
Chapter Eight Root Locus Control Design

8.3 Common Dynamic Controllers

Severalcommondynamiccontrollersappearvery often in practice.They are
known asPD, PI, PID, phase-lag,phase-lead,andphase-lag-leadcontrollers.
In this sectionwe introducetheir structuresandindicatetheir mainproperties.
In the follow-up sectionsproceduresfor designingthesecontrollersby using
the root locus techniquesuchthat the given systemshavethe desiredspeci-
ficationsare presented.In the most casesthesecontrollersareplacedin the
forward pathat the front of the plant (system)aspresentedin Figure8.1.
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Figure 8.1: A common controller-plant configuration



8.3.1 PD Controller

PD standsfor a proportionaland derivativecontroller. The output signal of
this controller is equal to the sum of two signals: the signal obtainedby
multiplying the input signal by a constantgain � and the signal obtained
by differentiatingand multiplying the input signal by � , i.e. its transfer
function is given by

� � �
This controller is used to improve the system transient response.

8.3.2 PI Controller

Similarly to the PD controller, the PI controller producesas its output a
weightedsumof the input signalandits integral. Its transferfunction is

� � � � �

In practicalapplicationsthe PI controllerzerois placedvery closeto its pole
locatedat theorigin sothattheangularcontributionof this “dipole” to theroot
locus is almostzero. A PI controller is used to improve the system response
steady state errors sinceit increasesthe control systemtype by one.

8.3.3 PID Controller

ThePID controlleris acombinationof PDandPI controllers;henceits transfer
function is given by

� � � � � � �
�



The PID controller can be used to improve both the system transient response
and steady state errors. This controller is very popular for industrial appli-
cations.

8.3.4 Phase-Lag Controller

The phase-lagcontrollerbelongsto the sameclassas the PI controller. The
phase-lagcontroller canbe regardedas a generalizationof the PI controller.
It introducesa negativephaseinto thefeedbackloop, which justifiesits name.
It hasa zeroandpole with the pole beingcloserto the imaginaryaxis, that is

�
�
�

�
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� � � �
	 ��	

where � � is known as the lag ratio. The correspondingangles �
	 and
��	 are given in Figure 8.2a. The phase-lag controller is used to improve

steady state errors.

8.3.5 Phase-Lead Controller

The phase-leadcontroller is designedsuchthat its phasecontributionto the
feedbackloop is positive. It is representedby

�
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where ��� and ��� are given in Figure 8.2b. This controller introducesa
positivephaseshift in the loop (phaselead). It is used to improve the system
response transient behavior.
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Figure 8.2: Poles and zeros of phase-lag (a) and phase-lead (b) controllers

8.3.6 Phase-Lag-Lead Controller

The phase-lag-leadcontroller is obtainedasa combinationof phase-leadand
phase-lagcontrollers. Its transferfunction is given by

�
� �
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It hasfeaturesof bothphase-lagandphase-leadcontrollers,i.e. it can be used
to improve simultaneously both the system transient response and steady state
errors. However,it is harderto designphase-lag-leadcontrollersthaneither
phase-lagor phase-leadcontrollers.



8.5 Compensator Design by the Root Locus Method

Sometimesone is able to improvecontrol systemspecificationsby changing
thestaticgain only. It canbeobservedthatas increases, the steady state
errors decrease (assuming system’s asymptotic stability), but the maximum
percent overshoot increases. However,usinglargevaluesfor maydamage
systemstability. Even more, in most casesthe desiredoperatingpoints for
the systemdominantpoles,which satisfythe transientresponserequirements,
do not lie on the original root locus. Thus, in order to solve the transient
responseand steadystate errors improvementproblem, one has to design
dynamiccontrollers,consideredin Section8.3, and put them in serieswith
the plant (system)to be controlled(seeFigure 8.1).

In the following we presentdynamiccontrollerdesigntechniquesin three
categories:improvementof steadystateerrors(PI andphase-lagcontrollers),
improvementof systemtransientresponse(PDandphase-leadcontrollers),and
improvementof bothsteadystateerrorsandtransientresponse(PID andphase-
lag-leadcontrollers). Note that transientresponsespecificationsareobtained
under the assumptionthat a given systemhas a pair of dominantcomplex
conjugateclosed-looppoles; hencethis assumptionhas to be checkedafter
a controller is addedto the system. This can be easily doneusing the root
locus technique.

