Chapter Eight Root Locus Control Design

8.3 Common Dynamic Controllers

Severalcommondynamiccontrollersappeatrvery oftenin practice. They are
known asPD, PI, PID, phase-lagphase-leadand phase-lag-leadontrollers.
In this sectionwe introducetheir structuresandindicatetheir main properties.
In the follow-up sectionsproceduredor designingthesecontrollersby using
the root locus techniquesuchthat the given systemshavethe desiredspeci-
ficationsare presented.In the most casesthesecontrollersare placedin the
forward path at the front of the plant (system)as presentedn Figure8.1.
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Figure 8.1: A common controller-plant configuration
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8.3.1 PD Controller

PD standsfor a proportionaland derivative controller. The output signal of
this controller is equalto the sum of two signals: the signal obtainedby
multiplying the input signal by a constantgain K, and the signal obtained
by differentiatingand multiplying the input signal by Ky, i.e. its transfer
function is given by

G.(s) = K, + Kgs
This controller is used to improve the system transient response.

8.3.2 PI Controller

Similarly to the PD controller, the Pl controller producesas its output a
weightedsum of the input signalandits integral. Its transferfunction is

1 K K;
Gc(s) = Kp + K;— = ps + R
S

S

In practicalapplicationsthe Pl controllerzerois placedvery closeto its pole
locatedat the origin sothatthe angularcontributionof this “dipole” to theroot
locusis almostzero. A PI controller is used to improve the system response
steady state errors sinceit increaseghe control systemtype by one.

8.3.3 PID Controller
ThePID controlleris acombinationof PD andPlI controllers:hencedts transfer
function is given by

1 K; + Kps + Kgs?
G.(s) = Ky, + Kgs + KZ; = P

S



The PID controller can be used to improve both the system transient response
and steady state errors. This controlleris very popularfor industrial appli-
cations.

8.3.4 Phase-Lag Controller

The phase-lagcontroller belongsto the sameclassasthe Pl controller. The
phase-lagcontroller can be regardedas a generalizatiorof the Pl controller.
It introducesa negativephasento the feedbacKoop, which justifiesits name.
It hasa zeroandpole with the pole beingcloserto theimaginaryaxis, thatis

P1\sS+ z1
Gels) = (_) s+ p1

1

sy 2Z212>p1>0
arg G.(s) = arg(s+ 2z1) —arg(s+p1) =0., —6,, <O

where p; /z; is known as the lag ratio. The correspondinganglesé., and
6,, aregiven in Figure 8.2a. The phase-lag controller is used to improve
steady state errors.

8.3.5 Phase-Lead Controller

The phase-leadontrolleris designedsuchthatits phasecontributionto the
feedbackloop is positive. It is representedy
s+ z»

GC(3)=S+p27 p2 > 22>0

G.(s) = arg(s+ z2) —arg(s+p2) =6., — 60y, >0



where 8., and 8, are given in Figure 8.2b. This controller introducesa
positive phaseshift in the loop (phaselead). It is used to improve the system
response transient behavior.
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Figure 8.2: Poles and zeros of phase-lag (a) and phase-lead (b) controllers

8.3.6 Phase-Lag-Lead Controller

The phase-lag-leadontrolleris obtainedasa combinationof phase-leadnd
phase-lagcontrollers. Its transferfunction is given by

_ (s 4+ z1)(s + 22)
(s + p1)(s + p2)’

It hasfeaturesof both phase-lagandphase-leadontrollers,i.e. it can be used
to improve simultaneously both the system transient response and steady state
errors. However,it is harderto designphase-lag-leadontrollersthan either
phase-lagor phase-leactontrollers.

Gc(s)

P2 >2z2>21>p1 >0, z1z2 = p1p2



8.5 Compensator Design by the Root Locus Method

Sometimesneis able to improve control systemspecficationsby changing
thestaticgain K only. It canbeobservedhatas K increases, the steady state
errors decrease (assuming system's asymptotic stability), but the maximum
percent overshoot increases. However,usinglarge valuesfor K may damage
systemstability. Even more, in most casesthe desiredoperatingpoints for
the systemdominantpoles,which satisfythe transientresponseequirements,
do not lie on the original root locus. Thus, in order to solve the transient
responseand steady state errors improvementproblem, one has to design
dynamic controllers,consideredn Section8.3, and put themin serieswith
the plant (system)to be controlled (seeFigure 8.1).

In the following we presentdynamiccontroller designtechniquesn three
categoriesimprovementof steadystateerrors(Pl and phase-lagcontrollers),
improvemenbf systentransientrespons€PD andphase-leadontrollers),and
improvemenbf bothsteadystateerrorsandtransientespons€PID andphase-
lag-leadcontrollers). Note that transientresponsespecificationsare obtained
underthe assumptionthat a given systemhasa pair of dominantcomplex
conjugateclosed-looppoles; hencethis assumptiorhasto be checkedafter
a controller is addedto the system. This can be easily done using the root
locus technique.

