
Frequency Domain Controller Design

9.2 Frequency Response Characteristics

Thefrequencytransferfunctionsaredefinedfor sinusoidalinputshavingall possible
frequencies . They areobtainedfrom (9.1) by simply setting ,
that is

(9.1)

Typicaldiagramsfor themagnitudeandphaseof theopen-loopfrequencytransfer
function are presentedin Figure 9.1.
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Figure 9.1: Magnitude (a) and phase (b) of the open-loop transfer function
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System Bandwidth: This representsthefrequencyrangein which themagnitude
of the closed-loopfrequencytransferfunction dropsno more than (decibels)
from its zero-frequencyvalue. The systembandwidthcan be obtainedfrom the
next equality, which indicatesthe attenuationof , as

��� ��� (9.2)

Peak Resonance: This is obtainedby finding the maximum of the function
with respect to frequency . It is interesting to point out that the

systemshaving large maximum overshoothave also large peak resonance.This
is analytically justified for a second-ordersystemin Problem9.1.

Resonant Frequency: This is thefrequencyat which thepeakresonanceoccurs.
It can be obtainedfrom
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Figure 9.2: Magnitude of the closed-loop transfer function
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9.3 Bode Diagrams

Bodediagramsrepresentthe frequencyplots of the magnitudeand phaseof the
open-loopfrequencytransfer function . The magnitudeis plotted in
dB (decibels)on the scale. We first study independentlythe magnitudeand
frequencyplotsof eachof theseelementaryfrequencytransferfunctions.Sincethe
open-loopfrequencytransferfunction is given in termsof products
and ratios of elementarytransfer functions, it is easy to see that the phaseof

is obtainedby summingand subtractingphasesof the elementary
transfer functions. Also, by expressingthe magnitudeof the open-looptransfer
function in decibels, the magnitude 	�
 is obtainedby adding the
magnitudesof the elementaryfrequencytransfer functions.For example

	�
 ��
 � �
� �

��
 ��
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Constant Term: Since

��� ���
�

�
(9.3)

the magnitudeand phaseof this elementare easily drawn and are presentedin
Figure 9.3.

logω logω

K<1

0 0

-180o

K>1

arg{K>0}

arg{K<0}

|K|dB K
�

Figure 9.3: Magnitude and phase diagrams for a constant

Pure Integrator: The transferfunction of a pure integrator,given by

(9.4)

has the following magnitudeand phase

��� ��� ��� � (9.5)
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It can be observedthat the phasefor a pure integrator is constant,whereasthe
magnitudeis representedby a straightline intersectingthe frequencyaxis at
andhavingthe slopeof . Both diagramsarerepresentedin Figure
9.4. Thus,a pure integratorintroducesa phaseshift of

�
anda gainattenuation

of .
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Figure 9.4: Magnitude and phase diagrams for a pure integrator

Pure Differentiator: The transferfunction of a puredifferentiatoris given by

(9.6)

Its magnitudeand phaseare easily obtainedas

!�" #�$ % (9.7)



386 FREQUENCY DOMAIN CONTROLLER DESIGN

The correspondingfrequencydiagramsare presentedin Figure 9.5. It can be
concludedthat a pure differentiator introducesa positivephaseshift of

&
and

an amplification of .
Real Pole: The transferfunction of a real pole, given by

' ( (9.8)

has the following magnitudeand phase
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Figure 9.5: Magnitude and phase diagrams for a pure differentiator
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The phasediagramfor a real pole can be plotted directly from (9.10). It can
be seenthat for large valuesof , , the phasecontributionis 3 . For
small, , the phaseis closeto zero,and for the phasecontributionis

3 . This information is sufficient to sketch asgiven in Figure9.6.
For the magnitude,we see from (9.10) that for small the magnitudeis

very close to zero. For large valuesof we can neglect 1 comparedto
so that we have a similar result as for a pure integrator, i.e. we obtain an
attenuationof . For small and large frequencieswe have straight-
line approximations.Thesestraight lines intersectat , which is alsoknown
as a corner frequency. The actual magnitudecurve is below the straightline
approximations. It has the biggestdeviation from the asymptotesat the corner
frequency(seeFigure 9.6).
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Real Zero: The transferfunction of an elementrepresentinga real zero is

(9.10)

Its magnitudeand phaseare

576 8�9 : 81; : < 8
(9.11)

For small frequenciesanasymptotefor themagnitudeis equalto zeroandfor large
frequenciesthemagnitudeasymptotehasaslopeof andintersectsthe
real axisat (the cornerfrequency).Thephasediagramfor small frequencies
alsohasanasymptoteequalto zeroandfor large frequenciesanasymptoteof = .