8.5.1 Improvement of Steady State Errors

It has beenseenin Chapter6 that the steadystateerrors can be improved
by increasingthe type of feedbackcontrol system,in otherwords,by adding
a pole at the origin to the open-loopsystemtransferfunction. The simplest
way to achievethis goal is to add in serieswith the systema PI controller,



i.e. to get

� � �

Sincethis controller also introducesa zero at � � , the zero should be
placed as close as possible to the pole. In that casethe pole at and
the zero at act as a dipole, and so their mutual contribution to the
root locusis almostnegligible. Sincethe root locusis practicallyunchanged,
the systemtransientresponseremainsthe sameand the effect due to the PI
controlleris to increasethetypeof thecontrolsystemby one,which produces
improvedsteadystateerrors. The effect of a dipole on the systemresponse
is studiedin the next example.

Example 8.4: Considerthe open-looptransferfunctions

�

and
 

Notethat thesecondtransferfunctionhasa dipolewith a stablepoleat .
Thecorrespondingstepresponsesaregiven in Figure8.4. It canbeseenfrom
this figure that thesystemwith a stabledipoleandthesystemwithout a stable
dipole havealmost identical responses.Theseresponseshavebeenobtained
by the following sequenceof MATLAB instructions.

num1=[1 2]; den1=[1 4 3]; num2=[1 7 10];
d1=[1 1]; d2=[1 3]; d3=[1 5.1]; d12=conv(d1,d2);
den2=conv(d12,d3);



[cnum1,cden1]=feedback(num1,den1,1,1,-1);
[cnum2,cden2]=feedback(num2,den2,1,1,-1);
t=0:0.1:2;
step(cnum1,cden1,t)
step(cnum2,cden2,t)
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Figure 8.4: Step responses of a system without
a stable dipole (a) and with a stable dipole (b)

It is importantto point out that in the caseof an unstable dipole the effect
of a dipole is completelydifferent. Consider,for example,the open-loop
transfer function given by

!

Its step responseis presentedin Figure 8.5b and comparedwith the corre-
spondingstepresponseafter a dipole is eliminated(Figure8.5a). In fact, the



systemwithout a dipole is stableand the systemwith a dipole is unstable;
hencetheir responsesaredrasticallydifferent. Thus,we canconcludethat it
is not correct to cancel an unstable dipole since it hasa big impact on the
systemresponse.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

(b)

Figure 8.5: Step responses of a system without an
unstable dipole (a) and with an unstable dipole (b)

Both the PI and phase-lagcontroller usethis “stable dipole effect”. They
do not changethe systemtransientresponse,but they do havean important
impact on the steadystateerrors.



PI Controller Design
As we havealreadyindicated,thePI controllerrepresentsa stabledipolewith
a pole locatedat the origin anda stablezeroplacednearthe pole. Its impact
on the transientresponseis negligible since it introducesneithersignificant
phaseshift nor gain change.Thus,the transientresponseparameterswith the
PI controller are almost the sameas thosefor the original system,but the
steadystateerrorsare drasticallyimproveddue to the fact that the feedback
control systemtype is increasedby one.

The PI controller is represented,in general,by

" #
$&%$(' ) #

where # representsits static gain and ) # is a stablezero near the
origin. Very often it is implementedas

" "

This implementationis sufficient to justify its main purpose. The design
algorithm for this controller is extremelysimple.

Design Algorithm 8.1:

1. SetthePI controller’spoleat theorigin andlocateits zeroarbitrarily close
to the pole, say " or " .

2. If necessary,adjustfor thestaticloop gainto compensatefor thecasewhen
# is different from one. Hint: Use # , andavoid gain adjustment

problem.



Comment: Note that while drawing the root locusof a systemwith a PI
controller (compensator),the stableopen-loopzero of the compensatorwill
attractthecompensator’spole locatedat theorigin asthestaticgain increases
from to so that there is no dangerthat the closed-loopsystemmay
becomeunstabledue to addition of a PI compensator(controller).

The following exampledemonstratesthe useof a PI controller in orderto
reducethe steadystateerrors.

