Chapter Nine

Frequency Domain Controller Design

9.1 Introduction

Frequencydomaintechniquegogethemwith theroot locusmethodhavebeenvery

popular classicalmethodsfor both analysisand designof control systems. As

they arestill usedextensivelyin industryfor solving controller designproblems
for manyindustrialprocesseandsystemsthey haveto be includedin academic
curricula and moderntextbookson control systems. This chapteris organized
as follows.

In Section9.2 we study the open-and closed-loopfrequencytransferfunc-
tions and identify the frequencyresponsgparametersuchas systemfrequency
bandwidth, peak resonanceand resonantfrequency.

In Section9.3we showhow to readthe phaseandgain stability magins,and
thevaluesof the steadystateerrorparameterds,, K,, K, from thecorresponding
frequencydiagrams,known as Bode diagrams. Bode diagramsrepresentthe
magnitudeand phaseplots of the open-looptransferfunction with respecto the
angularfrequencyw. Theycanbe obtainedeitheranalyticallyor experimentally.
In this chapterwe presentonly the analytical study of Bode diagrams,though
it shouldbe mentionedthat Bode diagramscan be obtainedfrom experimental
measurementperformedon a real physicalsystemdriven by a sinusoidalinput
with a broadrangeof frequencies.

The controller designtechniquebasedon Bode diagramsis consideredn
Section9.4. 1t is shownhow to usethe phase-lag phase-leadand phase-lag-
lead controllerssuchthat the compensatedystemshave the desiredphaseand
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382 FREQUENCY DOMAIN CONTROLLER DESIGN

gain stability magins and steadystateerrors. It is also possiblein somecases
to improve the transientresponsesince the dampingratio is proportionalto the

phasemargin, andthe responseise time is inverselyproportionalto the system
bandwidth.

Section9.5 containsa casestudyfor a ship positioningcontrol system,and
Section9.7 represents laboratoryexperiment.In Section9.6 we commenton
discrete-timecontroller design.

Chapter Objectives

The main objectiveof this chapteris to showhow to useBode diagramsas
a tool for controller designsuchthat compensatedystemshave,first of all, the
desiredohaseandgain stability magins andsteadystateerrors. Controllersbased
on Bode diagramscan also be usedto improve someof the transientresponse
parametersbut their designis far more complicatedand far less accuratethan
the designof the correspondingontrollersbasedon the root locus method.

9.2 Frequency Response Characteristics
The open-and closed-loopsystemtransferfunctions are definedin Chapter2.
For a feedbackcontrol systemthesetransferfunctionsarerespectivelygiven by

Open—loop: G(s)H(s), Closed—loop : =M(s) (9.1

1+ G(s)H(s)
The frequencytransfer functions are defined for sinusoidalinputs having all
possiblefrequenciesw € [0,4+0o0). They are obtainedfrom (9.1) by simply
settings = jw, thatis

G(jw) B -
T GG iGw) ~ MU (; )

Usingthe frequencytransferfunctionsin the systemanalysisgivescomplete
information aboutthe system’ssteadystatebehavior,but not aboutthe system’s
transientresponse Thatis why controller designtechniquesasedon frequency
transferfunctionsimprove primarily the frequencydomainspecficationssuchas
phaseandgain relative stability magins and steadystateerrors. However,some
frequencydomain specificationsto be definedsoon, can be relatedto certain

Open—loop: G(jw)H(jw), Closed—loop:
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time domain specifications.For example,the wider the systembandwidth,the
fastersystemresponsewhich implies a shorterresponseise time.

Typical diagramsfor the magnitudeand phaseof the open-loopfrequency
transferfunction arepresentedn Figure9.1. Fromthis figure oneis ableto read
directly the phaseand gain stability maigins and the correspondingphaseand
gain crossoveffrequenciesin Section9.3, wherewe presenthe Bodediagrams,
which also representhe magnitudeand phaseplots of the open-loopfrequency
transferfunction with respectto frequency,with magnitudebeing calculatedin
decibels(dB), we will showhow to readthe valuesfor K, K, K,,.

|G(wH(o)|
A

av

argG(jw)H(jw)

gsvy

-180

Figure 9.1: Magnitude (a) and phase (b) of the open-loop transfer function

In additionto the phaseandgain magins, obtainedfrom the open-loopfre-
guencytransferfunction, other frequencyresponseparametersan be obtained
from the frequencyplot of the magnitudeof the closed-loopfrequencytrans-
fer function. This plot is given in Figure 9.2. The main closed-loopfrequency
responseparametersare: systembandwidth, peakresonanceand resonantfre-
guency. They are formally defined below.
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System Bandwidth: This representshe frequencyrange in which the
magnitudeof the closed-loopfrequencytransferfunction drops no more than
3dB (decibels)from its zero-frequencyalue. The systembandwidthcan be
obtainedfrom the next equality, which indicatesthe attenuatiorof 3 dB, as

M(jomw)] = | M(0)] = waw ©3)

It happensto be computationallyvery involved to solve equation (9.3) for
higher-ordersystems,and hencethe systembandwidthis mostly determined
experimentally.For second-ordesystemghe frequencybandwidthcanbe found
analytically (see Problem9.2).

Peak Resonance: This is obtainedby finding the maximumof the function
|M(jw)| with respectto frequencyw. It is interestingto point out that the
systemshaving large maximumovershoothavealso large peakresonanceThis
is analytically justified for a second-ordesystemin Problem9.1.

Resonant Frequency: This is the frequencyat which the peakresonance
occurs. It can be obtainedfrom

d .
M) =0 > w,

Mr = mma){ U(io)

v
)

0 10)r Wy
<« Bandwidth ——»|

Figure 9.2: Magnitude of the closed-loop transfer function
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9.3 Bode Diagrams

Bode diagramsare the main tool for frequencydomain controller design, a
topic that will be presentedn detail in Section9.4. In this sectionwe show
how to plot thesediagramsand how to readfrom them certain control system
characteristicssuch as the phaseand gain stability maigins and the constants
requiredto determinesteadystateerrors.

Bodediagramsrepresentthe frequencyplots of the magnitudeand phaseof
the open-loopfrequencytransferfunctionG/(jw ) (jw). Themagnitudes plotted
in dB (decibels)on thelog w scale. In generalthe open-loopfrequencytransfer
function containselementarnyfrequencytransferfunctionsrepresentinga constant
term (static gain) and dynamic elementslike systemreal polesand zerosand
complexconjugatepolesand zeros. We first studyindependentlythe magnitude
and frequencyplots of eachof theseelementaryfrequencytransferfunctions.
Sincethe open-loopfrequencytransferfunction G(jw)H (jw) is givenin terms
of productsand ratios of elementarytransferfunctions, it is easyto seethat
the phaseof G(jw) H (jw) is obtainedby summingand subtractingphaseof the
elementarytransferfunctions Also, by expressinghe magnitudeof the open-
loop transferfunction in decibels,the magnitude|G/(jw)H (jw)|,;p is obtained
by adding the magnitudesof the elementaryfrequencytransfer functions. For
example

K(jw+ 21)(jw + 22)
(jw)(jw + p2)(jw + pa)

|G(jw)H(jw)|dB = 20logy,

= 20logyo | K| + 20logq [jw + 21| + 201ogy |jw + 22|

+ 20 log;,

1
— 201
G + 20 log;q

+ 201og;

Jw + p2 Jw+ p3

and
arg {G(jw)H (jw)} = arg {K } + arg {jw + =1} + arg {jw + 22}

—arg {jw} — arg {jw + p2} — arg {jw + p3}

In the following we show how to draw Bode diagramsfor elementary
frequencytransferfunctions.
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Constant Term: Since

__— . | positive number K > 1
Kap = 20logyo K = {negative number K <1
(9.4)

are K — 0°, K >0
8R T 1 -180°, K <0

the magnitudeand phaseof this elementare easily drawn and are presentedn
Figure 9.3.