90
) o

45o

0
� o

|1
>

+j ω/z|dB

1+j ω/z

0.1
�0

20

0.1
� log(ω/z)

log(ω/z)
1

1 10

10

Figure 9.7: Magnitude and phase diagrams for a real zero
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Complex Conjugate Poles: The transferfunction is given by?@? @ ?@ ACBA BD AA D
(9.12)

The magnitudeandphaseof this second-ordersystemaregiven by

E�F G�H @
? ?

?@
? GJI ?

K G @?@ ?
(9.13)

For large valuesof the correspondingapproximationsof (9.14) are

E�F G�H
?
?@ G�H @

K G @ K G K L

At low frequenciestheapproximationscanbeobtaineddirectly from (9.13),that is?@ ?@ E�F L

The asymptotesfor small and large frequenciesare, respectively, zero and
(with the corner frequencyat @ ) for the magnitude,and

zero and
L

for the phase. At the corner frequency @ the phaseis equal to



390 FREQUENCY DOMAIN CONTROLLER DESIGNM
. Notethattheactualplot in theneighborhoodof thecornerfrequencydepends

on the valuesof the dampingratio . Severalcurvesare shownfor .
It canbe seenfrom Figure9.8 that the smaller , the higher peak.
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Figure 9.8: Magnitude and phase diagrams for complex conjugate poles

Complex Conjugate Zeros: The complexconjugatezero is given by

N N
O

N
O

N (9.14)

so that the correspondingBode diagramswill be the mirror imagesof the Bode
diagramsobtainedfor thecomplexconjugatepolesrepresentedby (9.13). Here,the
asymptotesfor small frequenciesareequalto zerofor boththemagnitudeandphase
plots; for high frequenciesthe magnitudeasymptotehasa slopeof
andstartsat thecornerfrequencyof N , andthephaseplot asymptoteis P .
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9.3.1 Phase and Gain Stability Margins from Bode Diagrams

Bearingin mind thedefinition of thephaseandgainstability marginsgivenin (4.54)
and(4.55),andthe correspondingphaseandgain crossoverfrequenciesdefinedin
(4.56)and(4.57),it is easyto concludethat thesemarginscanbefound from Bode
diagramsas indicatedin Figure 9.9.
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Example 9.1: Considertheopen-loopfrequencytransferfunction

S
Using MATLAB

num=[1 1];d1=[1 0];d2=[1 2];d3=[1 2 2];
den1=conv(d1,d2); den=conv(den1,d3);
bode(num,den);[Gm,Pm,wcp,wcg]=margin(num,den);

The phaseandgain stability margins and the crossoverfrequenciesareT UWV UYX
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Figure 9.10: Bode diagrams for Example 9.1
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9.3.2 Steady State Errors and Bode Diagrams

Steadystateerrors can be indirectly determinedfrom Bode diagramsby reading
the values for constants Z [ \ from them. Knowing theseconstants,the
correspondingerrorsareeasily found by usingformulas(6.30), (6.32),and(6.34).
The steadystate errors and correspondingconstants Z [ \ are first of all
determinedby the systemtype,which representsthe multiplicity of the pole at the
origin of the open-loopfeedbacktransferfunction, in general,representedby

] ^_ ] ^ (9.15)

This can be rewritten as

] ^ `bacbd `eac�f
] ^ _ `baZ d `baZ f
g `bac d `bac f
_ `eaZ d `baZ f

(9.16)

where

g ] ^
] ^ (9.17)

is known asBode’sgain, and is the type of feedbackcontrol system.
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For control systemsof type , the position constantaccordingto formula
(6.31) is obtainedfrom (9.17) as

h
i jeklem jbkl�no jbkh m jbkh n jekqp o

i (9.18)

It follows from (9.17)–(9.19)that the correspondingmagnitudeBode diagramof
typezerocontrol systemsfor small valuesof is flat (hasa slopeof ) andthe
valueof i h . This is graphicallyrepresentedin Figure9.12.