Example 8.5: Considerthe following open-looptransferfunction

*

Let the choiceof the static gain producea pair of dominantpoles
on the root locus,which guaranteesthe desiredtransientspecifications.The
correspondingpositionconstantandthesteadystateunit steperroraregivenby

+ ,-, +

Using a PI controller with the zero at ( . ), we obtain the
improved valuesas + and ,-, . The step responsesof the
original systemand the compensatedsystem,now given by

. *

are presentedin Figure 8.6.
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Figure 8.6: Step responses of the original (a)
and compensated (b) systems for Example 8.5

The closed-looppolesof the original systemaregiven by

/ 02143

For the compensatedsystemthey are

/-5 065�173�5

Having obtainedthe closed-loopsystempoles, it is easyto check that the
dominantsystempoles are preservedfor the compensatedsystemand that
the dampingratio and natural frequencyare only slightly changed. Using
informationaboutthe dominantsystempolesandrelationshipsobtainedfrom



Figure 6.2, we get
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In Figure8.7 we draw thestepresponseof thecompensatedsystemovera
long periodof time in orderto showthat the steadystateerror of this system
is theoreticallyand practically equal to zero.

Figures8.6 and 8.7 are obtainedby using the sameMATLAB functions
as thoseusedin Example8.4.

The root loci of the original and compensatedsystemsare presentedin
Figures8.8 and 8.9. It can be seenfrom thesefiguresthat the root loci are
almostidentical,with the exceptionof a tiny dipole branchnearthe origin.
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Figure 8.7: Step response of the compensated system for Example 8.5
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Figure 8.8: Root locus of the original system for Example 8.5
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Figure 8.9: Root locus of the compensated system for Example 8.5

Phase-Lag Controller Design
The phase-lagcontroller, in the contextof root locusdesignmethodology,is
alsoimplementedasadipolethathasnosignificantinfluenceon theroot locus,
andthuson thetransientresponse,but increasesthesteadystateconstantsand
reducesthe correspondingsteadystateerrors. Since it is implementedas a
dipole, its zeroandpole haveto be placedvery closeto eachother.

The lag controller’simpacton thesteadystateerrorscanbeobtainedfrom
the expressionsfor the correspondingsteadystateconstants. Namely, we
know that

= >6?A@ B >C?A@
D >-?E@ F



and
G-GCHJILKNM O GCGQPSRUTVM W GCG MXRYPSRQZJ[]\_^L` a

For control systemsof type zero, one, and two, respectively,the constants
O W , and a areall given by the sameexpression,that is

b c d
c d

Consider,first, a phase-lagcompensatorof the form

e e
e e e

If we put this controller in serieswith the system,the correspondingsteady
stateconstantsof the compensatedsystemwill be given by

b e
c d
c d

e
e

b e
e

In order to increasetheseconstantsand reducethe steadystateerrors, the
ratio of e e shouldbeaslargeaspossible.Sinceat thesametime e must
be closeto e (they form a dipole), a large value for the ratio e e canbe
achievedif both of themareplacedcloseto zero. For example,the choiceof
e and e increasesthe constants b ten times

and reducesthe correspondingsteadystateerrorsten times.
Now considera phase-lagcontrollerdefinedby (8.18), that is

e e
e

e
e e e



This controllerwill changethevalueof thestaticgain by a factorof f f ,
which will producea movementof the desiredoperatingpoint alongthe root
locus in the direction of smallerstatic gains. Thus, the plant static gain has
to beadjustedto a highervaluein orderto preservethe sameoperatingpoint.
The consequenceof using this phase-lagcontroller is that the same (desired)
operating point is obtained with higher static gain. We alreadyknow that
by increasingthe static gain, the steadystate errors are reduced. In this
case,the staticgain adjustmenthasto be doneby choosinga new staticgain

f f . Note that theeffectsof bothphase-lagcontrollersareexactly
the same,since the gain adjustmentin the caseof controller (8.18) in fact
cancelsits lag ratio f f .

The following simplealgorithmis usedfor phase-lagcontrollerdesign.
Design Algorithm 8.2:

1. Choosea point thathasthedesiredtransientspecificationson theroot locus
branchwith dominantsystempoles. Readfrom the root locus the value
for thestaticgain at thechosenpoint, anddeterminethe corresponding
steadystateerrors.

2. Set both the phase-lagcontroller’spole and zero nearthe origin with the
ratio f f obtainedsuchthat the desiredsteadystateerror requirement
is satisfied.