8.5.1 Improvement of Steady State Errors

It hasbeenseenin Chapter6 that the steadystateerrors can be improved
by increasingthe type of feedbackcontrol system,in otherwords, by adding
a pole at the origin to the open-loopsystemtransferfunction. The simplest
way to achievethis goal is to addin serieswith the systema PI controller,



l.e. to get

Go(s)G(s) = 2t Rig g

S

Sincethis controller also introducesa zeroat — K; / K, the zero should be
placed as close as possible to the pole. In that casethe poleat p = 0 and
the zeroat z = p act as a dipole, and so their mutual contributionto the
root locusis almostnegligible. Sincethe root locusis practicallyunchanged,
the systemtransientresponsaemainsthe sameand the effect dueto the PI
controlleris to increasehetype of the control systemby one,which produces
iImproved steadystateerrors. The effect of a dipole on the systemresponse
Is studiedin the next example.

Example 8.4:. Considerthe open-looptransferfunctions
(s +2)
(s+1)(s + 3)

Gi(s) =

and X .

Gals) = —_FDE+5)
(s+1)(s+3)(s+5.1)

Note thatthe secondransferfunction hasa dipole with a stablepoleat —5.1.

The correspondingtepresponsesaregivenin Figure8.4. It canbe seenfrom

this figure thatthe systemwith a stabledipole andthe systemwithout a stable

dipole have almostidentical responsesTheseresponsesiave beenobtained

by the following sequence)f MATLAB instructions.

numl [1 2] Hl 4 3]i num2=[1 7 10]J;
dl= gl 3 d3=[1 5.1]; d12 conv(di,d2);
den conv(d12d
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Figure 8.4: Step responses of a system without
a stable dipole (a) and with a stable dipole (b)

It is importantto point out thatin the caseof an unstable dipole the effect
of a dipole is completely different. Consider,for example,the open-loop

transferfunction given by

Gg(s) =

(s + 2)(s — 5)

(s+1)(s+3)(s—5.1)

Its stepresponsds presentedn Figure 8.5b and comparedwith the corre-
spondingstepresponsafter a dipole is eliminated(Figure 8.5a). In fact, the



systemwithout a dipole is stableand the systemwith a dipole is unstable;
hencetheir responsesre drasticallydifferent. Thus,we canconcludethat it
IS not correct to cancel an unstable dipole sinceit hasa big impact on the
systemresponse.
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Figure 8.5: Step responses of a system without an
unstable dipole (a) and with an unstable dipole (b)

Both the Pl and phase-lagcontroller usethis “stable dipole effect”. They
do not changethe systemtransientresponseput they do have an important
Impact on the steadystateerrors.



Pl Controller Design

As we havealreadyindicated,the Pl controllerrepresents stabledipole with
a pole locatedat the origin and a stablezeroplacednearthe pole. Its impact
on the transientresponseas negligible sinceit introducesneither significant
phaseshift nor gain change.Thus,the transientresponsgarametersvith the
Pl controller are almost the sameas thosefor the original system,but the
steadystateerrorsare drasticallyimproveddue to the fact that the feedback
control systemtype is increasedby one.

The PI controlleris representedin general,by

3—|—II§’3
GC(S) = K, . L, K; K K,

where K, representdts static gain and K; /K, is a stable zero near the
origin. Very often it is implementedas

This implementationis sufficient to justify its main purpose. The design
algorithm for this controlleris extremelysimple.

Design Algorithm 8.1:

1. Setthe Pl controller'spole at the origin andlocateits zeroarbitrarily close
to the pole, say z, = 0.1 or z. = 0.01.

2. If necessaryadjustfor the staticloop gainto compensatéor the casewhen
K, is differentfrom one. Hint: Use K, = 1, andavoid gain adjustment
problem.



Comment: Note that while drawing the root locus of a systemwith a Pl
controller (compensator)the stableopen-loopzero of the compensatowill
attractthe compensator’'pole locatedat the origin asthe staticgainincreases
from 0 to 4 oo so that thereis no dangerthat the closed-loopsystemmay
becomeunstabledue to addition of a PI compensatofcontroller).

The following exampledemonstratethe useof a Pl controllerin orderto
reducethe steadystateerrors.

Example 8.5: Considerthe following open-looptransferfunction

. K(s+ 6)
(s 4 10)(s% 4 25 + 2)

G(s)

Let the choiceof the staticgain K = 10 producea pair of dominantpoles
on the root locus, which guaranteeshe desiredtransientspecifications.The
correspondingositionconstantindthe steadystateunit steperroraregivenby

10 X 6 1
K, = =3 = e =——=0.25
10 x 2 1+ K,

Using a Pl controller with the zeroat —0.1 (z. = 0.1), we obtain the
improved valuesas K, = oo andess = 0. The stepresponsef the
original systemand the compensatedystem,now given by

10(s 4 0.1)(s + 6)

Gels)G(s) = s(s + 10)(s2 + 2s + 2)

are presentedn Figure 8.6.
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Figure 8.6: Step responses of the original (a)
and compensated (b) systems for Example 8.5