log ω

|G(jω)H(jω)|dB

20logKp

Figure 9.12: Magnitude Bode diagram of type zero control systems at small frequencies

For control systemsof type , the open-loopfrequencytransferfunction is
approximatedat low frequenciesby

r sbtuev sbtuJwx sbty v sety w
r x (9.19)

It follows that the correspondingmagnitudeBode diagram of type one control
systemsfor small valuesof hasa slopeof andthe valuesofr r (9.20)
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From (9.20) and(6.33) it is easyto concludethat for type onecontrol systemsthe
velocity constantis z { . Using this fact andthe frequencyplot of (9.21),we
concludethat z is equal to the frequency | at which the line (9.21) intersects
the frequencyaxis, that is

{ | { | z (9.21)

This is graphically representedin Figure 9.13.
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Figure 9.13: Magnitude Bode diagram of type one control systems at small frequencies

Note that if ~ � , the correspondingfrequency � is obtainedat the point
wherethe extendedinitial curve,which hasa slopeof , intersects
the frequencyaxis (seeFigure 9.13b).

Similarly, for type two control systems, , we haveat low frequencies

� �e��e� �b����� �b���� �b����
� � (9.22)
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which indicatesan initial slopeof anda frequencyapproximation
of

� � �
�

� (9.23)

From (9.23)and(6.35) it is easyto concludethat for type two control systemsthe
accelerationconstantis � � . From the frequencyplot of the straight line
(9.24), it follows that � ���

�
, where ��� representsthe intersectionof the

initial magnitudeBodeplot with the frequencyaxis asrepresentedin Figure9.14.
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Figure 9.14: Magnitude Bode diagram of type two control systems at small frequencies

It can be seenfrom Figures 9.12–9.14that by increasingthe values for the
magnitudeBodediagramsat low frequencies(i.e. by increasing � ), theconstants� � , and � are increased.According to the formulasfor steadystateerrors,
given in (6.30), (6.32), and (6.34) as

�J�J������� � �J�J�W����� � �J� �����W���� W¡£¢¥¤ �
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we concludethat in this casethesteadystateerrorsaredecreased.Thus,thebigger¦ , the smaller the steadystateerrors.

Example 9.3: ConsiderBodediagramsobtainedin Examples9.1 and9.2. The
Bodediagramin Figure9.10hasaninitial slopeof which intersects
the frequencyaxisat roughly § . Thus,we havefor theBodediagram
in Figure 9.10

¨ © ª
Using the exactformula for © , given by (6.33), we get

© «b¬®­ ¯

In Figure9.11 the initial slopeis , andhencewe havefrom this diagram

¨ ¨ © ª
Using the exactformula for ¨ as given by (6.31) produces

¨ «b¬°­

Note that the accurateresultsaboutsteadystateerror constantsareobtainedeasily
by using the correspondingformulas;hencethe Bode diagramsare usedonly for
quick and rough estimatesof theseconstants.
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9.4 Compensator Design Using Bode Diagrams

Controller designtechniquesin the frequencydomainwill be governedby the
following facts:

(a) Steadystateerrors are improvedby increasingBode’sgain ± .
(b) Systemstability is improvedby increasingphaseandgain margins.
(c) Overshootis reducedby increasingthe phasestability margin.
(d) Risetime is reducedby increasingthe system’sbandwidth.

The first two items,(a) and (b), havebeenalreadyclarified. In order to justify
item (c), we considerthe open-looptransferfunction of a second-ordersystem²³

³ (9.24)

whosegain crossoverfrequencycan be easily found from

´¶µ ´¶µ
²³² ² ²³ (9.25)

leading to

´¶µ ³ ² ²
(9.26)

The phaseof (9.25) at the gain crossoverfrequencyis

´¶µ ´Yµ · ¸º¹ ´Yµ
³ (9.27)

so that the correspondingphasemargin becomes

¸»¹ ² ² (9.28)
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Plotting the function , it canbe shownthat it is a monotonicallyincreasing
function with respectto ; we thereforeconcludethat thehigherphasemargin, the
larger the dampingratio, which impliesthe smaller the overshoot.

Item (d) cannot be analytically justified since we do not have an analytical
expressionfor the responserise time. However, it is very well known from
undergraduatecourseson linear systemsand signalsthat rapidly changingsignals
havea wide bandwidth. Thus, systemsthat are able to accommodatefast signals
musthavea wide bandwidth.