3. In the caseof controller (8.18), adjustfor the static loop gain, i.e. take a
new static gain as f f .



Example 8.6: Thesteadystateerrorsof thesystemconsideredin Example
8.5 canbe improvedby usinga phase-lagcontrollerof the form

g

Since g g , the positionconstantis increasedten times,that is

h�g h g
g

so that the steadystateerror due to a unit stepinput is reducedto

i-ikjmlonmp h�g
It canbeeasilycheckedthatthetransientresponseis almostunchanged;in fact,
the dominantsystempoleswith this phase-lagcompensatorare

, which is very close to the dominantpolesof the original system
(seeExample8.5).

Example 8.7: Considerthe following open-looptransferfunction

q

Let thechoiceof thestaticgain producea pair of dominantpoleson
the root locusthat guaranteesthe desiredtransientspecifications.The system
closed-looppolesfor are given by

r�stq u v



so that for this valueof the static gain the dominantpolesexist, i.e. the
absolutevalueof therealpartof thedominantpoles(0.5327)is aboutsix times
smallerthantheabsolutevalueof therealpartof thenextpole(2.9194),which
is in practicesufficient to guaranteepoles’ dominance.Sincewe havea type
onefeedbackcontrol system,the steadystateerror dueto a unit stepis zero.
The velocity constantand the steadystateunit ramperror areobtainedas

w xCxQySzU{<| w
Using the phase-lagcontroller with a zero at ( } ) and a pole
at ( } ), we get

w } w }
}

xCx } ySzY{V|

It can be easily shown by using MATLAB that the ramp responsesof the
original andthe compensatedsystemsarevery closeto eachother. The same
holds for the root loci. Note that even smaller steadystateerrors can be
obtainedif we increasethe ratio } } , e.g. to } } .



8.5.2 Improvement of Transient Response

The transientresponsecanbe improvedby usingeitherthe PD or phase-lead
controllers.

PD Controller Design
The PD controller is representedby

~ ~ ~

which indicatesthat the compensatedsystemopen-looptransferfunction will
haveoneadditionalzero. Theeffectof thiszerois to introduceapositivephase
shift. Thephaseshift andpositionof thecompensator’szerocanbedetermined
by usingsimplegeometry.Thatis, for thechosendominantcomplexconjugate
polesthatproducethedesiredtransientresponsewe applytheroot locusangle
rule. This rule basicallysaysthat for a chosenpoint, � , on theroot locusthe
differenceof the sum of the anglesbetweenthe point � and the open-loop
zeros,and the sum of the anglesbetweenthe point � and the open-loop
polesmust be

�
. Applying the root locusanglerule to the compensated

system,we get

~ � � � ~
�

�]��� � �
�

�]��� � � �

which implies
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Fromtheobtainedangle � � thelocationof thecompensator’szerois
obtainedby playing simplegeometryasdemonstratedin Figure8.10. Using
this figure it canbe easily shownthat the valueof � is given by
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Figure 8:10 Determination of a PD controller’s zero location

Design Algorithm 8.3:

1. Choosea pair of complexconjugatedominantpolesin the complexplane
that producesthe desiredtransientresponse(damping ratio and natural
frequency). Figure 6.2 helpsto accomplishthis goal.

2. Find the required phasecontribution of a PD regulator by using the
correspondingformula.

3. Findtheabsolutevalueof aPDcontroller’szeroby usingthecorresponding
formula; seealso Figure 8.10.

4. Check that the compensatedsystem has a pair of dominant complex
conjugateclosed-looppoles.



Example 8.8: Let the designspecificationsbe set such that the desired
maximum percentovershootis less than 20% and the 5%-settling time is

. Then,the formula for the maximumpercentovershootimplies

�
�

� �

We take so that the expectedmaximumpercentovershootis less
than20%. In orderto havethe5%-settlingtime of , thenaturalfrequency
should satisfy

� � � �

The desireddominantpolesare given by

� � � � �

Considernow the open-loopcontrol system

The root locusof this systemis representedin Figure 8.11a.
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Figure 8.11: Root loci of the original (a) and compensated (b) systems

It is obvious from the abovefigure that the desireddominantpoles do not
belongto the original root locus sincethe breakawaypoint is almost in the
middle of the open-looppoleslocatedat and . In order to move the
original root locus to the left such that it passesthrough � , we designa
PD controller by following DesignAlgorithm 8.3. Step1 hasbeenalready
completedin the previousparagraph.Sincewe havedeterminedthe desired
operatingpoint, � , we now usethe formula for the anglesto determinethe
phasecontributionof a PD controller. By MATLAB function angle (or just
using a calculator),we can find the following angles