A Klas VAS

K>1

0 arg{K>0
0 > logw o } » logw

K<1
arg{K<0
) 0 g{ }

Figure 9.3: Magnitude and phase diagrams for a constant

Pure Integrator: The transferfunction of a pureintegrator,given by

1

Gjw) = o (9.5)
hasthe following magnitudeand phase
1
(G(jw)lap = 20log1 = = ~2logjew, argGljw) = —90°  (9.6)

It canbe observedthat the phasefor a pureintegratoris constantwhereasthe
magnitudeis representedy a straight line intersectingthe frequencyaxis at
w = 1 andhavingthe slopeof —20 dB/decade. Both diagramsare represented
in Figure 9.4. Thus, a pure integrator introducesa phaseshift of —90° and a
gain attenuationof —20 dB/decade.
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OO

> logw

-90°

Figure 9.4: Magnitude and phase diagrams for a pure integrator

Pure Differentiator: The transferfunction of a pure differentiatoris given
by
G(jw) = jw 9.7)

Its magnitudeand phaseare easily obtainedas
[G(jw)lyp = 20logpw,  argG(jw) = 90° (9.8)

The correspondingrequencydiagramsare presentedn Figure 9.5. It can be
concludedthat a pure differentiator introducesa positive phaseshift of 90° and
an amplificationof 20 dB/decade.

Real Pole: The transferfunction of a real pole, given by
1

. P
G(ijw) = — - 9.9
(jw) ptio 1452 (9.9)

hasthe following magnitudeand phase
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WALC)

90°

0° » logw

Figure 9.5: Magnitude and phase diagrams for a pure differentiator

1/2

N (%)2] , argGjw) = —tan | (%})

(9.10)

|G(jw)|dB = —20log,

The phasediagramfor a real pole canbe plotteddirectly from (9.10). It can
be seenthatfor large valuesof w, w > p, the phasecontributionis —90°. Forw
small,w < p, the phaseis closeto zero,andfor w = p the phasecontributionis
—45°. This informationis sufficient to sketcharg G/(jw) asgivenin Figure9.6.

For the magnitude,we seefrom (9.10) that for small w the magnitudeis
very closeto zero. For large valuesof w we can neglectl comparedto w/p
so that we have a similar result as for a pure integrator,i.e. we obtain an
attenuatiorof 20 dB/decade. For small andlarge frequenciesve havestraight-
line approximations.Thesestraightlinesintersectatw = p, which is alsoknown
as a corner frequency The actual magnitudecurve is below the straightline

approximations.It hasthe biggestdeviationfrom the asymptotesat the corner
frequency(seeFigure 9.6).
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Figure 9.6: Magnitude and phase diagrams for a real pole

Real Zero: The transferfunction of an elementrepresentinga real zerois
given by

Gljw) = 2+ jw) = 1 +i(%) (9.11)

z 2
Its magnitudeand phaseare

w2 1/2 w

|G(jw)|;p = 201ogg [1 + (;) ] ,  argG(jw)=tan ! (;) (9.12)

Using analysissimilar to that performedfor a real pole, we can concludethat
for small frequenciesan asymptotefor the magnitudeis equalto zero and for

large frequenciesthe magnitudeasymptotehas a slope of 20 dB/decade and

intersectsthe real axis at w = z (the cornerfrequency). The phasediagramfor

small frequenciesalso hasan asymptoteequalto zeroandfor large frequencies
an asymptoteof 90°. The magnitudeand phaseBode diagramsfor a real-zero
elementare representedn Figure 9.7.
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Figure 9.7: Magnitude and phase diagrams for a real zero

Complex Conjugate Poles: Thetransferfunction of anelementrepresenting
a pair of complexconjugatepolesis in fact a transferfunction of a second-order
system,which hasthe form

w? 1

Gjw) = . = 9.13
(Jw) (]‘w)Q—I—QCwn(jw)—}—w% ( _%) _I_j2CL:u_n ( )

The magnitudeand phaseof this second-ordesystemare given by

w 2 wg 2
|G(jw)|gp = —20logyg [(ifn ) + (1 - w2> ]
arg G(jw) = — tan™* (M>

For large valuesof w the correspondingapproximationsof (9.14) are

1/2

(9.14)

. w2 w
|G(jw)lgp = —20logy, (w—2> = —40logy, (E)

7
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2(wy,
—w

arg {G(jw)} ~ —tan™? ( ) — —tan~! (07) = —180°

At low frequencieghe approximationsanbe obtaineddirectly from (9.13),that
S . w2 . .
Gw)m 5 =1 = [G(jw)lgp = 0, arg{G(jw)} = 0°

Thus, the correspondingasymptotegor small and large frequenciesare, respec-
tively, zeroand —40 dB/decade (with the cornerfrequencyatw = w,) for the
magnitude,andzero and —180° for the phase.At the cornerfrequencyw,, the
phaseis equalto —90°. The correspondingBode diagramsare representedn

Figure9.8. Notethatthe actualplot in the neighborhoof the cornerfrequency
dependson the valuesof the dampingratio (. Severalcurvesare shown for

0.1 < ¢ < 1. It canbe seenfrom Figure 9.8 that the smaller(, the higher peak
of the magnitudeplot.

G(iwlyg 4 =01
// =93
N 10
0 0.1 IS 14\\\\\\ ; > log(w/wy)
=1 3
\l:‘\\\
20 + N
40 + )
» log(w/ey)

Figure 9.8: Magnitude and phase diagrams for complex conjugate poles
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Complex Conjugate Zeros: An elementthat hascomplexconjugatezeros
can be representedn the form

: 2 2
G(jw) =1+ 2§j(§) + (‘i—w) =1- (%) +j2C(wi) (9.15)

so that the corresponding@@ode diagramswill be the mirror imagesof the Bode
diagramsobtainedfor the complexconjugatepolesrepresentedby (9.13). In the

caseof complexconjugatezeros theasymptotegor smallfrequenciegreequalto

zerofor both the magnitudeand phaseplots; for high frequencieshe magnitude
asymptotehas a slope of 40 dB/decade and startsat the corner frequencyof

w = wy,, andthe phaseplot asymptoteis 180°.

9.3.1 Phase and Gain Stability Margins from Bode Diagrams

It hasbeenalreadyindicatedin Figure9.1 howto readthe phaseandgain stability
marginsfrom the frequencymagnitudeandphaseplotsof the open-loopfeedback
transferfunction. In the caseof Bode diagramsthe magnitudeplot is expressed
in dB (decibels)so that the gain crossoverfrequencyis obtainedat the point
of intersectionof the Bode magnitudeplot and the frequencyaxis. Bearingin
mind the definition of the phaseand gain stability magins givenin (4.54) and
(4.55), and the correspondingphaseand gain crossoverfrequenciesdefinedin
(4.56) and (4.57), it is easyto concludethat thesemamgins can be found from
Bode diagramsas indicatedin Figure 9.9.