9.4.1 Phase-Lag Controller

The transferfunction of a phase-lagcontroller is given by

¼�½1¾ ¿
¿

¿
¿

ÀÁbÂÀÃ Â ¿ ¿ (9.29)
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Figure 9.15: Magnitude approximation and exact phase of a phase-lag controller
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Due to attenuationof the phase-lagcontrollerat high frequencies,the frequency
bandwidthof the compensatedsystem(controllerandsystemin series)is reduced.
Thus, thephase-lagcontrollers are usedin order to decreasethesystembandwidth
(to slow downthe systemresponse).In addition, they can be usedto improvethe
stability margins (phaseandgain) while keepingthesteadystateerrors constant.

Expressionsfor ÊÌË�Í and ÊÌËÎÍ of a phase-lagcontrollerwill be derivedin the
next subsectionin the contextof the study of a phase-leadcontroller.

9.4.2 Phase-Lead Controller

The transferfunction of a phase-leadcontroller is

Ï�Ð Ë�Ñ Ò
Ò

Ò
Ò

ÓÔJÕÓÖ Õ Ò Ò (9.30)
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Figure 9.16: Magnitude approximation and exact phase of a phase-lead controller
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Due to phase-leadcontroller (compensator)amplificationat higher frequencies,it
increasesthe bandwidthof the compensatedsystem. The phase-leadcontrollers
are usedto improvethegain andphasestability marginsandto increasethesystem
bandwidth(decreasethe systemresponserise time).

It follows from (9.31) that the phaseof a phase-leadcontroller is given by

ÝßÞ�àÎá âäã å âäã å (9.31)

so that

ÝßÞ�àÎá æ à�ç å å
(9.32)

Assumethat å å æ à7ç
å

(9.33)

Substituting æ àÎç in (9.32) implies

æ à7ç (9.34)

The parameter canbe found from (9.35) in termsof æ àÎç as

æ àÎç
æ àÎç (9.35)

Note that the sameformulasfor æ àÎç , (9.33),andthe parameter , (9.36),hold
for a phase-lagcontroller with ã ã replacing

å å
andwith ã ã .
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9.4.3 Phase-Lag-Lead Controller

The phase-lag-leadcontroller has the featuresof both phase-lagand phase-lead
controllersandcanbe usedto improveboth the transientresponseandsteadystate
errors.The frequencytransferfunction of the phase-lag-leadcontroller is given by

è é ê
é ê

é ê
é ê

ëìbí ëìJî
ëï í ëï î

ëì í ëì î
ëï í ëï î é ê é ê ê ê é é

(9.36)

The Bode diagramsof this controller are shownin Figure 9.17.
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Figure 9.17: Bode diagrams of a phase-lag-lead controller
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9.4.4 Compensator Design with Phase-Lead Controller

The following algorithm can be usedto designa controller (compensator)with a
phase-leadnetwork.

Algorithm 9.1:

1. Determinethe value of the Bode gain ô given by (9.18) as

ô õ ö
õ ö

suchthat the steadystateerror requirementis satisfied.

2. Find the phaseand gain margins of the original systemwith ô determined
in step 1.

3. Find the phasedifference, , betweenthe actualand desiredphasemargins
and take ÷ÌøÎù to be ú – ú greaterthan this difference. Only in rare cases
shouldthis be greaterthan ú . This is due to the fact that we haveto give an
estimateof a new gain crossoverfrequency,which cannot be determinedvery
accurately(seestep 5).

4. Calculatethe value for parameter from formula (9.36), i.e. by using

÷ÌøÎù
÷ÌøÎù

5. Estimatea value for a compensator’spole suchthat ÷ÌøÎù is roughly locatedat
the new gain crossoverfrequency, ÷ÌøÎù û¶ü�ýÿþ�� . As a rule of thumb,addthe
gain of at high frequenciesto the uncompensatedsystem
andestimatethe intersectionof the magnitudediagramwith the frequencyaxis,
say õ . The new gain crossoverfrequencyis somewherein betweenthe old
ûYü and õ . Someauthors(Kuo, 1991) suggestfixing the new gain crossover
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frequencyat the point where the magnitudeBode diagram has the value of
. Using thevaluefor parameter obtainedin step4 find thevalue

for the compensatorpole from (9.34) as � ����� and the value for
compensator’szeroas � � . Note that onecanalsoguessa value for
� and then evaluate � and ���	� . The phase-leadcompensatornow can be

representedby

� �
�

6. Draw theBodediagramof thegivensystemwith controllerandcheckthevalues
for the gain andphasemargins. If they aresatisfactory,the controllerdesignis
done,otherwiserepeatsteps1–5.

