Chapter Eight

Time Domain Controller Design

8.1 Introduction

In this chapterwe study the problem of controller designsuchthat the desired
systemspecificationsare achieved. Controller designis performedin the time

domain using the root locus technique. Controller designtechniquesin the

frequencydomain, basedon Bode diagrams,will be presentedn Chapter9.

In this bookwe emphasizeontrollerdesignin thetime domainfor the following

reasons:(a) with the help of MATLAB very accurateresultscan be obtained
for both desiredtransientresponsgparametersand steadystateerrors;(b) while

designinga controllerin time systemstability will canbe easilymonitoredsince
theroot locustechniqueis producinginformationaboutthe locationof all of the

systempolesso that oneis ableto designcontrol systemsthat havea specified
relative degree(extent) of stability; (c) controller designusing the root locus
methodis simplerthanthe correspondingone basedon Bodediagrams (d) root

locus controller designtechniquesare equally applicableto both minimum and
nonminimum phasesystems,whereasthe correspondingtechniquesbasedon

Bode diagramsare very difficult to use (if applicableat all) for nonminimum
phasesystemgKuo, 1995).

Beforewe actuallyintroducetherootlocustechniquegor dynamiccontroller
design (Section 8.5), in Section 8.2 we considera classof static controllers
obtainedthroughthe pole placementechniquebasedon full statefeedback.The
main purposeof this controlleris to stabilizethe closed-loopsystem,andit can
sometimede usedto improve the systemtransientresponse.
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332 TIME DOMAIN CONTROLLER DESIGN

In somecasesit is possibleto achievethe desiredsystemperformanceby
changingonly the static gain K. In general,as K increasesthe steadystate
errors decease,but the maximumpercentovershootincreases However, very
often a static controller is not sufficient and one is facedwith the problem of
designingdynamic controllers.

In Section8.3 we presentcommoncontrollersusedin linear systemcontrol
design. Two main classesof thesecontrollersare discussed:Pl and phase-lag
controllersthat improve steadystateerrors,and PD and phase-lead:ontrollers
that improve the systemtransientresponse.Combinationsof thesecontrollers,
which simultaneouslyimprove both the systemtransientresponseand steady
stateerrors, are also considered.

A simple classof dynamicfeedbackcontrollerscanbe obtainedby feeding
back the derivative of the output variables. Thesecontrollers, known as the
rate feedbackcontrollers,are presentedn Section8.4. It is shownthat a rate
feedbackcontrollerincreaseshe dampingratio of a second-ordesystemwhile
keepingthe natural frequencyunchangedso that both the responsemaximum
percentovershootand the settling time are reduced.

Actual controllerdesignin thetime domainis studiedin Section8.5. Design
algorithms(proceduresareoutlinedfor severaltypesof controllersintroducedn
Section8.3. Theimpactof particularcontrollerson transientresponsgarameters
and steadystateerrorsis examined.

Severalcontroller design casestudiesinvolving real physical systemsare
presentedn Section8.6. A the endof this chapter,in Section8.7, a MATLAB
laboratoryexperimenis formulated,in which studentsareexposedo theproblem
of controller designfor real physical control systems.

Chapter Objectives

This chapterpresentssystematigproceduredor time domaincontroller de-
sign techniquesbasedon the root locus method. Studentswill learn how to
designdifferent types of controllerssuch that the closed-loopcontrol systems
havethe desiredsteadystateerrorsandtransientresponsgarametergmaximum
percentovershoot,settling time). In addition, the eigenvalue(pole) placement
techniquewhich for controllablesystemsallows location of systemeigenvalues
in any desiredpositionin the complexplane,is fully explainedfor the caseof
single-inputsingle-outputsystems.
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8.2 State Feedback and Pole Placement

Considera linear dynamic systemin the statespaceform
x = Ax + Bu
(8.1)
y = Cx

In somecasesone is able to achievethe goal (e.g. stabilizing the systemor
improvingits transientesponsepy usingthefull statefeedbackwhichrepresents
a linear combinationof the statevariables,that is

u=-Fx (8.2)
so that the closed-loopsystem,given by
x = (A -BF)x
(8.3)
y =Cx

has the desiredspecifications.

The main role of statefeedbackcontrol is to stabilize a given systemso
that all closed-loopeigenvaluesare placedin the left half of the complexplane.
The following theoremgivesa conditionunderwhichis possibleto placesystem
polesin the desiredlocations.

Theorem 8.1 Assumingthat the pair (A, B) is contwollable, there existsa
feedbackmatrix F suchthat the closed-loopsystemeigenvaluesan be placed
in arbitrary locations.

This important theoremwill be proved (justified) for single-inputsingle-
output systems. For the generaltreatmentof the pole placementproblem for
multi-input multi-output systems which is much more complicated,the reader
is referredto Chen (1984).