Example 9.1: In this examplewe useMATLAB to plot Bode diagramsfor
the following open-loopfrequencytransferfunction

(Jjw+1)
jeoljeo +2) [(jeo)? + 20jw) + 2]

G(jw)H (jw) =

Bodediagramsareobtainedby usingthe MATLAB functionbode(num,den)
The phaseandgainstability maiginsandthe phaseandgain crossovefrequencies
can be obtainedby using [Gm,Pm,wcp,wcg]=margin(num,den) . Note
that the open-loopfrequencytransferfunction hasto be specifiedin terms of
polynomialsnum (numerator)and den (denominator).The MATLAB function
conv helpsto multiply polynomialsas explainedbelow in the programwritten
to plot Bode diagramsand find the phaseand gain magins for Example9.1.
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G(WHW)| gg
A

20logKp
Y
v Wcg

logw
-Gm g

(@) v

argG(jw)H(jw)

A

Figure 9.9: Gain and phase margins and Bode diagrams

num=[1 1];
di=[1 O],
d2=[1 2],
d3=[1 2 2j;

denl=conv(dl,d2);
den=conv(denl,d3);

bode(num,den);
[Gm,Pm,wcp,wcg]=margin(num,den);

The correspondind@Bode diagramsare presentedn Figure9.10. The phase
and gain stability magins and the correspondingcrossoverfrequenciesare ob-

tained as

G'm = 8.9443dB, Pm = 82.2462°, w., = 1.7989rad/s, w., = 0.2558 rad/s

&
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Figure 9.10: Bode diagrams for Example 9.1

Example 9.2: Considerthe following open-loopfrequencytransferfunction
10(jw + 4)

G+ D(jw + 2)(jw + 3)

The correspondingBode diagramsobtainedby following the sameMATLAB

instructionsas in Example9.1 are given in Figure 9.11. The phaseand gain
maurgins and the phaseand gain crossovelfrequenciesare obtainedas

Gm =00, Pm =43.1488°, w., = 00, we = 3.0576rad/s

Gjw)H (jw) =

9.3.2 Steady State Errors and Bode Diagrams

Steadystateerrorscanbe indirectly determinedrom Bode diagramsby reading
the valuesfor constantsk,, K,,, K, from them. Knowing theseconstantsthe
correspondin@rrorsareeasilyfoundby usingformulas(6.30),(6.32),and(6.34).
The steadystateerrorsand correspondingconstantsk’,, K, K, are first of all

determinedby the systemtype, which representshe multiplicity of the pole at
the origin of the open-loopfeedbackiransferfunction,in general representethy
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Figure 9.11: Bode diagrams for Example 9.2

K(jw + 21)(jw + 22) -

G G9) = GO ot )Gt o)

(9.16)
This can be rewritten as
Koo (14 22) (14 22) .

p1p2...(jw)r(1+;—“:><1+;—‘:>

Kp(1+2)(

1
Gy (14 42) (1+32) -

G(jw)H (jw) =

(9.17)

where

Kp=—-2"" (9.18)
pip2 -

is known as Bode’sgain, andr is the type of feedbackcontrol system.
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For controlsystem=f typer = 0, the positionconstanticcordingto formula
(6.31) is obtainedfrom (9.17) as

K, = i (1 ! %) <1 ! %) = Kp (9.19)

(jw)o(l-l- ;_u:) <1+ ;_b:) oo ljw=0

It follows from (9.17)—(9.19)hat the correspondingnagnitudeBode diagramof
type zerocontrol systemdor smallvaluesof w is flat (hasa slopeof 0 d B) andthe
valueof 20 log K = 20log K,. Thisis graphicallyrepresentedh Figure9.12.

20logK, \
y » logw

»
N\
N\
\

IGGWH( 45 A

Figure 9.12: Magnitude Bode diagram of type
zero control systems at small frequencies

For control systemf typer = 1, the open-loopfrequencytransferfunction
is approximatedat low frequenciesby

I(B(1+é—°f>(1+i—‘:)---  Kp

(Jw)l(l + ;—“’) (1 i ;—W) o (jw) (9.20)

1

It follows that the correspondingnagnitudeBode diagramof type one control
systemsgfor small valuesof w hasa slopeof —20 dB/decade andthe valuesof

Kp

20log x_
Jjw

= 20log |Kg| — 201og |w| (9.21)

From (9.20) and (6.33) it is easyto concludethat for type one control systems
the velocity constantis K, = Kpg. Using this fact and the frequencyplot of
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(9.21),we concludethat K, is equalto the frequencyw™ atwhich theline (9.21)
intersectsthe frequencyaxis, that is

0=20log|Kg|—20log|w*| = Kp=w"=K, (9.22)

This is graphicallyrepresentedn Figure 9.13.

IG(WH(W)lyg IG(WH(W)lyg
A A
-20dB/dec
o =K, -20dB/dec
w=1 20logKy
‘ » logw s
20l0g Ky | DS =Ky log &
w=1
K, <1 Ky>1

@ (b)

Figure 9.13: Magnitude Bode diagram of type
one control systems at small frequencies

Note thatif K, = w* > 1, the correspondingrequencyw” is obtainedat the
point where the extendedinitial curve, which has a slope of —20dB/decade,
intersectsthe frequencyaxis (seeFigure 9.13b).

Similarly, for type two control systemsy = 2, we haveat low frequencies
I(B(1+'i—°f> (1+M) Ks

Gl =) (e ) P o2

whichindicatesaninitial slopeof —40 dB/decade andafrequencyapproximation
of

Kp

20log = 20log|Kp| — 201log ‘wﬂ = 20log|Kp| —40logw (9.24)

From (9.23) and (6.35) it is easyto concludethat for type two control systems
the acceleratiorconstantis K, = Kp. From the frequencyplot of the straight
line (9.24),it follows that K = (w**)2, wherew** representshe intersectionof
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the initial magnitudeBode plot with the frequencyaxis as representedh Figure
9.14.

4 [GUOHGW) g 4 [GIHG]g
-40dB/dec
W = Ka -40 dB/dec
/ 5= e
0_0_1 » logw < /
20logK, |- " N ¥ =1, jogw
20logK, R LN

@ (b)

Figure 9.14: Magnitude Bode diagram of type
two control systems at small frequencies

It can be seenfrom Figures9.12-9.14that by increasingthe values for
the magnitudeBode diagramsat low frequencieqi.e. by increasingKp), the
constantsk’,, K, and K, areincreased.Accordingto the formulasfor steady
stateerrors, given in (6.30), (6.32), and (6.34) as

1 1 2

essstep - 1 _I_ I(p) essramp - I(vv essparabohc = I(a

we concludethat in this casethe steadystateerrors are decreased.Thus, the
bigger K g, the smaller the steadystate errors.

Example 9.3: ConsiderBode diagramsobtainedin Examples9.1 and 9.2.
The Bode diagramin Figure 9.10 hasan initial slopeof —20 dB/decade which
intersectsthe frequencyaxis at roughly w* = 0.2rad/s. Thus,we havefor the
Bode diagramin Figure 9.10

K,=0, K,~02 K,=0

Using the exactformula for K,, given by (6.33), we get

- (s+1) -
Ky = il_{% {Ss(s +2)(s24+2s+2)) 0.25
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In Figure9.11the initial slopeis 0 dB, and hencewe havefrom this diagram
20log K, ~15 = K,~562, K,=0, K,=0

Using the exactformula for K, asgiven by (6.31) produces

o s+ )
Ky = limy { GrDs+2)s+ 3)} =607

Notethatthe accurateesultsaboutsteadystateerror constant@areobtainedeasily
by usingthe correspondindormulas;hencethe Bodediagramsare usedonly for
quick and rough estimatesof theseconstants.

9.4 Compensator Design Using Bode Diagrams

In this sectionwe showhow to useBode diagramsn orderto designcontrollers
suchthatthe closed-loopsystemhasthe desiredspecifications Threemain types
of controllers—phase-leaghase-lagand phase-lag-leadontrollers—havebeen
introducedin the time domainin Chapter8. Here we give their interpretation
in the frequencydomain.

We presenthedesignprocedurdor the generakontrollersmentionedabove.
Similar andsimplerproceduresanbe developedor PD, PI, andPID controllers.
After masteringthe designwith phase-leadphase-lagand phase-lag-leadon-
trollers, studentswill be able to proposetheir own algorithmsfor PD, PI, and
PID controllers.

Contmoller designtechniguesn thefrequencydomainwill be governedoy the
following facts:

(a) Steadystateerrors are improvedby increasingBode’sgain Kp.
(b) Systenstability is improvedby increasingphaseand gain mamgins.
(c) Overshoots reducedby increasingthe phasestability margin.