Example 9.4: Considerthe following open-loopfrequencytransferfunction

Step1. Let the designrequirementsbe setsuchthat the steadystateerror dueto a
unit stepis lessthan2% andthe phasemargin is at least



. Since

��� 
 � �

we concludethat will satisfy the steadystateerror requirementof being
less than 2%. We know from the root locus techniquethat high static gainscan
damagesystemstability, andsofor therestof this designproblemwe take .
Step2. We draw Bodediagramsof the uncompensatedsystemwith the Bodegain
obtainedin step 1 and determinethe phaseand gain margins and the crossover
frequencies.This can be donevia MATLAB
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[den]=[1 6 11 6];
[num]=[50 300];
[Gm,Pm,wcp,wcg]=margin(num,den);
bode(num,den)

The correspondingBode diagramsare presentedin Figure 9.18a. The phaseand
gainmarginsareobtainedas

�
andthecrossoverfrequencies

are ��� ��� .
Step3. Sincethedesiredphaseis well abovetheactualone,thephase-leadcontroller
mustmakeup for

� � �
. We add

�
, for the reasonexplainedin

step3 of Algorithm 9.1, so that ���	� �
.
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Figure 9.18: Bode diagrams for the original system
(a) and compensated system (b) of Example 9.4
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The aboveoperationscanbe achievedby usingMATLAB as follows
% estimate Phimax with Pmd = desired phase margin ;
Pmd=input(’enter desired value for phase margin’) ;
Phimax=Pmd-Pm+10 ;
% converts Phimax into radians ;
Phirad=(Phimax/180)*pi ;

Step4. Herewe evaluatethe parameter accordingto the formula (9.36) andget
. This can be donein MATLAB by

a=(1+sin(Phirad))/(1 –sin(Phirad)) ;

Step 5. In order to obtain an estimatefor the new gain crossoverfrequency
we first find the controller amplification at high frequencies,which is equal to

��� . The magnitudeBode diagramincreasedby
��� at high frequenciesintersectsthe frequencyaxis at ����� .

We guess(estimate)the value for � as � , which is roughly equal to
����� . By using � and forming the correspondingcompensator,we get

for the compensatedsystem
 

at ��!#"%$'& , which is
satisfactory.This stepcan be performedby MATLAB as follows.

% Find amplification at high frequencies, DG;
DG=20*log10(a) ;
% estimate value for pole —pc from Step 5;
pc=input(’enter estimated value for pole pc’) ;
% form compensator’s numerator ;
nc=[a pc] ;
% form compensator’s denominator ;
dc=[1 pc] ;
% find the compensated system transfer function ;
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numc=conv(num,nc) ;
denc=conv(den,dc) ;
[Gmc,Pmc,wcp,wcg]=margin(numc,denc) ;
bode(numc,denc)

The phase-leadcompensatorobtainedis given by

(
)
)

Step6. The Bode diagramsof the compensatedcontrol systemare presentedin
Figure 9.18b. Both requirementsare satisfied,and thereforethe controller design
procedureis successfullycompleted.

Note that num, den , numc, denc represent,respectively,the numeratorsand
denominatorsof the open-looptransferfunctionsof the original andcompensated
systems.In order to find the correspondingclosed-looptransferfunctions,we use
the MATLAB function cloop , that is

[cnum,cden]=cloop(num,den,-1);
% —1 indicates a negative unit feedback
[cnumc,cdenc]=cloop(numc,denc,-1);

The closed-loopstepresponsesare obtainedby

[y,x]=step(cnum,cden);
[yc,xc]=step(cnumc,cdenc);

and are representedin Figure 9.19. It can be seenfrom this figure that both
the maximumpercentovershootand the settling time are drastically reduced. In
addition,the rise time of thecompensatedsystemis shortenedsincethe phase-lead
controller increasesthe frequencybandwidthof the system.
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9.4.5 Compensator Design with Phase-Lag Controller

Compensatordesign using phase-lagcontrollers is basedon the compensator’s
attenuationat high frequencies,which causesa shift of thegaincrossoverfrequency
to the lower frequencyregion where the phasemargin is high. The phase-lag
compensatorcan be designedby the following algorithm.