If thepair (A, b) is controllable the original systemcanbe transformednto
the phasevariable canonicalform, i.e. it existsa nonsingulartransformation

x = Qz (8.4)
such that
0 1 0 0
0 1 ca 0 0
a=| 1 i izt |u (8.5)
0 0 0 1 0
—ap —dai —a ... —p-1 1
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wherea;’s are coeficients of the characteristiqgpolynomial of A, thatis
det(AI — A) = s" + U118V F @08 2 4 4 ay8 + ag (8.6)
For single-inputsingle-outputsystemsthe statefeedbackis given by
wz) = ~fiz1 — fazz — o = farn = —foz (8.7)

After closingthe feedbacKkoop with u(z), asgiven by (8.7), we getfrom (8.5)

0 1 0 0
0 0 1 0
;= : : : : z (8.8)
0 0 0 1
—(ao+ fr) —(ar+fa) —(a2+f3) ... —(@n 1+ fn)

If the desiredclosed-loopeigenvaluesare specifiedby A?, Ad, ..., A2, then the
desiredcharacteristigpolynomial will be given by

0= (=) =)= (1-2)

(8.9)
=s"+ aiflsn_l + afiﬁsn_2 +---+ ai‘ls + ag

Sincethe lastrow in (8.8) containscoeficients of the characteristigpolynomial
of the original systematfter the feedbackis applied,it follows from (8.8) and
(8.9) that the requiredfeedbackgains must satisfy

a0-|-f1:ag = flzag—ag
w+fr=ai = fr=af-a (8.10)

U1+ fr = a’ifl = fu= a’ifl —ap—1
The pole placementprocedureusing the statefeedbackfor a systemwhich is
alreadyin phasevariablecanonicalform is demonstratedh the nextexample.
Example 8.1: Considerthefollowing systemgivenin phasevariablecanon-
ical form

0 1 0 0
z= 1|0 0 1 [z+ |0]u
-2 -5 =10 1
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It is requiredto find coeficients f1, fa, f3 suchthatthe closed-loopsystemhas
the eigenvaluedocatedat /\C{,2 = —14 41, M = —5. The desiredcharacteristic
polynomial is obtainedfrom (8.9) as

AN = A+ A+ 14+7D)A+1—51) =22+ 722+ 12X + 10
so that from (8.10) we have
fizal—a=10-2=18
fo=al-a1=12-5=7
fa=al—ay=7-10= -3
(]

In general,in order to be able to apply this techniqueto all controllable
single-inputsingle-outputsystemswe needto find a nonsingulartransformation
which transfersthe original systeminto phasevariable canonicalform. This
transformatiorcan be obtainedby usingthe linearly independentolumnsof the
systemcontrollability matrix

C=|b:Ab:A%b:---:A™ b

It canbe shown(Chen,1984)that the requiredtransformationis given by

Q=[q1 92 - qg] (8.11)
where
q. =b
Qn-1=Aqu +a, 19, = Ab+a, 1b
qrn-2 = Aqn—l + an—29, = A2b + an—lAb + an—2b (812)

a=Aq+aq,=A""'b+a,_1A"*b+ -+ a1b

wherea;’s are coeficients of the characteristiqpolynomial of matrix A. After
the feedbackgain hasbeenfound for phasevariable canonicalform, f., in the
original coordinatest is obtainedas (similarity transformation)

f=f.Q"! (8.13)
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Example 8.2: Considerthe following linear systemgiven by

1 2 0 1
A=1|1 -3 4|, b=1|2]|, c¢=[1 0 1]
-1 1 -9 ~1

The characteristigpolynomial of this systemis
det(AT — A) = s? + 13s% + 335 + 13

Its phasevariablecanonicaform canbe obtainedeitherfrom its transferfunction
(seeSection3.1.2)or by usingthe nonsingular(similarity) transformation(8.11).
The systemtransferfunction is given by

46s + 13
s34+ 1352 +33s+ 13

c(sI—A) 'b=

Using resultsfrom Section3.1.2 we are able to write new matricesin phase
variable canonicalform representatioras

a0 o 0| el

B [—13 —33 —13J [1J

The samematricescould have beenobtainedby using the similarity transfor-
mation with

c.=[13 46 0]

A.=Q'AQ, b.=Q'b, c.=¢cQ (8.14)

with Q obtainedfrom (8.11) and (8.12) as

(51 16 1]
Q=19 17 2
L—5 -3 —1J

Assumethatwe intendto find the feedbackgainfor the original systemsuch
that its closed-loopeigenvaluesare locatedat —1, —2,—3, then

AN = A+ DA +2)A+3) =X +6 2+ 110+ 6
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From equation(8.10) we get expressiondor the feedbackgainsfor the system
in phasevariable canonicalform as

fi=al—ap=6-13=-7
fo=af—a; =11-33=-22
fa=al—ay=6-13=-7

In the original coordinateghe feedbackgain is obtainedfrom (8.13)

f=f.Q ! =[0.8149 —1.0540 5.7069]

Using this gainin orderto closethe statefeedbackaroundthe systemwe get

—1.8149  3.0540 —5.7069
x = |—0.6298 —0.8920 -7.4139(x
—0.1851 —0.0540 -3.2931

It is easyto checkby MATLAB thatthe eigenvalue®f this systemsarelocated
at —1,-2,-3.

o

Comment: Exactly the sameprocedureasthe onegivenin this sectioncan
be usedfor placing the observerpolesin the desiredlocations. The observers
havebeenconsideredn Section5.6. Choosingthe observergain K suchthatthe
closed-loopobservermatrix A — KC hasthe desiredpoles correspondgo the
problemof choosingthe feedbackgain F' suchthatthe closed-loopsystemmatrix
AT —FTBT hasthe samepoles. Thus,for the observempole placemenproblem,
matrix A shouldbereplacedby A7, B replacedby CT andF replacedoy K7
In addition, it is known from Chapter5 that the observabilityof the pair (A, C)
is equalto the controllability of the pair (AT, CT), andhencethe controllability
condition statedin Theorem8.1—the pair (A, B) is controllable, which for
observerpole placementrequiresthat the pair (AT, CT) be controllable—is
satisfiedby assumingthat the pair (A, C) is observable.