(d) Risetimeis reducedby increasingthe system’sbandwidth.

However, very often it is not possibleto satisfy all of theserequirementsat
the sametime, and control engineershave to compromisebetweenseveral
contradictingrequirements.
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The first two items, (a) and (b), have beenalreadyclarified. In orderto
justify item (c), we considerthe open-looptransferfunction of a second-order
systemgiven by

w2

MO = G +26an) %)

whosegain crossoverfrequencycan be easily found from

w2

|G(jweg/H (jweg)| = = =1 (9.26)

wy/w? 4+ 4¢%w? B

leading to

Weg :wn\/\/l+4C2—242 (9.27)

The phaseof (9.25) at the gain crossoverfrequencyis

. . o 1 W
arg (g H (g} = =907 — ™! 220 (9.28)

so that the correspondingphasemaigin becomes
1 2¢
\/\/1 + 402 - 2¢2

Plottingthe function Pm((), it canbe shownthatit is amonotonicallyincreasing
function with respectto (; we thereforeconcludethat the higher phasemargin,
the larger the dampingratio, which impliesthe smallerthe overshoot

Item (d) cannotbe analytically justified sincewe do not havean analytical
expressionfor the responserise time. However, it is very well known from
undegraduatecourseson linear systemsandsignalsthatrapidly changingsignals
havea wide bandwidth. Thus, systemshat are able to accommodatéastsignals
musthave a wide bandwidth

In the remainderof this section,we first presentstandarccontrollers(phase-
lag, phase-leadandphase-lag-lead the frequencydomain,andthenshowhow
to usethesein orderto achievethe desiredsystemspecifications.Eachdesign
techniquewill be givenin an algorithmic form, and eachwill be demonstrated
by an example.

Pm = tan~ = Pm(() (9.29)
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9.4.1 Phase-Lag Controller

The transferfunction of a phase-lagcontrolleris given by

. 1+‘£
&ylﬂw" = acm (9:30)

) pt+jw L+

Glag(jw) = (

The correspondingmagnitudeand phasefrequencydiagramsfor a phase-lag
controller are presentedn Figure 9.15.

 [Cciwlyg
p, z log w
0 : y >
20log(p1/ z1)
4 Arg{G(jo)}
Wmax log w
° v ]
Pmax

Figure 9.15: Magnitude approximation and exact phase of a phase-lag controller

Notethatfor the magnitudediagramit is sufficient to useonly the straightline
approximationsfor a completeunderstandingf the role of this controller. In
general,straightlineapproximationscan be usedfor almostall Bode magnitude
diagramsn controllerdesignproblems.However,phaseBodediagramsarevery
sensitiveto changesn frequencyin the neighborhoof the cornerfrequencies,
and so shouldbe drawn as accuratelyas possible.

Due to attenuationof the phase-lagcontroller at high frequencies,the
frequencybandwidthof the compensatedystem(controllerandsystemin series)
is reduced. Thus, the phase-lagcontmllers are usedin order to deceasethe
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systembandwidth(to slow downthe systenresponse).In addition, they can be
usedto improve the stability maigins (phaseand gain) while keepingthe steady
state errors constant

Expressiongor w,, ., andg,,,, of a phase-lagcontrollerwill be derivedin
the next subsectiorin the contextof the study of a phase-leactontroller. As a
matterof fact, bothtypesof controllershavethe sameexpressiongor thesetwo
important designquantities.

9.4.2 Phase-Lead Controller
The transferfunction of a phase-leactontroller is

- p2\ 22+ jw  1+JZ
Glead(jw) = [ 22 bR Y 9.31
wilio) = (2) = e moa 03

andthe correspondingnagnitudeand phaseBode diagramsare shownin Figure
9.16.

, 1Geilgg
20log(po/z )
; A » logw
0 Y3 p2
4 Arg{G(io)}
qpmax
/\ . log
0 Wmax

Figure 9.16: Magnitude approximation and exact phase of a phase-lead controller

Due to phase-leadontroller (compensatoramplification at higher frequencies,
it increaseshebandwidthof the compensatedystem.Thephase-leagtontollers
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are usedo improvethegain andphasestabilitymarginsandto increasethesystem
bandwidth(deceasethe systenresponseise time)

It follows from (9.31)that the phaseof a phase-leactontrolleris given by

arg {Greqaq(jw)} = tan™! (3) —tan~! (i> (9.32)
22 P2
so that
d .
o arg {Greaa(jw)} = 0 = Whar = V/Z2P2 (9.33)
Assumethat
pPr=azy, a>1 = Wy = P2 (9.34)
’ Va
Substitutingw,, 4 In (9.32) implies
a—1
tan ¢ma1‘ = m (935)

It is left as an exercisefor studentsto give detailed derivationsof formula
(9.35)—seeProblem9.3.

It is easyto find, from (9.35), that the value for parametera in terms of
Omaz 1S given by

_ 1 +sin ¢mao:
"1 —sin ¢pas

(9.36)

Note that the sameformulasfor w,,,., (9.33), andthe parametew, (9.36),
hold for a phase-lagcontller with pq, z; replacingps, z; andwith p; = azq,
a < 1.

9.4.3 Phase-Lag-Lead Controller

The phase-lag-leadontroller hasthe featuresof both phase-lagand phase-lead
controllersand can be usedto improve both the transientresponseand steady
stateerrors. However,its designis more complicatedthan the designof either
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phase-lagr phase-leadontrollers. The frequencytransferfunction of the phase-
lag-lead controller is given by

o ot etz _ am (1+35)(1+72)
R R (1+33)

C(+az)(1rag)

= ] - ) Z1%2 = P1p2,
(1+i) (1+42)

The Bode diagramsof this controller are shownin Figure 9.17.

(9.37)

P2>z22>21 >0

, 1Geilgg
Py 2 2 P 9@
O \ '
2 A5G}
0 Icg W

Figure 9.17: Bode diagrams of a phase-lag-lead controller

9.4.4 Compensator Design with Phase-Lead Controller

The following algorithm can be usedto designa controller (compensatorjvith
a phase-leachetwork.
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Algorithm 9.1:
1. Determinethe value of the Bode gain K givenby (9.18) as
Kp = Kzizg---
pip2- -

suchthat the steadystateerror requirements satisfied.

2. Findthe phaseandgain mamins of the original systemwith Kg determined
in step 1.

3. Findthephasdifference A¢, betweerthe actualanddesiredphasemaigins
andtake ¢,,,, to be 5°-10° greaterthanthis difference.Only in rare cases
shouldthis be greaterthan 10°. This is dueto the fact that we haveto give
an estimateof a new gain crossoveffrequency which cannot be determined
very accurately(seestep5).

4. Calculatethe valuefor parameter from formula (9.36),i.e. by using

1+ sin¢qn

“= 1 — sin @an

5. Estimatea valuefor a compensator'gole suchthatw,, ., is roughlylocated
at the new gain crossoverfrequency W,z X Wegnew- AS a rule of thumb,

addthe gain of AG' = 20log(a)[dB] at high frequenciedo the uncompen-
satedsystemand estimatethe intersectionof the magnitudediagramwith

thefrequencyaxis, sayw;. The newgain crossoveifrequencyis somewhere
in betweenthe old w., andw;. Someauthors(Kuo, 1991) suggesffixing
the new gain crossoverfrequencyat the point where the magnitudeBode
diagramhasthe value of —0.5AG[dB]. Using the value for parametera
obtainedin step 4 find the value for the compensatopole from (9.34) as
—Ppe = —wmarv/a andthe value for compensator'seroas —z, = —p./a.
Note that one canalsoguessa valuefor p. andthenevaluatez. andw, ;.
The phase-leadcompensatonow can be representedby

>1

as + pe

GC(S) = s+p

6. Draw the Bode diagramof the given systemwith controller and checkthe
valuesfor the gainandphasemamins. If they aresatisfactorythe controller
designis done, otherwiserepeatsteps1-5.
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The next exampleillustratescontroller designusing Algorithm 9.1.