The closed-looppolesof the original systemare given by

A1 = —9.5216, D23 = —1.2392 + j2.6204

For the compensatedystemthey are

Ale = —9.5265, Agc3c = —1.1986 + j2.6109

Having obtainedthe closed-loopsystempoles, it is easyto checkthat the
dominantsystempoles are preservedfor the compensatedystemand that
the dampingratio and natural frequencyare only slightly changed. Using
informationaboutthe dominantsystempolesandrelationshipsobtainedfrom



Figure 6.2, we get

Cwn = 1.2392, w? = (1.2392)° + (2.6204)°
= w? =2.9019, ¢ = 0.4270
and

Cewne = 1.1986, w2 = (1.1986)° + (2.6109)°
= w? =2.8901, (.= 0.4147

In Figure 8.7 we draw the stepresponsef the compensatedystemover a
long periodof time in orderto showthatthe steadystateerror of this system
Is theoreticallyand practically equalto zero.

Figures8.6 and 8.7 are obtainedby using the sameMATLAB functions
as thoseusedin Example8.4.

The root loci of the original and compensatedystemsare presentedn
Figures8.8 and 8.9. It canbe seenfrom thesefiguresthat the root loci are
almostidentical, with the exceptionof a tiny dipole branchnearthe origin.
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Figure 8.7: Step response of the compensated system for Example 8.5
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Figure 8.8: Root locus of the original system for Example 8.5
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Figure 8.9: Root locus of the compensated system for Example 8.5

Phase-Lag Controller Design

The phase-lagcontroller,in the contextof root locus designmethodology s
alsoimplementedasa dipolethathasno significantinfluenceon therootlocus,
andthuson the transientresponsebut increaseshe steadystateconstantsand
reducesthe correspondingsteadystateerrors. Sinceit is implementedas a
dipole, its zero and pole haveto be placedvery closeto eachother.

Thelag controller'simpacton the steadystateerrorscanbe obtainedfrom
the expressiondor the correspondingsteadystate constants. Namely, we
know that

Ky = lim {H(3)G(s)}, K, = lim {sH()G(s)}
K, = ll_r% {s*H(s)G(s)}



and
1 1 2

essstep - 1 —|— Kp? ess'rn,'m,p - K/v, esspara.bolic - Ka

For control systemsof type zero, one, and two, respectively,the constants
K,, K,, and K, areall given by the sameexpressionthatis

Z1Z2ooo

Ki=K—, Il =p,v,a
pip2:---
Consider first, a phase-lagcompensatoof the form
s+ z
Gc(s): C, Ze > pe >0
5 + Pe

If we put this controllerin serieswith the system,the correspondingsteady
stateconstantf the compensatedystemwill be given by

Z122 " Z¢ Zc
Kie=K———— = K;—, le,l = p,v,a

P1P2 - *Pc DPc
In order to increasetheseconstantsand reducethe steadystateerrors, the
ratio of z./p. shouldbe aslarge aspossible.Sinceat the sametime z, must
be closeto p. (they form a dipole), a large value for the ratio z./p. canbe
achievedf both of themareplacedcloseto zero. For example the choiceof
z. = 0.1 andp,. = 0.01 increaseghe constantskK;,l = p, v, a, tentimes
andreducesthe correspondingteadystateerrorsten times.

Now considera phase-lagcontroller definedby (8.18), thatis

Pc\ S + zc
Gete) = (_) s+p

Zc

’ Ze > pe >0



This controllerwill changehe valueof the staticgain K by afactorof p./z.,
which will producea movementof the desiredoperatingpoint alongthe root
locusin the direction of smallerstatic gains. Thus, the plant static gain has
to be adjustedto a highervaluein orderto preservahe sameoperatingpoint.
The consequencef usingthis phase-lagcontrolleris that the same (desired)
operating point is obtained with higher static gain. We already know that
by increasingthe static gain, the steadystate errors are reduced. In this
case the staticgain adjustmenthasto be doneby choosinga new static gain
K = Kz./p.. Notethatthe effectsof both phase-lagontrollersareexactly
the same,since the gain adjustmentin the caseof controller (8.18) in fact
cancelsits lag ratio p./ z..

The following simplealgorithmis usedfor phase-lagcontrollerdesign.

Design Algorithm 8.2:

1. Choosea pointthathasthe desiredtransientspecficationson therootlocus
branchwith dominantsystempoles. Readfrom the root locus the value
for the staticgain K at the chosenpoint, anddeterminethe corresponding
steadystate errors.

2. Setboth the phase-lagcontroller’s pole and zero nearthe origin with the
ratio z./p. obtainedsuchthat the desiredsteadystateerror requirement
is satidied.

3. In the caseof controller(8.18), adjustfor the staticloop gain, i.e. take a
new staticgainas K = Kz./p..



Example 8.6: The steadystateerrorsof the systemconsideredn Example
8.5 canbe improvedby using a phase-lagcontroller of the form
s+ 0.1

Sincez./p. = 10, the position constantis increaseden times, thatis
Zc
Pc
so that the steadystateerror dueto a unit stepinput is reducedto
1
e = =
e T ] 4 Kpe 31

It canbeeasilycheckedhatthetransientresponsés almostunchangedin fact,

the dominantsystempoleswith this phase-lagcompensatoare —1.2026 +
72.6119, which is very closeto the dominantpolesof the original system

(see Example 8.5).