Algorithm 9.2:

1. Determinethe value of the Bode gain * that satisfiesthe steadystateerror
requirement.

2. Find on the phaseBodeplot the frequencywhich hasthe phasemargin equalto
the desiredphasemargin increasedby

+
to

+
. This frequencyrepresentsthe

new gain crossoverfrequency, ,�-#.%/10 .

3. Read the required attenuation at the new gain crossover frequency, i.e.
,2-#.3/�0 4 * , and find the parameter from

5
5 ,2-#.3/�0 4 *

which implies

68792:<;>=@?BADCFEHGJI1KML�NPO';>QSR
,2-#.3/�0

Note that

,2-#.3/�0 ,2-#.3/�0 5 ,2-#.3/�0 T
,�-#.%/�0 5 ,2-#.3/�0 T



410 FREQUENCY DOMAIN CONTROLLER DESIGN

4. Place the controller zero one decadeto the left of the new gain crossover
frequency,that is

U U2V<W%X1Y

Find the pole locationfrom U U U�V#W%X�Y . The requiredcompensator
has the form

U U
U

5. RedrawtheBodediagramof the givensystemwith thecontrollerandcheckthe
valuesfor the gain and phasemargins. If they are satisfactory,the controller
designis done,otherwiserepeatsteps1–5.

Example 9.5: Considera control systemrepresentedby

Design a phase-lagcompensatorsuch that the following specificationsare met:
Z�ZM[�\1]3^ _ . The minimum value for the static gain that produces

the requiredsteadystateerror is equalto . The original systemwith this
staticgain hasphaseandgain margins given by _
andcrossoverfrequenciesof U2V U�` .

Thenewgaincrossoverfrequencycanbeestimatedas U2V#W3X�Y since
for that frequencythephasemargin of theoriginal systemis approximately _ . At
U�V#W%X'Y the requiredgain attenuationis obtainedby MATLAB as
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wcgnew=1.4;
d1=1200;
g1=abs(j*1.4);
g2=abs(j*1.4+2);
g3=abs(j*1.4+30);
dG=d1/(g1*g2*g3);

which produces and . The
compensator’spole and zero are obtainedas a a�b#c%d�e and

a a2b#c3d�e (see step 4 of Algorithm 9.2). The transfer
function of the phase-lagcompensatoris

a
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Figure 9.21: Bode diagrams for the original system
(a) and compensated system (b) of Example 9.5
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The new phaseandgain margins andthe actualcrossoverfrequenciesaref
, , g2h#i3j�k , g�lmi%j'k and

so the designrequirementsare satisfied. The step responsesof the original and
compensatedsystemsare presentedin Figure 9.22.
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Figure 9.22: Step responses for the original system
(a) and compensated system (b) of Example 9.5

It canbe seenfrom this figure that the overshootis reducedfrom roughly 0.83 to
0.3. In addition,it canbeobservedthat the settlingtime is alsoreduced.Note that
the phase-lagcontroller reducesthe systembandwidth( n2o#p3q�r n�o ) so that the
rise time of the compensatedsystemis increased.
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9.4.6 Compensator Design with Phase-Lag-Lead Controller

Compensatordesignusinga phase-lag-leadcontroller canbe performedaccording
to thealgorithmgivenbelow, in which we first form a phase-leadcompensatorand
thena phase-lagcompensator.Finally, we connectthemtogetherin series.

Algorithm 9.3:

1. Set a value for the static gain s suchthat the steadystateerror requirement
is satisfied.

2. Draw Bode diagramswith s obtainedin step 1 and find the corresponding
phaseand gain margins.

3. Find the difference between the actual and desired phase margins,
, and take t�u�v to be a little bit greaterthan . Cal-

culate the parameter w of a phase-leadcontroller by using formula (9.36),
that is

w t�u�v
t�u�v

4. Locatethe new gain crossoverfrequencyat the point where

x2y#z3{�| w (9.37)

5. Computethe valuesfor the phase-leadcompensator’spole andzero from

x w x2y#z3{�| w x w x w w (9.38)

6. Selectthe phase-lagcompensator’szeroand pole accordingto

xM} x w xM} x�} w (9.39)
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7. Form the transferfunction of the phase-lag-leadcompensatoras

~ ���F� �J����� ~M�
~M�

~1�
~��

8. Plot Bode diagramsof the compensatedsystemand checkwhetherthe design
specificationsare met. If not, repeatsomeof the stepsof the proposedalgo-
rithm—in most casesgo back to steps3 or 4.