8.3 Common Dynamic Controllers

Severalcommondynamic controllersappearvery often in practice. They are
known asPD, PI, PID, phase-lagphase-leadand phase-lag-leadontrollers.In
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this sectionwe introducetheir structuresand indicate their main properties. In
the follow-up sectionsproceduredor designingthesecontrollersby using the
root locustechniguesuchthat the given systemshavethe desiredspecifications
are presentedln the mostcaseghesecontrollersare placedin the forward path
at the front of the plant (system)as presentedn Figure 8.1.

U(s) Y(s)

G(s) G(s)

Figure 8.1: A common controller-plant configuration

8.3.1 PD Controller

PD standsfor a proportionaland derivative controller. The outputsignal of this
controlleris equalto the sumof two signals: the signal obtainedby multiplying
the input signalby a constantgain K, andthe signalobtainedby differentiating
and multiplying the input signalby K, i.e. its transferfunctionis given by

Go(s) = K, + Kys (8.15)

This controller is usedto improvethe systemntransientresponse

8.3.2 Pl Controller

Similarly to the PD controller,the Pl controllerproducesasits outputa weighted
sum of the input signalandits integral. Its transferfunction is
1 Ky,s+ K;

GC(S) = I(p + I(zg = f (816)
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In practical applicationsthe PI controller zero is placedvery closeto its pole
locatedat the origin so that the angularcontributionof this “dipole” to the root
locusis almostzero. A Pl contoller is usedto improvethesystenresponseateady
stateerrors sinceit increaseghe control systemtype by one (seeDefinition 6.1).

8.3.3 PID Controller

The PID controlleris a combinationof PD and Pl controllers;henceits transfer
function is given by
1 K+ K,s+ Kys?

Ge(s)= K, + Kgs + Kig = . (8.17)

ThePID contwoller canbe usedto improveboththe systentransientresponseand
steadystateerrors. This controlleris very popularfor industrial applications.

8.3.4 Phase-Lag Controller

The phase-lagcontroller belongsto the sameclassas the Pl controller. The
phase-lagcontroller can be regardedas a generalizatiorof the Pl controller. It
introducesa negativephaseinto the feedbackloop, which justifiesits name. It
hasa zero and pole with the pole being closerto the imaginaryaxis, thatis

_ (st~
Gc(s)_(21)8+p1, 21 >p1 >0

(8.18)

arg Go(s) = arg(s+z1) —arg(s+p1) =6, —0, <0

wherep; /2 is known as the lag ratio. The correspondinganglesé,, andé,,
aregivenin Figure8.2a. Thephase-lagcontmller is usedto improvesteadystate
errors.

8.3.5 Phase-Lead Controller

The phase-leadcontroller is designedsuch that its phasecontribution to the
feedbackloop is positive. It is representedy

s+ z
Ge(s) = S-I-pz’ p2 > 23 >0

(8.19)
Ge(s)=arg(s+ 2z) —arg(s+p2)=80,, —0,, >0
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wheref,, and#,, aregivenin Figure8.2b. This controllerintroducesa positive
phaseshift in the loop (phaselead). It is usedto improve the systenresponse
transientbehavior.

Im{ s} Im{ s}

Rg s} 6p, 6z, Re s}

Z “P1 P2 2

(a) (b)

Figure 8.2: Poles and zeros of phase-lag (a) and phase-lead (b) controllers

8.3.6 Phase-Lag-Lead Controller

The phase-lag-leactontroller is obtainedas a combinationof phase-leacand
phase-lagcontrollers. Its transferfunction is given by

(s+ 21)(s + 22)
(s +p1)(s+p2)

It hasfeaturesof both phase-lagand phase-leadontrollers,i.e. it canbeusedto
improvesimultaneouslpoththesystentransientrespons@ndsteadystateerrors.
However, it is harderto designphase-lag-leadontrollersthan either phase-lag
or phase-leaccontrollers.

Note that all controllerspresentedn this sectioncan be realizedby using
activenetworkscomposeaf operationabhmplifiers(see for example Dorf, 1992;
Nise, 1992; Kuo, 1995).

Go(s) = p2>20>21>p1 >0, 212 =pip2 (8.20)

8.4 Rate Feedback Control

The controllers consideredin the previous section have simple forms and in
most casesthey are placedin the forward loop in the front of the systemto
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be controlled. Another simple controller that is always usedin the feedback
loop is known as the rate feedbackcontroller. The rate feedbackcontroller is

obtainedby feedingback the derivativeof the outputof a second-ordesystem
(or a systemwhich canbe approximatedy a second-ordesystem,i.e. a system
with dominantcomplex conjugatepoles)accordingto the block diagramgiven

in Figure 8.3.