= 0.03226

Example 8.7: Considerthe following open-looptransferfunction
K 15
G(s)H(s) = (s +15)
s(s + 20)(s%? + 4s + B)

Let the choiceof the staticgain K = 20 producea pair of dominantpoleson
the root locusthat guaranteeshe desiredtransientspecifications.The system

closed-looppolesfor K = 20 are given by

A2 = —0.5327 + j2.2024, A3 = —2.9194,

Ay = —20.0153



so that for this value of the staticgain K the dominantpolesexist, i.e. the
absolutevalueof therealpartof thedominantpoles(0.5327)is aboutsix times
smallerthanthe absolutevalueof therealpartof the nextpole(2.9194),which
Is in practicesufficient to guarantegoles’ dominance.Sincewe havea type
one feedbackcontrol system,the steadystateerror dueto a unit stepis zero.
The velocity constantand the steadystateunit ramp error are obtainedas
K 20 X 15 15 1
= = = e =
7 20x 8 8 oramr K,
Using the phase-lagcontroller with a zeroat —0.1 (z. = 0.1) anda pole
at —0.01 (p. = 0.01), we get
Ze 150
Ky=Ky,—=— = €sscramp — 0-053
Pec 8
It can be easily shown by using MATLAB that the ramp response®f the
original andthe compensatedystemsarevery closeto eachother. The same
holds for the root loci. Note that even smaller steadystate errors can be
obtainedif we increasethe ratio z./p., €.9. t0 z./p. = 100.

= 0.53



8.5.2 Improvement of Transient Response

The transientresponsecan be improvedby usingeitherthe PD or phase-lead
controllers.

PD Controller Design
The PD controlleris representedy

Ge(s) =s4+ 2., 2:.>0

which indicatesthat the compensatedystemopen-looptransferfunction will
haveoneadditionalzero. Theeffect of this zerois to introducea positivephase
shift. Thephaseshift andpositionof thecompensator'gerocanbedetermined
by usingsimplegeometry.Thatis, for thechoserdominantcomplexconjugate
polesthatproducethe desiredtransientresponsave applytherootlocusangle
rule. This rule basicallysaysthatfor a choserpoint, s4, on theroot locusthe
differenceof the sum of the anglesbetweenthe point s; andthe open-loop
zeros, and the sum of the anglesbetweenthe point s; and the open-loop
polesmustbe 180°. Applying the root locus anglerule to the compensated
system,we get

AG:(s4)G(sa) = £(sa + zc)—i—i A(sa + zi)—zn: A(sq + p;) = 180°

which implies

L(sq+ ze) =180° — ) L(sa+ 2zi) + Y 4(sa+ pi) = o
=1 =1



Fromthe obtainedangle£(sq + z.) thelocationof the compensator’'gerois
obtainedby playing simple geometryas demonstratedn Figure 8.10. Using
this figure it canbe easily shownthat the value of z. is given by

Ze = “n (Ctanac 4+ V1 — C2>

tan o,

2 Im{s}

wnl/1- 22

Re( s}

|z]

Figure 8:10 Determination of a PD controller’'s zero location

Design Algorithm 8.3:

1. Choosea pair of complexconjugatedominantpolesin the complexplane
that producesthe desiredtransientresponse(dampingratio and natural
frequency). Figure 6.2 helpsto accomplishthis goal.

2. Find the required phase contribution of a PD regulator by using the
correspondingormula.

3. Findtheabsolutevalueof a PD controller’'szeroby usingthe corresponding
formula; seealso Figure 8.10.

4. Check that the compensatedsystem has a pair of dominant complex
conjugateclosed-looppoles.



Example 8.8: Let the designspecificationsbe set suchthat the desired
maximum percentovershootis less than 20% and the 5%-settlingtime is
1.5 s. Then,the formulafor the maximum percentovershootimplies

o 1n{OS — {05}  _ | 456
_—/1_742_“{ b= o= w2 +1In* {OS}

We take ¢ = 0.46 so that the expectedmaximum percentovershootis less
than20%. In orderto havethe 5%-settlingtime of 1.5 s, the naturalfrequency
should satisfy

3
s~ — = w, ~ = 4.348 rad /s
’ Cwn " Cis /

The desireddominantpoles are given by
Sd = Ag = —Cwp + Jwpv/1 —(¢%2 = —2.00 % 73.86
Considernow the open-loopcontrol system

K(s + 10)
(s+1)(s+2)(s+12)

G(s) =

The root locus of this systemis representedn Figure 8.11a.
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Figure 8.11: Root loci of the original (a) and compensated (b) systems