Example 9.4: Considerthe following open-loopfrequencytransferfunction

K(jw + 6)

CUDHG) = Fo e F )0 1 3)

Stepl. Let the designrequirementde setsuchthatthe steadystateerror dueto
a unit stepis lessthan 2% andthe phasemamgin is at least45°. Since

1 1 ) K x6

— = k =— =K
1+k, 1+kg ~PTIx2x3

eSS

we concludethat ' > 50 will satisfythe steadystateerror requiremenbf being
lessthan 2%. We know from the root locus techniquethat high static gains
candamagesystemstability, and so for the restof this designproblemwe take
K = 50.

Step2. We drawBodediagramsof the uncompensateslystemwith the Bodegain
obtainedin stepl and determinethe phaseand gain maigins and the crossover
frequencies. This can be done by using the following sequenceof MATLAB
functions.

[den]=input(’enter denominator’);
% for this example [den]=[1 6 11 6],
[num]=input(’enter numerator’);

% for this example [num]=[50 300];
[Gm,Pm,wcp,wcg]=margin(num,den);
bode(num,den)

The correspondingBode diagramsare presentedn Figure 9.18a. The phase
and gain mamgins are obtainedas Gm = oo, Pm = 5.59° and the crossover
frequenciesare w., = 7.5423rad/s, w, = oo.

Step3. Sincethe desiredphaseis well abovethe actual one, the phase-lead
controller must make up for 45° — 5.59° = 39.41°. We add 10°, for the

reasonexplainedin step3 of Algorithm 9.1, sothat ¢,,,, = 49.41°. The above
operationscan be achievedby using MATLAB asfollows
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Figure 9.18: Bode diagrams for the original system
(a) and compensated system (b) of Example 9.4

% estimate  Phimax with Pmd = desired phase margin ;
Pmd=input('enter desired value for phase margin’) ;
Phimax=Pmd-Pm+10;
% converts Phimax into radians ;
Phirad=(Phimax/180)*pi ;
Step4. Here we evaluatethe parameter accordingto the formula (9.36) and
geta = 7.3144. This canbe donein MATLAB by

a=(1+sin(Phirad))/(1—sin(Phirad)) ;

Step5. In order to obtain an estimatefor the new gain crossoverfrequency
we first find the controller amplification at high frequencieswhich is equalto
20log(a) = 17.2836 dB = AG p. The magnitudeBode diagramincreasedy
AGyp at high frequenciedntersectsthe frequencyaxis at w,,,, ~ 10.5rad/s.
We guess(estimate)the value for p. as p. = 25, which is roughly equalto
wWmazv/a. By usingp. = 25 andforming the correspondingompensatonyve get
for the compensatedystemPme = 48.2891° atw,g,c, = 13.8519rad/s, which
is satisfactory.This stepcan be performedby MATLAB asfollows.
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% Find amplification at high frequencies, DG
DG=20*log10(a) ;
% estimate  value for pole —pcfrom Step 5;

pc=input(’enter estimated value for pole pc) ;
% form compensator’s numerator ;

nc=[a pc];

% form compensator’s denominator ;

dc=[1 pc];

% find the compensated system transfer function ;
numc=conv(hum,nc) ;

denc=conv(den,dc) X
[Gmc,Pmc,wcp,wcg]=margin(numc,denc) ;
bode(numc,denc)

The phase-leaccompensatoobtainedis given by
Gc(s) _ 7.3144s + 25 _ as + py
s+ 25 S+ p2

Step6. The Bode diagramsof the compensatedontrol systemare presentedn
Figure9.18b. Both requirementare satisfied,andthereforethe controllerdesign
procedureis successfullycompleted.

It is interestingto comparethe transientresponsecharacteristicsof the
compensatednduncompensateslystems.This cannotbeeasilydoneanalytically
since the ordersof both systemsare greaterthan two, but it can be simply
performedby using MATLAB. Note that num, den, numc, denc represent,
respectivelythe numeratoranddenominatoref the open-loopransferfunctions
of the original and compensatedystems. In order to find the corresponding
closed-looptransferfunctions,we usethe MATLAB function cloop , thatis

[cnum,cden]=cloop(num,den,-1);
% —1 indicates a negative unit feedback
[cnumc,cdenc]=cloop(humc,denc,-1);
The closed-loopstepresponsesre obtainedby
[y,x]=step(cnum,cden);
[yc,xc]=step(cnumc,cdenc);
and are representedn Figure 9.19. It can be seenfrom this figure that both
the maximumpercentovershootandthe settlingtime aredrasticallyreduced.In
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addition, the rise time of the compensatedystemis shortenedsincethe phase-
lead controllerincreasedhe frequencybandwidthof the system.

2

1.8F b
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141 / \ / \ q
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Figure 9.19: Step responses for the original (a) and compensated (b) systems

The highly oscillatory behaviorof the stepresponseof the original system
canbefully understoodrom its root locus,whichis givenin Figure9.20. It can
be seenthat the real part of a pair of complexconjugatepolesis very small for
almostall valuesof the staticgain, which causesigh-frequencyoscillationsand
very slow convegenceto the responsesteadystatevalue.

The closed-loopeigenvalueof the original and compensatedystems,ob-
tainedby MATLAB functionsroots(cden) androots(cdenc) , aregiven

by
A1 = —5.3288, /\2,3 = —0.3356 £ 57.5704

Ai2e = —9.6736 + j13.3989, A3, = —8.2628, As = —3.3900

which indicatesa big differencein the real partsof complexconjugatepolesfor
the original and compensatedgystems.
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Figure 9.20: Root locus of the original system

9.4.5 Compensator Design with Phase-Lag Controller

Compensatodesignusing phase-lagcontrollersis basedon the compensator’s
attenuationat high frequencies,which causesa shift of the gain crossover
frequencyto the lower frequencyregion wherethe phasemamgin is high. The
phase-lagcompensatocan be designedoy the following algorithm.

Algorithm 9.2:

1. Determinethe valueof the Bodegain K g that satisfieshe steadystateerror
requirement.

2. Find on the phaseBode plot the frequencywhich hasthe phasemaigin
equalto the desiredphasemagin increasedby 5° to 10°. This frequency
representshe new gain crossoverfrequency,wegpnew -

3. Readthe required attenuationat the new gain crossoverfrequency,i.e.
|AG(jwegnew )| ;5. @ndfind the parameter: from

~20tog (2 = 20108 (@) = 18G5
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which implies

) , 1
a=10"28G0weonew)logp — =
|AG(jwegnew)]
Note that
|AG (jwegnew)| = (K ||jwegnew + 21|ljWegnew + 22| - - -
cgnew -

|jwcgnew + Y4 | |jwcgnew + p2| Tt
4. Placethe controller zero one decadeto the left of the new gain crossover
frequency,that is

_ Wegnew

ST

Find the pole location from p. = az. = awegnew/10. The required
compensatohas the form

as + p.
S+ pe

Ge(s) =

5. Redrawthe Bodediagramof the given systemwith the controllerandcheck
the valuesfor the gain and phasemamins. If they are satisfactory,the
controller designis done,otherwiserepeatsteps1-5.

Example 9.5: Considera control systemrepresentedby

K
Gls) = s(s+2)(s+ 30)

Design a phase-lagcompensatorsuch that the following specificationsare
met. eg,,,., < 0.05, Pm > 45°. The minimum value for the static
gain that producesthe required steady state error is equalto K = 1200.
The original system with this static gain has phase and gain mamgins
given by Pm = 6.6449°, Gm = 4.0824dB and crossover frequencies of
Weg = 6.1031rad/s, we, = 7.746 rad/s.