Theratefeedbackcontrolhelpsto increasahe systemdamping. This follows
from the fact thatthe closed-looptransferfunction for this configurationis given
by

Y (s) w2 w2 :

U(s) s+ 2(¢ + L Kyw,)wps + w? 82+ 20w, s + w2’ K >0 (8.21)
Comparedwith the closed-looptransfer function of the second-ordersystem
without control (6.4), we seethat the dampingfactor is now increasedo

1
Co= ¢+ 5K (8.22)

Sincethe naturalfrequencyis unchangedthis controller decreasethe response
settlingtime (see(6.20)). The systemresponsanaximum percentovershootis
also decreasedsee Problem8.3).

G(s) » ()

Kt S <

Figure 8.3: Block diagram for a rate feedback controller

Example 8.3: Designa ratefeedbackcontrollersuchthatthe dampingratio
of the second-ordesystemconsideredn Example6.1is increasedo (. = 0.75
anddeterminghe systemresponseettlingtime andmaximumpercentovershoot.
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From Example6.1 we know
wn, =2rad/s, (=0.5, ts~3s, MPOS =16.3%

The gain for the rate controlleris obtainedfrom (8.22) as
1 1
Ki=—2(-()= 52(0.75 —0.5) =0.25
Wn
The new valuesfor the responsesettlingtime and maximum percentovershoot
are given by

Ccm™

3 3 B 2
2s, MPOS=e V'100(%)=2.83%

lsc &

T Cowon  075%x2
It canbe seenthat boththe systemresponsesettlingtime and maximumpercent
overshootare reduced.

8.5 Compensator Design by the Root Locus Method

Sometimesone is able to improve control systemspecfications by changing
the static gain K only. It can be observedthat as K increases,the steady
stateerrors decease(assumingsystem’sasymptoticstability), but the maximum
percent overshootincreases However, using large valuesfor K may damage
systemstability. Even more,in mostcasesthe desiredoperatingpoints for the
systemdominantpoles,which satisfythe transientresponseequirementsgo not
lie on the original root locus. Thus,in orderto solvethe transientresponseand
steadystateerrorsimprovementproblem,onehasto designdynamiccontrollers,
consideredn Section8.3, and put themin serieswith the plant (system)to be
controlled (seeFigure 8.1).

In the following we presentdynamic controller designtechniquesn three
categories:improvementof steadystateerrors (Pl and phase-lagcontrollers),
improvementof systemtransientresponsgPD and phase-leadontrollers),and
improvementof both steadystateerrorsandtransientresponsgPID and phase-
lag-lead controllers). Note that transientresponsespecificationsare obtained
under the assumptionthat a given systemhas a pair of dominant complex
conjugateclosed-looppoles; hencethis assumptionhasto be checkedafter a
controlleris addedto the system. This can be easily doneusing the root locus
technique.
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8.5.1 Improvement of Steady State Errors

It hasbeenseenin Chapter6 that the steadystate errors can be improved by
increasingthe type of feedbackcontrol system,in otherwords,by addinga pole
at the origin to the open-loopsystemtransferfunction. The simplestway to
achievethis goal is to add in serieswith the systema PI controller as defined
in (8.16), i.e. to get

_ Ks+ K
B S

Go(s)G(s) G(s)

Sincethis controlleralsointroducesa zeroat — K; / K, the zeo shouldbeplaced
as closeas possibleto the pole In that casethe pole at p = 0 and the zero at
z = p actasadipole, andsotheir mutualcontributionto theroot locusis almost
negligible. Sincethe root locus is practically unchangedthe systemtransient
responsg@emainsthe sameandthe effect dueto the PI controlleris to increase
the type of the control systemby one, which producesimproved steadystate
errors. The effect of a dipole on the systemresponseis studiedin the next
example.

Example 8.4: Considerthe open-looptransferfunctions

_ (s+2)

A= G e +3)

and 5 .
ey o 42 45)

(s+ 1)(s+3)(s+5.1)
Note that the secondtransferfunction hasa dipole with a stablepole at —5.1.
The correspondingstepresponsesre givenin Figure 8.4. It can be seenfrom
this figure that the systemwith a stabledipole and the systemwithout a stable
dipole havealmostidentical responsesTheseresponsesiave beenobtainedby
the following sequenceof MATLAB instructions.

numl=[1 2];

denl=[1 4 3]

num2=[1 7 10];

di=[1 1];
d2=[1 3;
d3=[1 5.1];

d12=conv(d1,d2);
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den2=conv(d12,d3);
[cnum1,cdenl]=feedback(huml,denl,1,1,-1);
[cnum2,cden2]=feedback(hum2,den2,1,1,-1);
t=0:0.1:2;

step(cnuml,cdenl,t)

step(cnum2,cden2,t)

0.9 i

0.8 b

0.7r b

0.6 i

051 b

0.4r -

0.21 b

0.1 b

Figure 8.4: Step responses of a system without
a stable dipole (a) and with a stable dipole (b)

It is importantto point out thatin the caseof an unstabledipole the effect
of adipoleis completelydifferent. Consider for example the open-looptransfer
function given by

(s +2)(s = 5)

@) = GG+ IG5

Its stepresponsés presentedn Figure8.5bandcomparedvith the corresponding
stepresponsafteradipoleis eliminated(Figure8.5a). In fact, thesystemwithout
a dipoleis stableandthe systemwith a dipoleis unstablehencetheir responses
aredrasticallydifferent. Thus,we canconcludethatit is not correctto cancelan
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unstabledipole sinceit hasa big impacton the systemresponse.