It is obviousfrom the abovefigure that the desireddominantpoles do not
belongto the original root locus sincethe breakawaypoint is almostin the
middle of the open-looppoleslocatedat —1 and —2. In orderto movethe
original root locus to the left suchthat it passeghrough sy, we designa
PD controller by following DesignAlgorithm 8.3. Step1 hasbeenalready
completedin the previousparagraph.Sincewe havedeterminedthe desired
operatingpoint, sq, we now usethe formula for the anglesto determinethe
phasecontributionof a PD controller. By MATLAB functionangle (or just
using a calculator),we can find the following angles

A(sq + z1) = 0.4495rad, 4£(sq+ p1) = 1.8243rad
A(sq + p2) = 1.5708rad, 4£(sq+ p3) = 0.3684rad



Note that MATLAB function angle producesresultsin radians. Using the
formula for the angles,we get

A(Sq + zc) = ™ — 0.4495 + 1.8243 + 1.5708 + 0.3684
= 0.1723rad = 9.8734° = a,

Having obtainedthe angle «., the location of the controller’'s zerois z, =
24.1815, so thatthe requiredPD controlleris given by

G.(s) = s + 24.1815

The root locus of the compensatedystemis presentedn Figures8.11band
8.12b. It canbe seenfrom Figure8.12thatthe pointsy = —2 £ 73.86 lies
on the root locus of the compensatedystem.
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Figure 8.12: Enlarged portion of the root loci in the neighborhood of the
desired operating point of the original (a) and compensated (b) systems



At the desiredpoint, s4, the staticgain K, obtainedby applyingthe root
locus magnituderule, is given by K = 0.825. This value can be obtained
eitherby usinga calculatoror the MATLAB function abs asfollows:

dlzabszsd+p13; d2:abs(sd+p2%; d3=abs(sd+p3);

d4=abs(sd+z1); d5=abs(sd+zc);

K=(d1*d2*d3)/(d4*d5)
For this value of the static gain K, the steadystateerrorsfor the original
and compensatedystemsaregiven by ess = 0.7442, essc = 0.1074. In
addition, since the controller's zero will attractone of the systempoles for
largevaluesof K, it is notadvisablgo choosesmallvaluesfor z. sinceit may
damagethe transientresponsedominanceby the pair of complex conjugate
poles closestto the imaginary axis.

The closed-loopstepresponsdor this value of the staticgainis presented
in Figure 8.13.
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Figure 8.13: Step response of the compensated system for Example 8.8



It canbe observedhat both the maximumpercentovershootandthe settling
time are within the specifiedlimits. The valuesfor the overshootpeaktime,
and settlingtime are obtainedby the following MATLAB routine:

[yc,xc,t]=step(cnumc,cdenc);
%t is a time vector of length =73;

% cnumc = closed-loop compensated numerator
% cdenc = closed-loop compensated denominator
plot(t,yc);

[ymax,imax]=max(yc);

% ymax is the function maximum;

% imax = time index where maximum occurs;

tp=t(imax)

essc=0.1074;

yss=1 —essc;

0S=ymax-yss

% procedure for finding the settling time;

delt5=0.05*yss;

I=73;

while  abs((yc(i)-yss))<delt5;

i=i-1;

end,;

ts=t(i)
Using this program, we have found that t; = 1.125s and M POS =
20.68%. Our startingassumptionfiavebeenbasedn a modelof the second-
order system.Sincethe second-ordesystemsare approximationdor higher-
ordersystemshat havedominantpoles,the obtainedresultsare satisfactory.



Finally, we have to check that the systemresponseis dominatedby a
pair of complexconjugatepoles. Finding the closed-loopeigenvaluesve get
A1 = —11.8251, X3 = —2.000 £ 33.8600, which indicatesthat the
presentedcontroller designresultsare correctsince the transientresponsds
dominatedby the eigenvaluesk, s.

Phase-Lead Controller Design

The phase-leadontrollerworks on the sameprinciple asthe PD controller. It

usesheargumentrule of therootlocusmethod whichindicateghe phaseshift

that needsto be introducedby the phase-leaatontrollersuchthat the desired
dominantpoles(havingthe specifiediransientresponseharacteristicshpelong
to the root locus.

The generalform of this controlleris given by

s+ z
G.(s) = s—I-pC, Pe > 2z >0
C

By choosinga point s4 for a dominantpole that hasthe requiredtransient
responsespecfications, the designof a phase-leadontroller can be donein

similar fashionto that of a PD controller. First, find the angle contributed
by a controller suchthat the point s; belongsthe root locus, which can be
obtainedfrom

AGc(s4) = 180° — LG (s4)
that is

Oc = £(8q + ze)—4(sa + pe) = 180°=) " L(sq + zi)+ Y _ £(s4 + pi)



Secondfind locationsof controller'spole andzero. This canbe donein many
ways as demonstratedn Figure 8.14.
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Figure 8.14: Possible locations for poles and zeros of
phase-lead controllers that have the same angular contribution

All thesecontrollersintroducethe samephaseshift andhavethe sameimpact
on the transientresponse.However,the impact on the steadystateerrorsis
differentsinceit dependson theratio of z./p.. Sincethis ratio for a phase-
lead controller is lessthan one, we concludethat the correspondingsteady
stateconstantis reducedand the steadystateerror is increased.