The new gain crossoverfrequencycan be estimatedasweyne., = 1.4rad/s
sincefor thatfrequencythe phasemaigin of the original systemis approximately
50°. At wenew = l.4rad/s the required gain attenuationis obtained by
MATLAB as




412 FREQUENCY DOMAIN CONTROLLER DESIGN

wcgnew=1.4;

d1=1200;

gl=abs(j*1.4);

g2=abs(j*1.4+2);

g3=abs(j*1.4+30);

dG=d1/(g1*g2*g3);
which produces/AG(j1.4)| = 11.6906 anda = 1/|AG(j1.4)] = 0.0855. The
compensator'pole and zero are obtainedas —z, = —wggnew /10 = —0.14 and
—Pe = —AWegnew /10 = —0.0120 (seestep4 of Algorithm 9.2). The transfer
function of the phase-lagcompensatois

0.08555 + 0.0120
Go(s) =
(s) s+ 0.0120

The Bodediagramsof the original andcompensatedystemsaregivenin Figure
9.21.
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Figure 9.21: Bode diagrams for the original system
(a) and compensated system (b) of Example 9.5

The new phaseand gain mamgins and the actual crossoverfrequenciesare
Pme = 47.03°, Gme = 24.82dB, wegnew = 1.405rad/s, Weppew = 7.477rad/s
and so the designrequirementsare satidied. The stepresponse®f the original
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and compensatedystemsare presentedn Figure 9.22.
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Figure 9.22: Step responses for the original system
(a) and compensated system (b) of Example 9.5

It canbe seenfrom this figure thatthe overshoois reducedrom roughly 0.83to
0.3. In addition, it canbe observedhat the settling time is alsoreduced.Note
that the phase-lagcontroller reducesthe systembandwidth (wegnew < weg) SO
that the rise time of the compensatedystemis increased.

<

9.4.6 Compensator Design with Phase-Lag-L ead Controller

Compensatodesignusinga phase-lag-leadontrollercanbe performedaccording

to the algorithm given below, in which we first form a phase-leaccompensator
andthena phase-lagcompensator Finally, we connectthemtogetherin series.

Note that severaldifferent algorithmsfor the phase-lag-leadontroller design

can be found in the control literature.

Algorithm 9.3:

1. Setavaluefor thestaticgain K g suchthatthe steadystateerrorrequirement
is satisfied.

2. Draw Bodediagramswith K g obtainedin stepl andfind the corresponding
phaseand gain mamgins.
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3. Find the difference between the actual and desired phase mamgins,
A¢p = Pmd — Pm, andtake ¢,,,, t0 be a little bit greaterthan A¢. Cal-
culatethe parametel, of a phase-leactontroller by using formula (9.36),
that is

. L + sin @mag

az = ;
1 — sin ¢mar

4. Locatethe new gain crossovelfrequencyat the point where
20 log |G (jwegnew)| = —101logasy (9.38)
5. Computethe valuesfor the phase-leadcompensator'pole and zerofrom
Pc2 = wcgnew\/@, Ze2 = Pc2/a2 (9.39)
6. Selectthe phase-lagcompensator'zeroand pole accordingto
ze1 = 01202, P = 2z /a2 (9.40)

7. Formthe transferfunction of the phase-lag-leadompensatoas

S+ Za1 « S+ Ze2

Ge(s) = Gilag(s) X Gieaals) = - o0 5t pe

8. PlotBodediagramsof the compensatedystemandcheckwhetherthedesign
specificationsare met. If not, repeatsome of the stepsof the proposed
algorithm—in most casesgo back to steps3 or 4.

The phase-leagbart of this compensatohelpsto increasethe phasemagin
(increaseghe dampingratio, which reduceghe maximumpercentovershootand
settlingtime) and broadenthe system’shandwidth(reduceshe rise time). The
phase-lagpart, on the otherhand, helpsto improve the steadystateerrors.

Example 9.6: Considera control systemthat has the open-looptransfer

function
K(s+ 10)

(s2 4+ 254 2)(s +20)
For this systemwe designa phase-lag-leaatontroller by following Algorithm

9.3 suchthat the compensatedystemhas a steadystateerror of lessthan 4%
and a phasemamgin greaterthan 50°. In the first step, we choosea value for

G(s) =
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the staticgain K that produceghe desiredsteadystateerror. It is easyto check
that K = 100 = es; = 3.85%, andthereforein the following we stick with this
value for the static gain. Bode diagramsof the original systemwith K = 100
are presentedn Figure 9.23.
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Figure 9.23: Bode diagrams of the original system

It can be seenfrom thesediagrams—andwvith help of MATLAB determined
accurately—thathe phaseand gain magins and the correspondingcrossover
frequenciesare given by Pm = 31.61°,Gm = oo, andw., = 7.668rad/s,

wep = 00. According to step3 of Algorithm 9.3, a controller hasto introduce
a phaselead of 18.39°. We take ¢,,,, = 25° andfind the requiredparameter
az = 2.4639. Taking wsynew = 20rad/s in step4 and completingthe design
steps5-8 we find that Pm = 39.94°, which is not satisfactory.We go backto

step3 andtake ¢4, = 30° = 0.5236 rad, which implies a; = 3.

Step4 of Algorithm 9.3 can be executedefficiently by MATLAB by per-
forming the following search. Since—10log3 = —10.9861 dB we searchthe
magnitudediagram for the frequencywhere the attenuationis approximately
equalto —11 dB. We startsearchatw = 20rad/s sinceat that point, according
to Figure9.23, the attenuatioris obviouslysmallerthan—11 dB. Thefollowing
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MATLAB programis usedto find the new gain crossoverfrequency,i.e. to
solve approximatelyequation(9.38)

w=20;

while  20*log10(100*abs(j*w+10)/

abs(((7*w) 2+2**w+2)*(j*w+20))) <-11;

w=w-1;

end

This programproducesy. ..., = 10rad/s. In steps5 and6 the phase-lag-lead
controllerzerosand polesare obtainedas —p.s = —17.3205, —z.p = —5.7735
for the phase-leaghartand—p.; = —0.1925, —z, = —0.5774 for the phase-lag
part; hencethe phase-lag-leadontroller hasthe form

s+ 0.5774 « s+ 17.3205
s+ 0.1925 s45.7735

Ge(s) =

The Bode diagramsof the compensategystemare givenin Figure 9.24.
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Figure 9.24 Bode diagrams of the compensated system

It canbe seenthatthe phasemaigin obtainedof 56.34° meetsthe designrequire-
mentand that the actualgain crossoverfrequency,4.738 rad/s, is considerably
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smallerthanthe one predicted. This contributesto the generallyacceptednac-
curacyof frequencymethodsfor controllerdesignbasedon Bode diagrams.

The stepresponsesf the original andcompensatedystemsarecomparedn
Figure9.25. Thetransienresponsef the compensatedystemis improvedsince
the maximumpercentovershootis considerablyreduced. However,the system
rise time is increaseddue to the fact that the systembandwidthis shortened
(Wegnew = 4.738rad/s < w,, = 7.668 rad/s).
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Figure 9.25 Step responses of the original (a) and compensated (b) systems

9.5 MATLAB Case Study

Considerthe problem of finding a controller for the ship positioning control
systemgiven in Problem7.5. The goal is to increasestability phasemargin
above30°. The problemmatricesare given by

—0.0546 0 0.5435 0
A= 1 o 0 |, B=|0]|,Cc=[010], D=0
0 0 —1.55 1.55
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The transfer function of the ship positioning systemis obtained by the
MATLAB instruction[num,den]=ss2tf(A,B,C,D) andis given by

0.8424
G =
()= S5 155)(s + 0.05%6)

The phaseand gain stability mamgins of this systemare Pm = —19.94° and
Gm = —15.86 dB, with the crossoverfrequenciesw,, = 0.2909rad/s and
weg = 0.7025rad /s (seethe Bodediagramsin Figure9.26). From knownvalues
for the phaseand gain mawgins, we canconcludethat this systemhasvery poor
stability properties.
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Figure 9.26: Bode diagrams of a ship positioning control system

Since the phasemamgin is well below the desiredone, we needa controller
which will makeup for almosta 50° increasein phase.In general,it is hardto
stabilizesystemghat havelarge negativephaseandgain stability magins. In the
following we will designphase-leadphase-lagandphase-lag-leadontrollersto
solve this problemand comparethe resultsobtained.