0.8 / *
0.7F
0.6 / i
0.5F / b
0.4r 4 i

P a)
03l B (@) |

Figure 8.5: Step responses of a system without an
unstable dipole (a) and with an unstable dipole (b)

Both the Pl andphase-lagcontrollerusethis “stabledipole effect. Theydo
not changethe systemtransientresponsebut they do havean importantimpact
on the steadystate errors.

Pl Controller Design

As we havealreadyindicated,the PI controllerrepresents stabledipole with a

polelocatedat the origin anda stablezeroplacednearthe pole. Its impacton the

transientresponseés negligible sinceit introducesneithersignificantphaseshift

nor gain change(seeroot locusrules9 and10 in Table7.1). Thus,the transient
responsgparametersvith the Pl controller are almostthe sameas thosefor the

original system,but the steadystateerrors are drasticallyimproveddue to the

fact that the feedbackcontrol systemtype is increasedby one.
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The PI controlleris representedin general,by

K,
S 7
Gu(s) = K, SI‘P . K <K, (8.23)

where K, representsts staticgain and K;/ K, is a stablezero nearthe origin.
Very often it is implementedas

S+ ze
S

Ge(s) = (8.24)
Thisimplementations suficientto justify its mainpurpose.Thedesignalgorithm
for this controlleris extremelysimple.

Design Algorithm 8.1:

1. Setthe PI controller’spole at the origin andlocateits zero arbitrarily close
to the pole, say z. = 0.1 or z. = 0.01.

2. If necessaryadjustfor the staticloop gainto compensatéor the casewhen
K, is differentfrom one. Hint: Use K, = 1, and avoid gain adjustment
problem.

Comment: Note that while drawing the root locus of a systemwith a Pl
controller(compensatorhe stableopen-loopzeroof the compensatowill attract
the compensator'pole locatedat the origin asthe staticgainincrease$rom 0 to
+00 sothatthereis no dangerthat the closed-loopsystemmay becomeunstable
dueto addition of a Pl compensatofcontroller).

The following exampledemonstrateshe use of a Pl controllerin orderto
reducethe steadystateerrors.

Example 8.5: Considerthe following open-looptransferfunction

K(s+6)

@) = CE 251 )

Let the choice of the static gain K = 10 producea pair of dominantpoles
on the root locus, which guaranteeghe desiredtransientspecifications. The
correspondingposition constantandthe steadystateunit steperror are given by

1
K, = =3 - =025
YT Tlox2 0 T T ITE,
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Using a PI controllerin the form of (8.24)with the zeroat —0.1 (z. = 0.1), we
obtainthe improvedvaluesas K, = oo andes, = 0. The stepresponsesf the
original systemand the compensatedystem,now given by

10(s +0.1)(s + 6)

Gels)Gls) = s(s+ 10)(s? + 2s + 2)

are presentedn Figure 8.6.

1
09f ®) 8
08t 1
07} 1

(CY
0.6 1

Amplitude
o
w
T
L

0.4r b

0.3 b

0 0.5 1 1.5 2 25 3 35 4 4.5 5
Time (secs)

Figure 8.6: Step responses of the original (a)
and compensated (b) systems for Example 8.5

The closed-looppolesof the original systemare given by
A1 = —9.5216, Agz = —1.2392 £ j2.6204
For the compensatedystemthey are
Ae = —9.5265, Ages. = —1.1986 £ j2.6109

Having obtained the closed-loopsystem poles, it is easyto check that the
dominantsystempoles are preservedor the compensatedystemand that the
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dampingratio andnaturalfrequencyareonly slightly changed.Usinginformation
aboutthe dominantsystempolesandrelationshipsobtainedfrom Figure 6.2, we
get

(w, = 12392, w? =(1.2392)> + (2.6204)* = w? =2.9019, ¢ = 0.4270

T

and ) )
Cowne = 1.1986, w?_ = (1.1986)" + (2.6109)

e

= w2, =28901, (., =0.4147

In Figure 8.7 we draw the stepresponsef the compensatedystemover a
long period of time in orderto showthat the steadystateerror of this systemis
theoreticallyand practically equalto zero.

Figures8.6 and 8.7 are obtainedby usingthe sameMATLAB functionsas
thoseusedin Example 8.4.

The root loci of the original and compensatedystemsare presentedn
Figures8.8 and 8.9. It can be seenfrom thesefigures that the root loci are
almostidentical, with the exceptionof a tiny dipole branchnearthe origin.

Amplitude
o
w

°
S

o
w
L

O L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50

Time (secs)

Figure 8.7: Step response of the compensated system for Example 8.5
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20

10 1
*—>0 8

5 ,
—10- ,
_15 ,
-20 ‘ : : : ‘

-5

L L
-20 -15 -10 0 5 10 15 20
Real Axis

Imag Axis
o
T

Figure 8.8: Root locus of the original system for Example 8.5

20
15+ 1
10- 1
5r- 4
&

-5} i

Imag Axis
o
T

-10F i

-20 L L L I L L L
-20 -15 -10 -5 0 5 10 15 20
Real Axis

Figure 8.9: Root locus of the compensated system for Example 8.5
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Phase-Lag Controller Design
The phase-lagontroller,in the contextof root locusdesignmethodologyijs also
implementedas a dipole that hasno significantinfluenceon the root locus, and
thusonthetransientesponsebutincreaseshe steadystateconstant@ndreduces
the correspondingsteadystateerrors. Sinceit is implementedas a dipole, its
zero and pole haveto be placedvery closeto eachother.