The phase-leadpart of this compensatorhelps to increasethe phasemargin
(increasesthe dampingratio, which reducesthe maximumpercentovershootand
settling time) and broadenthe system’sbandwidth(reducesthe rise time). The
phase-lagpart, on the otherhand,helpsto improvethe steadystateerrors.

Example 9.6: Considera controlsystemthathastheopen-looptransferfunction

�

For this systemwe designa phase-lag-leadcontroller by following Algorithm 9.3
such that the compensatedsystemhas a steadystateerror of less than 4% and
a phasemargin greaterthan � . In the first step, we choosea value for the
staticgain that producesthe desiredsteadystateerror. It is easyto checkthat

�M� , and thereforein the following we stick with this value
for the static gain. Bode diagramsof the original systemwith are pre-
sentedin Figure 9.23.
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Figure 9.23: Bode diagrams of the original system

It canbe seenfrom thesediagrams—andwith help of MATLAB determinedaccu-
rately—thatthe phaseandgain margins and the correspondingcrossoverfrequen-
cies are given by � , and ��� ��� .
According to step3 of Algorithm 9.3, a controller has to introducea phaselead
of � . We take ����� � and find the requiredparameter � .
Taking �2�#�3��� in step4 and completingthe designsteps5–8 we find
that � , which is not satisfactory. We go back to step 3 and take
���	� � , which implies � .

Step4 of Algorithm 9.3 canbeexecutedefficiently by MATLAB by performing
the following search. Since we searchthe magnitude
diagramfor thefrequencywheretheattenuationis approximatelyequalto .
We start searchat sinceat that point, accordingto Figure 9.23, the
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attenuationis obviouslysmallerthan . MATLAB programused
w=20;
while 20*log10(100*abs(j*w+10)/
abs(((j*w)ˆ2+2*j*w+2)*(j*w+20))) <-11;
w=w-1;
end

This programproduces ���#�%�'� . In steps5 and 6 the phase-lag-lead
controllerzerosandpolesareobtainedas �1� ��� for
the phase-leadpart and ��� �M� for the phase-lagpart;
hencethe phase-lag-leadcontroller has the form

�
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Figure 9.24 Bode diagrams of the compensated system
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It canbeseenthatthephasemargin obtainedof � meetsthedesignrequirement
and that the actualgain crossoverfrequency, , is considerablysmaller
than the one predicted. This contributesto the generallyacceptedinaccuracyof
frequencymethodsfor controllerdesignbasedon Bode diagrams.

The step responsesof the original and compensatedsystemsare comparedin
Figure 9.25. The transientresponseof the compensatedsystemis improvedsince
the maximum percentovershootis considerablyreduced. However, the system
rise time is increaseddue to the fact that the system bandwidth is shortened
( ��� �3¡£¢ ��� ).
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Figure 9.25 Step responses of the original (a) and compensated (b) systems
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9.5 MATLAB Case Study

Considertheproblemof finding a controllerfor theshippositioningcontrolsystem
given in Problem7.5. The goal is to increasestability phasemargin above ¤ .
The problemmatricesare given by

Thetransferfunctionof theshippositioningsystemis obtainedby theMATLAB
instruction [num,den]=ss2tf(A,B,C,D) and is given by

The phaseand gain stability margins of this systemare ¤ and
, with the crossoverfrequencies ¥§¦ and ¥2¨

(seethe Bodediagramsin Figure9.26). From known valuesfor the
phaseand gain margins, we can concludethat this systemhasvery poor stability
properties.