Note that if the location of a phase-leactontroller zero is chosen,then
simplegeometrycanbe usedto find the locationof the controller’'spole. For
example et —z.3 betherequiredzero,thenusingFigure8.14the pole —p.s
IS obtainedas

Pe3 = Cwp + wpy 1 — Cztan(ec — §0+7T/2)
wherep = 4(sq + z.3). Notethaty > 6..
An algorithm for the phase-leadcontroller designcan be formulated as
follows.



Design Algorithm 8.4:

1. Choosea pair of complexconjugatepolesin the complexplanethat pro-
ducesthe desirediransientresponsédampingratio andnaturalfrequency).
Figure 6.2 helpsto accomplishthis goal.

2. Find the requiredphasecontribution of a phase-leactontroller by using
the correspondingormula.

3. Choosevaluesfor the controller’spoleandzeroby placingthemarbitrarily
suchthatthe controllerwill notdamagedheresponselominanceof a pair of
complexconjugatepoles. Someauthors(e.g. Vande Verte,1994) suggest
placing the controller zero at —{w,.

. Find the controller’s pole by usingthe correspondindgormula.

. Check that the compensatedsystem has a pair of dominant complex
conjugateclosed-looppoles.

o b

Example 8.9: Considerthe following control systemrepresentedy its
open-looptransferfunction

K(s+ 6)
(s 4+ 10)(s% + 25 + 2)

It is desiredthat the closed-loopsystemhave a settling time of 1.5s and
a maximum percentovershootof lessthan 20%. From Example 8.8 we
know that the systemoperatingpoint shouldbe at s; = —2 + 33.86. A
controller’s phasecontributionis

6, = m™— 0.7676 4+ 0.4495 4 1.9072 4+ 1.7737
= 6.5044rad = 0.2213 rad = 12.6769°

G(s) =




Let uslocatea zeroat —15 (z. = 15), thenthe compensator'goleis at
—pe. = —59.2025. Theroot loci of the original and compensatedystems
aregivenin Figure8.15,andthe correspondingtepresponses Figure8.16.
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Figure 8.15: Root loci for the original (a) and compensated (b) systems

It canbe seenthattheroot locusindeedpasseshroughthe point —2 + 5 3.86.
For this operatingpoint the static gain is obtainedas K = 101.56; hence
the steadystateconstantf the original and compensategdystemsare given
by K, = 30.468 and K, = Ky(z./p.) = 7.7196, and the steady
stateerrorsare es;s = 0.0317,e55c = 0.1147. Figure 8.16 revealsthat
for the compensatedystemboththe maximumpercentovershootandsettling
time are reduced. However,the steadystateunit steperror is increasedas
previously noted analytically.

With a zerosetat —9, we havep, = 15.291. The root locus of the
compensatedystemwith a new controlleris givenin Figure 8.17.
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Figure 8.16: Step responses of the original (a) and compensated (b) systems
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Figure 8.17: Root locus for the compensated system with the second controller



Thestaticgainatthe desiredoperatingpoint —2+33.86 is K = 41.587,
and hencethe steadystateerrorsareezs = 0.0742, ezs. = 0.11986. The
stepresponse®f the original and compensatedystemsfor K = 41.587,

are presentedn Figure 8.18.

15

(@)

0.5r

0 L L L L L
0 0.5 1 15 2 25 3

Figure 8.18: Step responses of the original (a) and compensated
(b) systems with the second controller for Example 8.9

It canbe seenthatthis controlleralsoreducedoth the overshootandsettling
time, while the steadystateerror is slightly increased.

We can concludethat both controllersproducesimilar transientcharacter-
Istics and similar steadystateerrors,but the secondoneis preferredsincethe
smallervalue for the static gain of the compensatedystemhasto be used.
The eigenvalueof the closed-loopsystemfor K = 41.587 aregiven by

Aic = —12.4165, Az = —10.8725, Aac3c = —2.000 % j3.8600



which indicatesthat the responseof this systemis still dominatedby a pair
of complex conjugatepoles.

Remark: In someapplicationdor a chosendesiredpoint, s, therequired
phaseincrease ., may be very high. In suchcasesone canusea multiple
phase-lead controller having the form

n s + z.
Glea,d(s) — (8 +pc

so that eachsingle phase-leadontroller hasto introducea phaseincreaseof
B./n.

n
)7 Pe > 2 >0

8.5.3 PID and Phase-Lag-Lead Controller Designs

It can be observedfrom the previousdesignalgorithmsthat implementation
of a Pl (phase-lag)controller doesnot interfere with implementationof a

PD (phase-leadkxontroller. Sincethesetwo groupsof controllersare used
for differentpurposes—oné& improvethetransientresponsendthe otherto

improvethe steadystateerrors—implementinghemjointly andindependently
will take careof both controller designrequirements.