� � � �
� � � �



Note that MATLAB function angle producesresultsin radians. Using the
formula for the angles,we get

� �
� �

Having obtainedthe angle � , the location of the controller’s zero is �
, so that the requiredPD controller is given by

�

The root locusof the compensatedsystemis presentedin Figures8.11band
8.12b. It canbe seenfrom Figure8.12 that the point � lies
on the root locus of the compensatedsystem.
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Figure 8.12: Enlarged portion of the root loci in the neighborhood of the
desired operating point of the original (a) and compensated (b) systems



At the desiredpoint, � , the staticgain , obtainedby applying the root
locus magnituderule, is given by . This valuecan be obtained
eitherby usinga calculatoror the MATLAB function abs asfollows:

d1=abs(sd+p1); d2=abs(sd+p2); d3=abs(sd+p3);
d4=abs(sd+z1); d5=abs(sd+zc);
K=(d1*d2*d3)/(d4*d5)

For this value of the static gain , the steadystateerrors for the original
andcompensatedsystemsaregiven by �-� �C�C� . In
addition, since the controller’s zero will attractone of the systempoles for
largevaluesof , it is notadvisableto choosesmallvaluesfor � sinceit may
damagethe transientresponsedominanceby the pair of complexconjugate
polesclosestto the imaginaryaxis.

The closed-loopstepresponsefor this valueof the staticgain is presented
in Figure 8.13.
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Figure 8.13: Step response of the compensated system for Example 8.8



It canbe observedthat both the maximumpercentovershootandthe settling
time arewithin the specifiedlimits. The valuesfor the overshoot,peaktime,
andsettling time areobtainedby the following MATLAB routine:

[yc,xc,t]=step(cnumc,cdenc);
% t is a time vector of length i=73;
% cnumc = closed-loop compensated numerator
% cdenc = closed-loop compensated denominator
plot(t,yc);
[ymax,imax]=max(yc);
% ymax is the function maximum;
% imax = time index where maximum occurs;
tp=t(imax)
essc=0.1074;
yss=1 –essc;
os=ymax-yss
% procedure for finding the settling time;
delt5=0.05*yss;
i=73;
while abs((yc(i)-yss))<delt5;
i=i-1;
end;
ts=t(i)

Using this program, we have found that � and
. Ourstartingassumptionshavebeenbasedonamodelof thesecond-

ordersystem.Sincethe second-ordersystemsareapproximationsfor higher-
ordersystemsthat havedominantpoles,the obtainedresultsaresatisfactory.



Finally, we have to check that the systemresponseis dominatedby a
pair of complexconjugatepoles.Finding the closed-loopeigenvalueswe get
� �2 7¡ , which indicatesthat the

presentedcontroller designresultsare correctsincethe transientresponseis
dominatedby the eigenvalues �2 7¡ .
Phase-Lead Controller Design
Thephase-leadcontrollerworkson thesameprincipleasthePD controller. It
usestheargumentruleof theroot locusmethod,which indicatesthephaseshift
that needsto be introducedby the phase-leadcontrollersuchthat the desired
dominantpoles(havingthespecifiedtransientresponsecharacteristics)belong
to the root locus.

The generalform of this controller is given by

¢ ¢
¢ ¢ ¢

By choosinga point £ for a dominantpole that has the requiredtransient
responsespecifications,the designof a phase-leadcontroller can be donein
similar fashion to that of a PD controller. First, find the anglecontributed
by a controller suchthat the point £ belongsthe root locus, which can be
obtainedfrom

¢ £ ¤ £
that is

¢ £ ¢ £ ¢ ¤ ¥

¦¨§ � £ ¦
©

¦]§ � £ ¦



Second,find locationsof controller’spoleandzero. This canbedonein many
ways as demonstratedin Figure 8.14.

Im{ s}

Re{ s}

θc
θc

θc

-pc3

sª d

-zc3
-zc2

-zc1 0-pc2
-pc1

Figure 8.14: Possible locations for poles and zeros of
phase-lead controllers that have the same angular contribution

All thesecontrollersintroducethesamephaseshift andhavethesameimpact
on the transientresponse.However,the impact on the steadystateerrorsis
differentsinceit dependson the ratio of « « . Sincethis ratio for a phase-
lead controller is less than one, we concludethat the correspondingsteady
stateconstantis reducedand the steadystateerror is increased.