Thelag controller’'simpacton the steadystateerrorscanbe obtainedrom the
expressiondor the correspondingsteadystateconstants.Namely, from (6.31),
(6.33), and (6.35) we know that

K, =1lim {H(s)G(s)}, K, = }9% {sH(s)G(s)}, K, = il_rg {s*H(s)G(s)}

s—0

and from (6.30), (6.32), and (6.34) we have
1 1 2

€ss5tep — 1+ I(pj €ssramp — I(U, €ssparabolic — K,

For control systemsof type zero, one, and two, respectively,the constants
K,, K,, and K, areall given by the sameexpressionthatis

21Z2-..
pip2- -

K =K

, l=pv,a (8.25)

Consider first, a phase-lagcompensatoof the form

S+ 2z
s+pe’

Ge(s) = Ze > pe >0 (8.26)
If we putthis controllerin serieswith the system the correspondingteadystate
constantof the compensatedystemwill be given by

Zl Z2 s ZC

— = I(li, le,l =p,v,a (8.27)
pPip2 - Pe Pe

K.=K

In orderto increasetheseconstantsand reducethe steadystateerrors, the ratio
of z./p. shouldbe aslarge as possible.Sinceat the sametime z. mustbe close
to p. (they form a dipole), a large value for the ratio z./p. canbe achievedif
both of them are placedcloseto zero. For example,the choice of z. = 0.1
andp. = 0.01 increaseshe constantsk;,! = p, v, a, tentimesandreducesthe
correspondingsteadystateerrorsten times.
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Now considera phase-lagcontroller definedby (8.18), that is

Go(s) = (%)ii;c, Ze > pe >0

This controllerwill changethe value of the static gain K by a factor of p./z.,
which will producea movementof the desiredoperatingpoint along the root
locus in the direction of smaller static gains. Thus, the plant static gain has
to be adjustedto a higher valuein orderto preservethe sameoperatingpoint.
The consequencef using a phase-lagcontroller as definedin (8.18)is that the
same(desired) operatingpoint is obtainedwith higher static gain. We already
know that by increasingthe static gain, the steadystateerrorsare reduced. In
this case,the static gain adjustmenthasto be done by choosinga new static
gain K = K z./p.. Notethatthe effectsof both phase-lagcontrollers(8.18) and
(8.26) are exactly the same,sincethe gain adjustmentn the caseof controller
(8.18) in fact cancelsits lag ratio p./z.

The following simple algorithmis usedfor phase-lagcontroller design.
Design Algorithm 8.2:

1. Choosea point that hasthe desiredtransientspecficationson the root locus
branchwith dominantsystempoles. Readfrom the root locus the value
for the staticgain K at the chosenpoint, and determinethe corresponding
steadystate errors.

2. Setboth the phase-lagcontroller’s pole and zero near the origin with the
ratio z./p. obtainedfrom (8.27) such that the desiredsteady state error
requirementis satisfied.

3. In the caseof controller (8.18), adjustfor the staticloop gain, i.e. take a
new staticgainas K = Kz/p,.

The nextexampledemonstratethe controllerdesignprocedurewith a phase-
lag compensatoaccordingto the stepsoutlinedin DesignAlgorithm 8.2.

Example 8.6: The steadystateerrorsof the systemconsideredn Example
8.5 canbe improvedby using a phase-lagcontroller of the form

s+ 0.1

Ge(s) = ——

(8)= STo01
Sincez;/p. = 10, the position constantis increaseden times, thatis

Ky =K,2° =3x10 =30
Pe
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so that the steadystateerror dueto a unit stepinput is reducedto

1 1
€5551ep — — = —— = 0.03226
et T 11 K, 31

It can be easily checkedthat the transientresponseis almost unchanged;in

fact, the dominantsystempoleswith this phase-lagcompensatoare —1.2026 +

J2.6119, which is very closeto the dominantpolesof the original system(see
Example 8.5).

Example 8.7: Considerthe following open-looptransferfunction
K(s+ 15)
G(s)H(s) =
(s)H(s) s(s+20)(s? +4s+8)
Let the choiceof the staticgain K = 20 producea pair of dominantpoleson

the root locus that guaranteeghe desiredtransientspecfications. The system
closed-looppolesfor K = 20 are given by

Ao = —0.5327 + j2.2024, A3 = —2.9194, My = —20.0153

so that for this value of the static gain K the dominantpoles exist, i.e. the
absolutevalue of the real part of the dominantpoles(0.5327)is aboutsix times
smallerthanthe absolutevalue of the real part of the next pole (2.9194),which
is in practicesufiicient to guarantegoles’ dominance.Sincewe haveatype one
feedbackcontrol system,the steadystateerror due to a unit stepis zero. The
velocity constantand the steadystateunit ramp error are obtainedas

20x 15 15 1
0xE — 3 = Cssrumy = i = 0.53
Using the phase-lagcontroller with a zeroat —0.1 (2. = 0.1) and a pole at
—0.01 (p. = 0.01), we get
I(vc = I(vﬁ = @ =  €ssc = 0.053
Pe 8 e

It canbe easilyshownby usingMATLAB thattherampresponsesf the original
andthe compensatedystemsare very closeto eachother. The sameholds for
the root loci. Note that even smaller steadystateerrorscan be obtainedif we

increasethe ratio z./p., €.g. to z./p. = 100.