Considerfirst a PID controller. It is representeds
K .
s’ + g&s gd

S

K;
Gpip(s) = Ky, + Kgs + — = Kq

(s + 2c,)

= Ka(s + z¢,) = Gpp(s)GpiI(s)

which indicatesthat the transferfunction of a PID controlleris the productof
transferfunctionsof PD and PI controllers. Sincein DesignAlgorithms 8.1



and8.3thereareno conflictingsteps the designalgorithmfor a PID controller
Is obtainedby combiningthe designalgorithmsfor PD and Pl controllers.

Design Algorithm 8.5: PID Controller

1. Checkthe transientresponsandsteadystatecharacteristicef the original
system.

. Designa PD controllerto meetthe transientresponseequirements.

. Designa PI controllerto satisfythe steadystateerror requirements.

. Checkthat the compensatedystemhasthe desiredspecifications.

Example 8.10: Considerthe problemof designinga PID controllerfor the
open-loopcontrol systemstudiedin Example8.8, thatis
K (s + 10)
(s+1)(s+2)(s+12)
In fact, in that example,we havedesigneda PD controller of the form
Gpp(s) = s + 24.1815

suchthat the transientresponsdiasthe desiredspecfications. Now we adda
Pl controllerin orderto reducethe steadystateerror. Thecorrespondingteady
stateerror of the PD compensatedystemin Example8.8is es5. = 0.1074.

Sincea PI controlleris a dipole that hasits pole at the origin, we propose
the following PI controller

SN

G(s) =

s+ 0.1
Gpi(s) =
S
We are in fact using a PID controller with Ky = 1,
Ze1 = 24.1815, z.o = 0.1. The corresponding root locus of this

systemcompensatety a PID controlleris representedan Figure 8.109.
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Figure 8.19: Root locus for the system from
Example 8.8 compensated by the PID controller

It can be seenthat the PI controller doesnot affect the root locus, and
henceFigures8.11band8.19 are almostidentical exceptfor a dipole branch.

On the other hand, the stepresponse®f the systemcompensatedby the
PD controllerand by the PID controller (seeFigures8.13 and 8.20) differ in
the steadystateparts. In Figure 8.13 the steadystatestepresponsdendsto
yYss = 0.8926, andtheresponsdrom Figure8.20tendsto 1 sincedueto the
presenceof an open-looppole at the origin, the steadystateerror is reduced
to zero. Thus,we canconcludethat the transientresponses the sameoneas
that obtainedby the PD controllerin Example8.8, but the steadystateerror
Is improveddue to the presenceof the Pl controller.
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Figure 8.20: Step response of the system from
Example 8.8 compensated by the PID controller

Similarly to the PID controller,the designfor the phase-lag-leadontroller
combinesDesign Algorithms 8.2 and 8.4. Looking at the expressionfor a
phase-lag-leadontrollergivenin formula (8.20),it is easyto concludethat

Glag/lead(s) = Glag(S)Glead(S)

The phase-lag-leadctontroller designcan be implementedby the following
algorithm.



Design Algorithm 8.6: Phase-Lag-Lead Controller

1. Checkthe transientresponsandsteadystatecharacteristicef the original
system.

. Designa phase-leadontrollerto meetthe transientresponseequirements.

Designa phase-lagontrollerto satisfythe steadystateerror requirements.

Checkthat the compensatedystemhasthe desiredspecifications.

BwN

Example 8.11: In this examplewe designa phase-lag-leadontroller for
a control systemfrom Example8.9, that is
K(s+ 6)
(s +10)(s? + 25 + 2)
such that both the systemtransientresponseand steady state errors are
improved. We haveseenin Example8.9 that a phase-leadontroller of the
form 4o
S
Glead(s) -
s+ 15.291
improvesthetransientresponséo the desiredone. Now we addin serieswith

the phase-leadontrolleranothemphase-lagontroller,whichis in facta dipole
nearthe origin. For this examplewe usethe following phase-lagcontroller

s+ 0.1
s 4+ 0.01
so that the compensatedystembecomes

B B K(s + 6) (s+9) (s+0.1)
G(s) = G(s)Ge(s) = (s + 10)(s% + 25 + 2) (s + 15.291) (s + 0.01)

G(s) =

Glag(s) =




The correspondingoot locus of the compensategdystemandits closed-loop
stepresponsarerepresentedn Figures8.21 and8.22. We can seethat the
addition of the phase-lagcontroller doesnot changethe transientresponse,
l.e. theroot loci in Figures8.17 and8.21 arealmostidentical. However,the
phase-lagcontroller reduceghe steadystateerror from egs jeqd = 0.11986
t0 €45,1ag/1ead = 0.01344 sincethe positionconstants increasedo

0.1 41.587 X 9 x 0.1

K =
0.01 10 X 2 X 15 X 0.01

p.lag/lead = Kp,lea,d = 73.432

so that

1
€ss,lag/lead = = 0.01344

1+ Kp,lag/lead
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Figure 8.21: Root locus for the system from Example
8.9 compensated by the phase-lag-lead controller
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Figure 8.22: Step response of the system from Example
8.9 compensated by the phase-lag-lead controller

8.6 MATLAB Case Studies

In this section we considerthe compensatordesign for two real control
systems:a PD controller designedto stabilize a ship, and a PID controller
usedto improve the transientresponseand steadystateerrors of a voltage
regulatorcontrol system.