Note that if the location of a phase-leadcontroller zero is chosen,then
simplegeometrycanbeusedto find the locationof the controller’spole. For
example,let «Q¬ betherequiredzero,thenusingFigure8.14thepole «C¬
is obtainedas

«-¬ ­ ­ ® «
where ¯ «-¬ . Note that « .

An algorithm for the phase-leadcontroller designcan be formulatedas
follows.



Design Algorithm 8.4:

1. Choosea pair of complexconjugatepolesin the complexplanethat pro-
ducesthedesiredtransientresponse(dampingratio andnaturalfrequency).
Figure 6.2 helps to accomplishthis goal.

2. Find the requiredphasecontribution of a phase-leadcontroller by using
the correspondingformula.

3. Choosevaluesfor thecontroller’spoleandzeroby placingthemarbitrarily
suchthatthecontrollerwill notdamagetheresponsedominanceof apair of
complexconjugatepoles.Someauthors(e.g. Van de Verte,1994)suggest
placing the controller zero at ° .

4. Find the controller’spole by using the correspondingformula.
5. Check that the compensatedsystem has a pair of dominant complex

conjugateclosed-looppoles.

Example 8.9: Considerthe following control systemrepresentedby its
open-looptransfer function

±

It is desiredthat the closed-loopsystemhave a settling time of and
a maximum percentovershootof less than . From Example 8.8 we
know that the systemoperatingpoint shouldbe at ² . A
controller’s phasecontribution is

³ ´



Let us locatea zeroat ( µ ), thenthe compensator’spole is at
µ . The root loci of the original and compensatedsystems

aregivenin Figure8.15,andthecorrespondingstepresponsesin Figure8.16.
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Figure 8.15: Root loci for the original (a) and compensated (b) systems

It canbeseenthattheroot locusindeedpassesthroughthepoint .
For this operatingpoint the static gain is obtainedas ; hence
the steadystateconstantsof the original andcompensatedsystemsaregiven
by ¶ and ¶�· ¶ · · , and the steady
stateerrors are ¸C¸ ¸-¸X· . Figure 8.16 revealsthat
for thecompensatedsystemboth themaximumpercentovershootandsettling
time are reduced. However, the steadystateunit steperror is increased,as
previously noted analytically.

With a zero set at , we have · . The root locus of the
compensatedsystemwith a new controller is given in Figure8.17.
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Figure 8.16: Step responses of the original (a) and compensated (b) systems
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Figure 8.17: Root locus for the compensated system with the second controller



Thestaticgainat thedesiredoperatingpoint is ,
andhencethe steadystateerrorsare ¹-¹ ¹-¹Cº . The
stepresponsesof the original and compensatedsystems,for ,
are presentedin Figure 8.18.
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Figure 8.18: Step responses of the original (a) and compensated
(b) systems with the second controller for Example 8.9

It canbe seenthat this controlleralsoreducesboth the overshootandsettling
time, while the steadystateerror is slightly increased.

We canconcludethat both controllersproducesimilar transientcharacter-
istics andsimilar steadystateerrors,but the secondoneis preferredsincethe
smallervalue for the static gain of the compensatedsystemhasto be used.
The eigenvaluesof the closed-loopsystemfor aregiven by

»C¼ ½6¼ ½6¼¿¾7À�¼



which indicatesthat the responseof this systemis still dominatedby a pair
of complex conjugatepoles.

Remark: In someapplicationsfor a chosendesiredpoint, Á , the required
phaseincrease, Â , may be very high. In suchcasesone can usea multiple
phase-lead controller having the form

ÃÄÆÅ¿Ç Á
Â
Â

Ã
Â Â

so that eachsinglephase-leadcontrollerhasto introducea phaseincreaseof
Â .

8.5.3 PID and Phase-Lag-Lead Controller Designs
It can be observedfrom the previousdesignalgorithmsthat implementation
of a PI (phase-lag)controller doesnot interfere with implementationof a
PD (phase-lead)controller. Since thesetwo groupsof controllersare used
for differentpurposes—oneto improvethetransientresponseandtheotherto
improvethesteadystateerrors—implementingthemjointly andindependently
will take careof both controller designrequirements.

