatorand is equalto M POS = 18%. However, the closed-loopstep
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responsaevealsthat the obtainedsystemis too sluggishsincethe responsepeak
time is t, = 95.2381 s (note thatin the previoustwo casesthe peaktime is only
a few seconds).

Onemaytry to getbetteragreemenby designinga phase-laggompensatomyhich
will reducethe phasemamin of the compensatedystemto justabove30°. In order
to do this we write a MATLAB program,which searcheshe phaseBode diagram
andfinds the frequencycorrespondingdo the prespedied value of the phase.That
frequencyis usedasa newgain crossovefrequency.Let Pm = 35° = 0.6109 rad.
The MATLAB programis

w=0.1;

while  pi+

angle(1/((j*w)*(j*w+1.55)*(j*w+0.0546)))<0.6109;

w=w-0.01;

end

dG=0.8424*abs(1/((*w)*(j*w+1.55)*(j*w+0.0546)));
This programproduceSwege,y = 0.07rad/s and |AG(50.07)| = 87.3677. From
step4 of Algorithm 9.2 we obtainthe phase-lagcontroller of the form

0.009
Gols) = = x 0.0114
s + 0.000081

The Bode diagramsof the compensatedystemare givenin Figure 9.31.
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Figure 9.31: Bode diagram of the phase-lag compensated system

It can be seenthat the phaseand gain magins are satisfactoryand given by
Pm = 31.44° and Gm = 23.48 dB. The actual gain crossoverfrequenciesare
Wegnew = 0.06043rad/s and weppew = 0.2651rad/s.

The closed-loopstep responseof the phase-lagcompensatedystem,given in
Figure9.32,showsthatthepeaktimeis reducedo ¢, = 50.15 s—whichis still fairly
big—andthat the maximumpercentovershootis increasedo M POS = 45.82%,
which is comparableo the phase-leac&ind phase-lag-leadompensation.
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Figure 9.32: Step response of the phase-lag compensated system

Comparingall three controllersand their performancesywe can concludethat,
for this particularproblem,the phase-lagcompensatiomproducesthe worst result,
andthereforeeitherthe phase-leadr phase-lag-leadontroller shouldbe used.

<