8.6.1 Ship Stabilization by a PD Controller

Considera ship positioningcontrol systemdefinedin the statespaceform in
Problem7.5. The open-looptransferfunction of this control systemis

0.8424
s(s + 0.0546)(s + 1.55)

G(s) =



The root locus of the original systemis presentedn Figure 8.23a.
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Figure 8.23: Root loci for a ship positioning control
problem: (a) original system, (b) compensated system

It can be seenthat this systemis unstableevenfor very small valuesof
the static gain. Thus, the systemtransientresponseblows up very quickly
due to the system’sinstability. Our goal is to designa PD controller in
order to stabilize the systemand improve its transientresponse. Let the
desiredoperatingpoint be locatedat s; = —0.2 £ 30.3, which implies
w, = 0.3606rad/s and{ = 0.5547. We find that the requiredphase
shiftis a, = 72.0768°, andthelocationof the compensatorerois obtained



at —0.297. Thus,the PD compensatosoughtis of the form

G.(s) = s 4+ 0.297

It canbe seenfrom Figure8.23thatthe rootlocusof the compensatedystem
indeedpasseshroughthe point s; = —0.2 4 0.3 andthatthe compensated
systemis stablefor all valuesof the staticgain. The staticgain at the desired
operatingpoint is given by K,;, = 0.6258 and the correspondingclosed-
loop eigenvaluesat this operatingpoint are Aj, = —1.2046, A2.3. =
—0.2 £+ 50.3. In Figure 8.24 the unit step responseof the compensated
systemis presented.
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Figure 8.24: Step response of a ship positioning compensated control system



It is found that y;me: = 1.2863, t, = 7.3043 s, andt; = 12.7826s.
From the samefigure we observethat the steadystateerror for this system
Is zero, which also follows from the fact that the systemopen-looptransfer
function hasone pole at the origin.

8.6.2 PID Controller for a Voltage Regulator Control System

The mathematicalmodel of a voltage regulator control systemis given in
Section6.7. The open-looptransferfunction of this systemis

154280

Gls) = (s +0.2)(s + 0.5)(s + 10)(s + 14.28)(s + 25)

The correspondingroot locus is presentedin Figure 8.25. Since one of
the branchesgoes quite quickly into the instability region, our designgoal
IS to move this branchto the left so that it passesthrough the operating
point selectedas s4 = —1 £ 31. For this operating point, we have
w, = V2 rad/s and¢ = 0.7071 so that the expectednaximum percent
overshootindthe 5%-settlingtime of thecompensatedystemare M PO S =
4.3214%, ts = 3s. In addition,the designobjectiveis to reducethe steady
stateerror due to a unit stepto zero.
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Figure 8.25: Root locus for a voltage regulator system

We use a PID controller to solve the controller design problem defined
above. The requiredphaseimprovementfor the selectedoperatingpoint is
found asa, = 1.3658 rad = 78.2573°. The location of the compen-
sator'szerois obtainedas —z. = —1.2079, so thatthe PD part of a PID
compensatois

Gpp(s) = s+ 1.2079

The branchesof the root loci in the neighborhoodof the desiredoperating
point of the original and PD compensatedystemsare presentedn Figure
8.26. It can be seenthat the compensatedoot locus indeedpasseghrough
the point sq = —1 + j1.
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Figure 8:26: Root loci of the original (a) and PD (b) compensated systems

The closed-loopunit stepresponseof the systemcompensatedy the PD
controlleris representedh Figure8.27. Usingthe MATLAB programsgiven
in Example 8.8, gives MPOS = 6.08%, t, = 2.1s, andt; = 3.5s5,
which is quite satisfactory. However, the steady state unit step error is
esspp = 0.0808. Note that the static gain at the operatingpoint, obtained
by applyingthe root locusrule number9 from Table7.1,is K5, = 4060.8.
The closed-loopeigenvaluesat the operatingpoint are

Aipp = —23.7027, A,, = —18.1675, A3,, = —6.1105
Aispp = —0.997 £ 51.0011

which indicatesthat the systemhas preserveda pair of dominantcomplex
conjugatepoles.



In order to reducethis steadystateerror to zero we use a Pl controller
of the form
s+ 0.1

S

Gpi(s) =

Sincethe compensatedystemopen-looptransferfunction now hasa pole at
the origin, we concludethat the steadystateerror is reducedto zero, which
can also be observedfrom Figure 8.27.
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Figure 8.27: Step responses of PD and PID compensated systems

The transientresponsespecificationsfor the systemcompensatedby the
proposedPID controller are M POS = 11.277%, t, = 2.1s, and
ts = 3.1s. Thus, the proposedPI controller has slightly worsenedthe
transientresponseharacteristicsit canbe checkedhatthe transientresponse
specification®f the compensatedystemobtainedby usingPI controllersthat
have zeroslocatedat —0.01 and —0.001 are improved.