Considerfirst a PID controller. It is representedas

ÈÊÉ2Ë Ì Á
Í

Á
Î Ï(Ð

ÏÒÑ ÏÔÓÏÒÑ

Á ÂÖÕ Â-× ÈÊË ÈÊÉ

which indicatesthat the transferfunction of a PID controlleris the productof
transferfunctionsof PD andPI controllers. Sincein DesignAlgorithms 8.1



and8.3 therearenoconflictingsteps,thedesignalgorithmfor a PID controller
is obtainedby combiningthe designalgorithmsfor PD andPI controllers.

Design Algorithm 8.5: PID Controller

1. Checkthe transientresponseandsteadystatecharacteristicsof theoriginal
system.

2. Designa PD controller to meetthe transientresponserequirements.
3. Designa PI controller to satisfy the steadystateerror requirements.
4. Checkthat the compensatedsystemhasthe desiredspecifications.

Example 8.10: Considertheproblemof designinga PID controllerfor the
open-loopcontrol systemstudiedin Example8.8, that is

In fact, in that example,we havedesigneda PD controllerof the form
Ø�Ù

suchthat the transientresponsehasthe desiredspecifications. Now we adda
PI controllerin orderto reducethesteadystateerror. Thecorrespondingsteady
stateerror of the PD compensatedsystemin Example8.8 is ÚCÚCÛ .
Sincea PI controller is a dipole that has its pole at the origin, we propose
the following PI controller

ØÊÜ

We are in fact using a PID controller with Ý
Û¿Þ Û-ß . The corresponding root locus of this

systemcompensatedby a PID controller is representedin Figure8.19.
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Figure 8.19: Root locus for the system from
Example 8.8 compensated by the PID controller

It can be seenthat the PI controller doesnot affect the root locus, and
henceFigures8.11band8.19arealmostidenticalexceptfor a dipole branch.

On the other hand,the stepresponsesof the systemcompensatedby the
PD controllerandby the PID controller (seeFigures8.13 and8.20)differ in
the steadystateparts. In Figure 8.13 the steadystatestepresponsetendsto
àCà , andtheresponsefrom Figure8.20tendsto sincedueto the

presenceof an open-looppole at the origin, the steadystateerror is reduced
to zero. Thus,we canconcludethat the transientresponseis the sameoneas
that obtainedby the PD controller in Example8.8, but the steadystateerror
is improveddue to the presenceof the PI controller.
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Figure 8.20: Step response of the system from
Example 8.8 compensated by the PID controller

Similarly to thePID controller,thedesignfor thephase-lag-leadcontroller
combinesDesign Algorithms 8.2 and 8.4. Looking at the expressionfor a
phase-lag-leadcontrollergiven in formula (8.20), it is easyto concludethat

áNâ
ã�ä¿áJå6âçæ áNâ
ã áJå6âèæ

The phase-lag-leadcontroller designcan be implementedby the following
algorithm.



Design Algorithm 8.6: Phase-Lag-Lead Controller

1. Checkthe transientresponseandsteadystatecharacteristicsof theoriginal
system.

2. Designa phase-leadcontrollerto meetthe transientresponserequirements.
3. Designa phase-lagcontrollerto satisfythesteadystateerror requirements.
4. Checkthat the compensatedsystemhasthe desiredspecifications.

Example 8.11: In this examplewe designa phase-lag-leadcontroller for
a control systemfrom Example8.9, that is

é

such that both the system transient responseand steady state errors are
improved. We haveseenin Example8.9 that a phase-leadcontroller of the
form

êìëkíèî

improvesthetransientresponseto thedesiredone. Now we addin serieswith
thephase-leadcontrolleranotherphase-lagcontroller,which is in fact a dipole
nearthe origin. For this examplewe usethe following phase-lagcontroller

êïí
ð

so that the compensatedsystembecomes

ñ é



The correspondingroot locusof the compensatedsystemand its closed-loop
stepresponseare representedin Figures8.21 and 8.22. We can seethat the
addition of the phase-lagcontroller doesnot changethe transientresponse,
i.e. the root loci in Figures8.17 and8.21 arealmostidentical. However,the
phase-lagcontroller reducesthe steadystateerror from òCò�óõôÆö6÷ùø
to òCò¿ó_ôN÷ûúýü6ôJö6÷èø sincethe positionconstantis increasedto

þ óÿôN÷2úýü¿ô ö¿÷ ø þ ó_ôJö6÷èø

so that

òCò¿ó_ôN÷
ú�ü¿ôJö6÷èø þ óÿôï÷
úýü6ôJö6÷èø
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Figure 8.21: Root locus for the system from Example
8.9 compensated by the phase-lag-lead controller



0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

1.2

Time (secs)

A
m

pl
itu

de

yss = 0.9866

Figure 8.22: Step response of the system from Example
8.9 compensated by the phase-lag-lead controller

8.6 MATLAB Case Studies
In this section we consider the compensatordesign for two real control
systems:a PD controller designedto stabilizea ship, and a PID controller
usedto improve the transientresponseand steadystateerrors of a voltage
regulatorcontrol system.