Phase-LeadContwoller: By using Algorithm 9.1 with ¢,,,, = 50° 4+ 10° =
60° we get a phasemangin of only 23.536°, which is not satisfactory. It is
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necessaryo make up for ¢, = 50° + 27° = 87°. In the latter casethe
compensatohasthe transferfunction

s+ 0.2038

G.(s) = 76.31
(5) s+ 15.55

Figure 9.27 showsBode diagramsof both the original (a) and compensatedb)
systems.
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Figure 9.27: Bode diagrams for a ship positioning system:
(a) original system, (b) phase-lead compensated system

The gain and phasestability magins of the compensatedystemare found from
the aboveBode diagramsas Gme = 15.1603 dB, Pmc¢ = 30.0538°, and the
crossoveffrequenciesare w,,. = 1.7618rad/s, w., = 4.6419rad/s. The step
responsef the compensatedystemexhibitsan overshooof 45.47%(seeFigure
9.28).

Phase-Lag-Leacontmwller: By using Algorithm 9.3 we find the compen-
sator transferfunction as
s+ 0.1599 54 0.016

Go(s) = 7.5245 22977 g 1399 ST O01D
o(5) s+1.203 ° s +0.002125
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Figure 9.28: Step response of the compensated
system with a phase-lead controller

The Bode diagramsof the original and compensatedystemsare shownin
Figure 9.29.

-50

Gain dB

-100

-150 L 5 L I
10 10 10 10
Frequency (rad/sec)

-150F - : 1
(b)

@

Phase deg

=270 L L
-1 0 1 2

10 10 10 10
Frequency (rad/sec)

Figure 9.29: Bode diagrams for a ship positioning control system:
(a) original system, (b) phase-lag-lead compensated system
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The phase and gain magins of the compensatedsystem are given by
Pmec = 39.6694°, Gmec = 14 dB and the crossover frequenciesare
Wege = 0.4332rad/s, wepe = 1.2401rad/s.

Fromthe stepresponsef the compensatedystem(seeFigure9.30),we can
observethat this compensatedystemhasa smallerovershootand a larger rise
time than the systemcompensateanly by the phase-leaatontroller.
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Figure 9.30: Step response of the compensated
system with a phase-lag-lead controller

Phase-LagController: If we choosea new gain crossoverfrequency at
wegnew = 0.03rad/s, the phasemain at that point will clearly be above50°.
Proceedingwith a phase-lagcompensatodesign, accordingto Algorithm 9.2,
we get|AG(50.03)| = 290.7390 anda = 0.034, which implies z. = 0.003 and
p. = 1.0319 x 1075, Using the correspondinghase-lagcompensatoproduces
very good stability magins for the compensatedystem,i.e. Gm = 32.91 dB
and Pm = 54.33°. The maximum percentovershootobtainedis much better
than with the previously used compensatorsnd is equalto M POS = 18%.
However, the closed-loopstepresponseevealsthat the obtainedsystemis too
sluggishsincethe responsgeaktime is ¢, = 95.2381 s (notethatin the previous
two casesthe peaktime is only a few seconds).
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Onemaytry to get betteragreemenby designinga phase-lagcompensator,
which will reducethe phasemamgin of the compensatedystemto just above
30°. In orderto do this we write a MATLAB program,which searcheshe phase
Bode diagramand finds the frequencycorrespondingo the prespedied value
of the phase. That frequencyis usedas a new gain crossoverfrequency. Let
Pm = 35° = 0.6109rad. The MATLAB programis

w=0.1;
while  pi+
angle(1/((*w)*(j*w+1.55)*(j*w+0.0546))) <0.6109;
w=w-0.01;
end
dG=0.8424*abs(1/((j*w)*(j*w+1.55)*(j*w+0.0546)));
This programproducesy.g,e., = 0.07 rad/s and |AG(50.07)| = 87.3677. From

step4 of Algorithm 9.2 we obtain the phase-lagcontroller of the form
5+ 0.009
o(8) = ————— x 0.0114
Gels) = 0 .000081 < O

The Bode diagramsof the compensatedystemare givenin Figure 9.31.

Gm=23.48 dB, (w=0.2651) Pm=31.44 deg. (w=0.06043)
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Figure 9.31: Bode diagram of the phase-lag compensated system
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It can be seenthat the phaseand gain magins are satisfactoryand given by
Pm = 31.44° andGm = 23.48 dB. The actualgain crossoverfrequenciesare
Wegnew = 0.06043rad/s andwgppe = 0.2651rad/s.

The closed-loopstepresponseof the phase-lagcompensatedystem,given
in Figure 9.32, showsthat the peaktime is reducedto ¢, = 50.15s—which
is still fairly big—and that the maximum percentovershootis increasedto
MPOS = 45.82%, which is comparableto the phase-leacand phase-lag-lead
compensation.

15

Amplitude

| | | | |
0 50 100 150 200 250 300
Time (secs)

Figure 9.32: Step response of the phase-lag compensated system

Comparingall threecontrollersandtheir performancesye canconcludethat,
for this particularproblem,the phase-laggompensatioproduceghe worstresult,
andthereforeeitherthe phase-leadr phase-lag-leadontroller shouldbe used.

<

9.6 Comments on Discrete-Time Controller Design

Bode diagramswere originally introducedfor studyingcontinuous-timesystems
(Bode, 1940). However, discrete-timesystemscan be studiedusing the same
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diagrams.The bilinear transformation alreadyusedin this bookin the stability
study of discrete-timesystems that hasthe form

z—-1 1+s
_—, z =

z+1 1—s
maps the imaginary axis from the s-plane into the unit circle in the z-plane
and vice versa. Sinceon the unit circle z = ¢/“:T it is easyto establishthe

relationshipbetweenangularfrequenciesn the s andz domains.lIt is left asan
exercisefor studentsto show that

(9.41)

T 2
w; , we = tan 1w, (9.42)
The abovetransformationallows one to map the discrete-timeopen-loop
transferfunction into the continuous-timeopen-looptransferfunction, that is

ws = tan

G(Z)‘ _l4s = G(S) (943)

z
1-5

and to perform controller designin the continuous-timedomain. The results
obtainedhaveto be mappedbackinto the discrete-timedomainby using (9.42),
that is

Go(8),mzms = Go(2) (9.44)

|s= ZF1L

Notethatseverabilineartransformationswhich arejust scaledversionsof (9.41),
can be found in the control literature. For more details the readeris referred,
for example to Franklinetal. (1990),DiStefanoetal. (1990),and Phillips and
Nagle (1995). MATLAB discrete-timecontroller designproblemscan be found

in Shahianand Hassul(1993).

9.7 MATLAB Laboratory Experiment

Part 1. Considerthe closed-loopsystemrepresentedn Figure 9.33. This
systemhas a transportlag-element,e~7¢, which representsa time delay of T
time units. The transportlag-elementcan be approximatedor small valuesof
time delay T' by

(i) e T~ (i) e "~ 1-1Ts
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U(s) K Y(s)
e’Ts >
+N s(s+3)

A4

Figure 9.33: Block diagram of a control system

Using the following valuesfor the time delayT” = 0, 0.01, 0.1, designphase-
lead, phase-lagand phase-lag-leadompensatorso meetthe following closed-
loop designrequirements:steadystateerror e, ., < 0.02 and Pm > 50°.
Considerboth approximationgi) and(ii) and comparethe resultsobtained.