K, =
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8.5.2 Improvement of Transient Response

The transientresponsecan be improved by using either the PD or phase-lead
controllers. In the following, we considerthesetwo controllersindependently.
However,both of themhavethe commonfeatureof introducinga positivephase
shift, and both of them can be implementedn a similar manner.

PD Controller Design
The PD controller is representedy

Ge(s)=s+2, 2.>0 (8.28)

which indicatesthat the compensatedystemopen-looptransfer function will
haveoneadditionalzero. The effect of this zerois to introducea positive phase
shift. The phaseshift and position of the compensator’'zero canbe determined
by usingsimple geometry. That is, for the chosendominantcomplexconjugate
polesthat producethe desiredtransientresponsene apply the root locus angle
rule givenin formula (7.10) and presentedn Table 7.1 asrule number10. This
rule basically saysthat for a chosenpoint, s;, on the root locus the difference
of the sum of the anglesbetweenthe point s; andthe open-loopzeros,andthe
sum of the anglesbetweenthe point s; and the open-looppolesmustbe 180°.
Applying the root locus anglerule to the compensatedystem,we get

£Go(54)G(sq) = 4(sq + 22) + E L(sq+z)— Y L(sa+pi)=180° (8.29)

=1 =1

which implies

A(sq+ z:) = 180° — Z A(sqa+ z)+ Z A(sqa+pi) = ac (8.30)

From the obtainedangle £(s; + z.) the location of the compensator'szero is
obtainedby playing simple geometryasdemonstrateih Figure 8.10. Using this
figure it canbe easily shownthat the value of z. is given by

Ze = “n (Ctan a. + 41— C2) (8.31)

tan a,

An algorithmfor the PD controller designcan be formulatedas follows.
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A Im{s}
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Figure 8:10 Determination of a PD controller’s zero location

Design Algorithm 8.3:

1. Choosea pair of complexconjugatedominantpolesin the complexplane
that producesthe desired transient response(damping ratio and natural
frequency). Figure 6.2 helpsto accomplishthis goal.

2. Find the required phasecontribution of a PD regulatorby using formula
(8.30).

3. Find the absolutevalue of a PD controller’s zero by using formula (8.31);
seealso Figure 8.10.

4. Checkthatthecompensatedystemhasapair of dominantcomplexconjugate
closed-looppoles.

Example 8.8: Let the design specfications be set such that the desired
maximum percentovershootis lessthan 20% and the 5%-settlingtime is 1.5 s.
Then, the formula for the maximum percentovershootgiven by (6.16) implies

(m _ In? {0S} _
Vi {08} = C=| o 5] =408

We take { = 0.46 so that the expectednaximumpercentovershoots lessthan
20%. In orderto havethe 5%-settlingtime of 1.5 s, the naturalfrequencyshould
satisfy

i, &

3 3
Cw => Wy X o = 4.348rad/s
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The desireddominantpoles are given by

8¢ = A3 = —(wp £ jw, /1 —(%=-2.00+ 53.86
Considernow the open-loopcontrol system

K(s+ 10)

) = TG 1D)

The root locus of this systemis representedn Figure 8.11a.

25

20}
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o
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Figure 8.11: Root loci of the original (a) and compensated (b) systems

It is obviousfrom the abovefigure thatthe desireddominantpolesdo not belong
to the original root locus since the breakawaypoint is almostin the middle
of the open-looppoleslocatedat —1 and —2. In order to move the original
root locusto the left suchthatit passeghroughs,;, we designa PD controller
by following DesignAlgorithm 8.3. Step1 hasbeenalreadycompletedin the
previousparagraph Sincewe havedeterminedhedesiredoperatingpoint, s;, we
now useformula(8.30)to determinghe phasecontributionof a PD controller. By
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MATLAB functionangle (or justusinga calculator),we canfind the following

angles
A(sqg+ z1) = 0.4495rad, 4L(sq+ p1) = 1.8243rad

A(sq+ p2) = 1.5708rad, 4£(sq+ ps3) = 0.3684rad

Notethat MATLAB functionangle producegesultsin radians.Usingformula
(8.30), we get

L(sg+ z.) =7 —0.4495 4 1.8243 + 1.5708 4 0.3684
=0.1723rad = 9.8734° = a,

Having obtainedthe angle a., the formula (8.31) producesthe location of the
controller'szero,i.e. z. = 24.1815, sothattherequiredPD controlleris givenby

Go(s) = s+ 24.1815

The root locus of the compensatedystemis presentedn Figures8.11b and
8.12b. It can be seenfrom Figure 8.12 that the point s; = —2 + j3.86 lies on
the root locus of the compensatedystem.

5

ar (b)

Imag Axis
o
T

| | | | |
-3 -2.5 -2 -15 -1 -0.5 0
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Figure 8.12: Enlarged portion of the root loci in the neighborhood of the
desired operating point of the original (a) and compensated (b) systems
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At the desiredpoint, s4, the static gain K, obtainedby applying the root
locusrule number9 from Table 7.1, is givenby K = 0.825. This value canbe
obtainedeitherby usinga calculatoror the MATLAB function abs asfollows:

dl=abs(sd+pl);

d2=abs(sd+p2);

d3=abs(sd+p3);

d4=abs(sd+z1);

d5=abs(sd+zc);

K=(d1*d2*d3)/(d4*d5)
For this value of the static gain K, the steadystateerrorsfor the original and
compensatedystemsare given by e;; = 0.7442, ess. = 0.1074. Note thatin
the casewhen z. > 1, this controller can also improve the steadystateerrors.
In addition, sincethe controller’s zero will attractone of the systempolesfor
large valuesof K, it is not advisableto choosesmall valuesfor z. sinceit may
damagehe transientresponselominanceby the pair of complexconjugatepoles
closestto the imaginary axis.