8.6.1 Ship Stabilization by a PD Controller

Considera ship positioningcontrol systemdefinedin the statespaceform in
Problem7.5. The open-looptransferfunction of this control systemis



The root locusof the original systemis presentedin Figure8.23a.
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Figure 8.23: Root loci for a ship positioning control
problem: (a) original system, (b) compensated system

It can be seenthat this systemis unstableevenfor very small valuesof
the static gain. Thus, the systemtransientresponseblows up very quickly
due to the system’sinstability. Our goal is to design a PD controller in
order to stabilize the systemand improve its transient response. Let the
desiredoperatingpoint be locatedat � , which implies
� and . We find that the requiredphase

shift is �
�
, andthe locationof thecompensatorzerois obtained



at . Thus, the PD compensatorsoughtis of the form

�

It canbeseenfrom Figure8.23that the root locusof thecompensatedsystem
indeedpassesthroughthepoint � andthat thecompensated
systemis stablefor all valuesof the staticgain. Thestaticgain at thedesired
operatingpoint is given by �	� and the correspondingclosed-
loop eigenvaluesat this operatingpoint are 
 � ����
����

. In Figure 8.24 the unit step responseof the compensated
systemis presented.
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Figure 8.24: Step response of a ship positioning compensated control system



It is found that ����� , � , and � .
From the samefigure we observethat the steadystateerror for this system
is zero, which also follows from the fact that the systemopen-looptransfer
function has one pole at the origin.

8.6.2 PID Controller for a Voltage Regulator Control System

The mathematicalmodel of a voltage regulatorcontrol systemis given in
Section6.7. The open-looptransferfunction of this systemis

The correspondingroot locus is presentedin Figure 8.25. Since one of
the branchesgoesquite quickly into the instability region, our designgoal
is to move this branch to the left so that it passesthrough the operating
point selectedas � . For this operating point, we have
� and so that the expectedmaximumpercent

overshootandthe5%-settlingtimeof thecompensatedsystemare
� . In addition,thedesignobjectiveis to reducethesteady

stateerror due to a unit step to zero.
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Figure 8.25: Root locus for a voltage regulator system

We use a PID controller to solve the controller designproblem defined
above. The requiredphaseimprovementfor the selectedoperatingpoint is
found as �

�
. The location of the compen-

sator’szero is obtainedas � , so that the PD part of a PID
compensatoris

���

The branchesof the root loci in the neighborhoodof the desiredoperating
point of the original and PD compensatedsystemsare presentedin Figure
8.26. It can be seenthat the compensatedroot locus indeedpassesthrough
the point  .
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Figure 8:26: Root loci of the original (a) and PD (b) compensated systems

The closed-loopunit stepresponseof the systemcompensatedby the PD
controller is representedin Figure8.27. Using the MATLAB programsgiven
in Example8.8, gives , ! , and " ,
which is quite satisfactory. However, the steady state unit step error is
"#"#$&% . Note that the staticgain at the operatingpoint, obtained

by applyingthe root locusrule number9 from Table7.1, is "(' .
The closed-loopeigenvaluesat the operatingpoint are

)#*,+ -�*,+ .�*,+
/1032�*,+

which indicatesthat the systemhas preserveda pair of dominantcomplex
conjugatepoles.



In order to reducethis steadystateerror to zero we use a PI controller
of the form

4&5

Sincethe compensatedsystemopen-looptransferfunction now hasa pole at
the origin, we concludethat the steadystateerror is reducedto zero, which
can also be observedfrom Figure 8.27.
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Figure 8.27: Step responses of PD and PID compensated systems

The transientresponsespecificationsfor the systemcompensatedby the
proposedPID controller are , 6 , and
7 . Thus, the proposedPI controller has slightly worsenedthe

transientresponsecharacteristics.It canbecheckedthatthetransientresponse
specificationsof thecompensatedsystemobtainedby usingPI controllersthat
havezeroslocatedat and are improved.