Sincethephasemargin is well belowthedesiredone,weneedacontrollerwhich
will makeup for almosta ¤ increasein phase.In general,it is hard to stabilize
systemsthat havelargenegativephaseandgain stability margins. In the following
we will designphase-lead,phase-lag,and phase-lag-leadcontrollersto solve this
problemand comparethe resultsobtained.
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Figure 9.26: Bode diagrams of a ship positioning control system

Phase-LeadController: By usingAlgorithm 9.1 with ©�ª�« ¬ ¬ ¬
we get a phasemargin of only ¬ , which is not satisfactory. It is necessary
to makeup for ©�ª�« ¬ ¬ ¬ . In the latter casethe compensatorhas
the transfer function

­
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Figure 9.27: Bode diagrams for a ship positioning system:
(a) original system, (b) phase-lead compensated system

The gainandphasestability marginsof the compensatedsystemarefound from
the above Bode diagramsas , ® , and the
crossoverfrequenciesare ¯�°m¯ ¯�±#¯ . The step
responseof the compensatedsystemexhibits an overshootof 45.47%(seeFigure
9.28).

Phase-Lag-LeadController: By using Algorithm 9.3 we find the compensator
transfer function as

¯
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Figure 9.28: Step response of the compensated system with a phase-lead controller
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Figure 9.29: Bode diagrams for a ship positioning control system:
(a) original system, (b) phase-lag-lead compensated system
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The phase and gain margins of the compensatedsystem are given by²
and the crossoverfrequenciesare ³2´#³

³§µ#³ .
From the stepresponseof the compensatedsystem(seeFigure 9.30), we can

observethat this compensatedsystemhasa smallerovershootanda larger rise time
than the systemcompensatedonly by the phase-leadcontroller.
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Figure 9.30: Step response of the compensated system with a phase-lag-lead controller

Phase-LagController: If we choosea newgaincrossoverfrequencyat ¶2·#¸3¹�º
, thephasemargin at thatpointwill clearlybeabove » . Proceedingwith

a phase-lagcompensatordesign,accordingto Algorithm 9.2,weget
and , which implies ¶ and ¶ ¼¾½ . Using

the correspondingphase-lagcompensatorproducesvery good stability margins
for the compensatedsystem, i.e. and » . The
maximumpercentovershootobtainedis muchbetterthanwith the previouslyused
compensatorsand is equal to . However, the closed-loopstep
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responserevealsthat the obtainedsystemis too sluggishsincethe responsepeak
time is ¿ (note that in the previoustwo casesthe peaktime is only
a few seconds).

Onemaytry to getbetteragreementby designingaphase-lagcompensator,which
will reducethephasemargin of thecompensatedsystemto just above À . In order
to do this we write a MATLAB program,which searchesthe phaseBodediagram
andfinds the frequencycorrespondingto the prespecified valueof the phase.That
frequencyis usedasa newgaincrossoverfrequency.Let À .
The MATLAB programis

w=0.1;
while pi+
angle(1/((j*w)*(j*w+1.55)*(j*w+0.0546)))<0.6109;
w=w–0.01;
end
dG=0.8424*abs(1/((j*w)*(j*w+1.55)*(j*w+0.0546)));

This programproduces Á2Â#Ã3Ä1Å and . From
step4 of Algorithm 9.2 we obtain the phase-lagcontrollerof the form

Á

The Bodediagramsof the compensatedsystemaregiven in Figure9.31.



424 FREQUENCY DOMAIN CONTROLLER DESIGN

10
−6

10
−4

10
−2

10
0

10
2

−200

0

200

Frequency (rad/sec)

G
ai

n 
dB

Gm=23.48 dB, (w= 0.2651)   Pm=31.44 deg. (w=0.06043)

10
−6

10
−4

10
−2

10
0

10
2

0

−90

−180

−270

−360

Frequency (rad/sec)

P
ha

se
 d

eg

Figure 9.31: Bode diagram of the phase-lag compensated system

It can be seen that the phaseand gain margins are satisfactoryand given byÆ
and . The actual gain crossoverfrequenciesare

Ç�È#É%Ê1Ë and Ç�ÌmÉ%Ê�Ë .

The closed-loopstep responseof the phase-lagcompensatedsystem,given in
Figure9.32,showsthatthepeaktimeis reducedto Ì —which is still fairly
big—andthat the maximumpercentovershootis increasedto ,
which is comparableto the phase-leadandphase-lag-leadcompensation.
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Figure 9.32: Step response of the phase-lag compensated system

Comparingall threecontrollersand their performances,we can concludethat,
for this particularproblem,the phase-lagcompensationproducesthe worst result,
and thereforeeither the phase-leador phase-lag-leadcontrollershouldbe used.