Part 2. Draw the exactphaseBode diagramsof the systemscompensated
in Part1 including the exactcontributionfrom the time delayelement.Note that
thetime delayelementdoesnot affect the magnitudeBodediagram ,but modifies
the phaseBode diagramsby a factor of £e—7“T. Comparethe approximatedand
exactphaseBode diagrams. Draw conclusionsaboutthe impact of time delay
elementson phaseand gain stability mamgins.

Part 3. Considerthe controllerdesignproblemfor a systemrepresentedy
its open-looptransferfunction

K(s+6)
(s + 10)(s% + 2s + 2)

This systemhasbeenstudiedin Example8.9 and in the MATLAB laboratory
experimentfor the root locus controller designin Section8.8.

G(s) =

(a) Designa phase-lag-leadontrollerusing Bode diagramssuchthat the com-
pensatedsystemhasthe samespecificationsasthosein Section8.8,i.e. the
steadystateerroris lessthan 1% andthe phasemamgin is suchthatt; < 2s
and M POS < 10%. Note thatthe maximumpercentovershootandsettling
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time are inversely proportionalto the phasemagin. Experimentwith sev-
eral valuesfor the phasemaigin andtakethe onethat satisfieshoth transient
responserequirements.

(b) Comparethe results obtainedwith those from Section 8.8 and comment
on the differencesbetweenroot locus and Bode diagram phase-lag-lead
controller design. Which one is easierto design? Which one is more
accurate?
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9.9 Problems

9.1 Showthat for a second-ordeclosed-loopsystem

w2
MU9) = G 2w 4

the resonantfrequencyis given by

Wy = w1 - (2



FREQUENCY DOMAIN CONTROLLER DESIGN 427

9.2

9.3
9.4

9.5

9.6

9.7

and the peak resonances
1
M,= —/——
2¢+/1 - 2¢2

Showthat the frequencybandwidthfor a second-ordeclosed-loopsystem
givenin Problem9.1 is

waw = wa/(1 - 20?) + VAT —4C2 1 2

Sincethe 5%-settlingtime is given by formula (6.20) as
3
* G
concludethat the settling time is inversely proportional to the system

bandwidth, in other words, the wider the systembandwidth, the shorter
the settling time

Derive formula (9.35) for the maximumphaseof a phase-leaatontroller.

Using MATLAB, draw Bode diagramsfor a magnetictape control system
consideredn Problem5.12. MatricesA andB aregivenin Problem5.12.
The output matricesare

C=[1 0 1 0], D=0

Find the phaseand gain stability magins for this system.
Basedon Algorithms 9.1-9.3 proposealgorithmsfor controllerdesignwith

(a) a PD controller,;
(b) a PI controller;
(c) a PID controller.

Solvethe controller designproblemdefinedin Example9.5 by using both
phase-leadind phase-lag-leadontrollers.

Designa phase-lag-leadhetwork for the system
K

s(s+3)

suchthat Pm > 45° andeg,,,,,, < 0.03.

G(s) =
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9.8 The block diagramof a servocontrol systemis shownin Figure 9.34.

U(s) 0.48 Y(s)
A\l ClS) > $(s+1)(s+9) >

Figure 9.34: Block diagram for Problem 9.8

Designphase-lagphase-leadand phase-lag-leadontrollerssuchthat the
phasemargin is greaterthan 60°.

9.9 A unit feedbacksystemhasthe transferfunction
40K

@) = LTG0

(a) ConstructBode diagramsfor K = 1.

(b) Using the MATLAB function margin , determinethe phaseand
gain mamgins of the system.

(c) Determinethe valuefor the staticgain K suchthat the systemhas
a gainmagin of Gm = 10 dB. Find the correspondingsteadystate
errors.

(d) From Bodediagramsdeterminethe value for the staticgain K such
that the phasemain is 45°. Determinethe dampingratio and the
naturalfrequencyfor the obtainedvalue of K .

9.10 A zerotype plant hasthe transferfunction

10

@8 = s 120

(a) Determinethe dampingratio andthe naturalfrequencyof the corre-
spondingclosed-loopsystem.
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(b) Find the steadystateerrorsand the systemovershoot.

(c) Determinethe phaseand gain mamgins.

(d) Designa controller suchthat the compensatedystemhasa phase
maugin of at least50° and a steadystateerrorlessthan0.02.

9.11 A unit feedbacksystemwith transportdelay hasthe transferfunction
10K 0%
(s+4)(s+10)

Approximatetime delayase 7 ~ 1/(1 + T's).

G(s) =

(a) Plot on the samefigure the Bode diagramsfor the systemwith and
without transportdelayfor K = 1. Commenton systemstability.

(b) Plot the unit stepresponsef the systemfor both casesand compare
the results(steadystateerrors, transientresponseparameters).

(c) Determinethevalueof thestaticgain K thatgivesa steadystateunit
steperror of 0.02 for both the approximatedsystemand the original
systemwithout time delay.

(d) Design phase-lag, phase-lead,and phase-lag-leadcontrollers to
achieve a steadystate error of e;; < 0.05 and a phasemamgin
Pm > 50° for the approximatedsystem.

(e) Draw the exactphaseBode diagramsof the compensatedystems,
includingthetime delay,andcheckthe valuesobtainedfor the phase
margins.

9.12 Determinea passivecascadeeompensatofor a unit feedbacksystem
4
Gls) = s(s? +4s 4 8)
suchthat the compensatedystemhasa phasemaigin of 45° anda steady
stateramp error of lessthan 2%.
9.13 Derive formulas (9.42).

9.14 Solve the controller designproblem definedin Example9.4 by using a
phase-lag-leadontroller. What is the advantageof the controller's phase-
lag part?

9.15 Considera control systemthat hasthe open-looptransferfunction
K(s + 20)

(s+ 1)(s+3)(s+ 10)

G(s) =
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(&) UseMATLAB to designany controllerby usingBodediagramssuch
thatthe compensatedystemhasthe bestpossibletransientresponse
and steadystate specifications.

(b) Solvethe sameproblemusingthe rootlocustechniquefor controller
design.

(c) Compardgheobtainedresultsandcommentonthesimplicity (or com-
plexity) of the root locus and Bode diagrammethodsfor controller
design.

9.16 RepeatProblem9.15 for the open-loopcontrol systemdefinedin Problem
9.9.

9.17 In orderto relatethe phasemargin (gain mamgin) andthe real partsof the
systemeigenvaluess quantitiesfor relative stability measureperformthe
following experiment. Considerthe system

K(s+6)
s+ 10)(s? 4 2s + 2)

G(s) = (

(8) Vary the value for staticgain K from zeroto 100 in incrementsof
10, andfor eachvalue of K find the phaseand gain mamgins. Plot
both phaseand gain magins as functionsof K.

(b) For eachvalue of K find the closed-loopeigenvaluesand plot the
magnitudeof the eigenvaluereal partswith respectto K .

(c) Comparediagramsobtainedin (a) and(b) anddraw the correspond-
ing conclusion.

9.18 RepeatProblem9.17 for the open-loopcontrol systemdefinedin Problem

9.9.
9.19 Considera unit feedbackcontrol systemthat has the open-looptransfer
function 2+ )T
+ s)e™*°
G(s) = ———F——=
()= o610
—Ts

Note that the term e represents time delay.

(a) Assumingthat the time delayis negligible, draw the corresponding
Bode diagramsand determinethe phaseand gain stability mamgins.

(b) Since the time delay affects only the phasediagram, draw the
correctedphaseBode diagramfor 77 = 0.1. Determinethe phase
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and gain stability maigins and comparethemto the corresponding
guantitiesfound in (a).

(c) Repeatpart(b) for T = 0.2 and7T = 0.5. Commenton the impact
of the time delay elementon the phaseand gain stability magins.