The closed-loopstepresponsdor this value of the static gain is presented

in Figure8.13. It canbe observedhat both the maximumpercentovershootand
the settling time are within the specifiedlimits.

1.2

ymax = 1.0772

ts = 1.125
0.8926

Amplitude
o o
o ©
T T

[=}
~
T

0.2

tp=0.75

0 | | | | |
0 0.5 1 15 2 25 3
Time (secs)

Figure 8.13: Step response of the compensated system for Example 8.8
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The valuesfor the overshoot peaktime, and settling time are obtainedby
the following MATLAB routine:

[yc,xc,t]=step(cnumc,cdenc);

%t is a time vector of length i=73;

% cnumc = closed-loop compensated numerator

% cdenc = closed-loop compensated denominator

plot(t,yc);

[ymax,imax]=max(yc);

% ymax is the function maximum;

% imax = time index where maximum oOccurs;

tp=t(imax)

essc=0.1074;

yss=1-essc;

0S=ymax-yss

% procedure  for finding the settling time;

delt5=0.05*yss;

i=73;

while  abs((yc(i)-yss)) <delt5;

i=i-1;

end;

ts=t(i)
Using this program,we havefound thatt, = 1.125s and M POS = 20.68%.
Our startingassumptionfiavebeenbasedn a modelof the second-ordesystem.
Sincethe second-ordesystemsareonly approximationgor higher-ordeisystems
that have dominantpoles, the obtainedresultsare satisfactory.

Finally, we have to check that the systemresponseis dominatedby a
pair of complex conjugatepoles. Finding the closed-loopeigenvaluesve get
A1 = —11.8251, A3 = —2.000 £ 53.8600, which indicatesthat the presented
controllerdesignresultsare correctsincethe transientresponses dominatedoy
the eigenvalues\; 3.

Phase-Lead Controller Design
The phase-leadontroller works on the sameprinciple asthe PD controller. It
usesthe agumentrule, formula(7.10), of the root locusmethod ,which indicates
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the phaseshift that needsto beintroducedby the phase-leaaontrollersuchthat
thedesireddominantpoles(havingthe specifiedransientresponseharacteristics)
belongto the root locus.

The generalform of this controlleris given by (8.19), thatis

S+ 2z
5+ pe

GC(S) = ’ Pc > 2 > 0

By choosinga point s; for adominantpolethathastherequiredtransienresponse
specfications,the designof a phase-leadontrollercanbe donein similar fashion
to that of a PD controller. First, find the anglecontributedby a controller such
that the point s4 belongsthe root locus, which can be obtainedfrom

£G(sg) = 180° — £G(sq) (8.32)

that is
O = A(sa+ 20) — &(sq + po) = 180° =D L(sq+z)+ Y 4(sa+ p:) (8.33)
=1 =1

Second/find locationsof controller’'s pole and zero. This canbe donein many
ways as demonstratedn Figure 8.14.

A Im{ s}

Res}

“Pe, “Ze, “Pc, -Z, “Pe, “Z, 0

Figure 8.14: Possible locations for poles and zeros of
phase-lead controllers that have the same angular contribution

All thesecontrollersintroducethe samephaseshift andhavethe sameimpacton
thetransientresponse However,theimpacton the steadystateerrorsis different
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sinceit dependn theratio of z./p.. Sincethis ratio for a phase-leadontroller
is lessthanone,we concludefrom formula (8.27) that the correspondingsteady
stateconstantis reducedandthe steadystateerror is increased.

Notethatif thelocationof a phase-leadontrollerzerois chosenthensimple
geometry,similar to that usedto derive formula (8.31), can be usedto find the
locationof the controller'spole. For example Jet — 2.3 betherequiredzero,then
using Figure 8.14 the pole —p.3 is obtainedas

Pes = (wp, +wp /1 —(2tan (6, — p + 7/2) (8.34)

wherep = 4(sq + z:3). Notethaty > 6..

An algorithm for the phase-leadcontroller design can be formulated as
follows.

Design Algorithm 8.4:

1. Chooseapair of complexconjugatepolesin the complexplanethatproduces
the desiredtransientresponsédampingratio and naturalfrequency).Figure
6.2 helpsto accomplishthis goal.

2. Find the required phasecontribution of a phase-leaccontroller by using
formula (8.33).

3. Choosevaluesfor the controller’'s pole and zero by placing themarbitrarily

suchthatthe controllerwill not damagehe response@lominanceof a pair of

complexconjugatepoles. Someauthors(e.g. Van de Verte, 1994) suggest

placing the controller zero at —(w,,.

Find the controller’s pole by using formula (8.34).

5. Checkthatthecompensatedystemhasa pair of dominantcomplexconjugate
closed-looppoles.

H

Example 8.9: Considerthe following control systemrepresentedy its
open-looptransferfunction

K(s+6)
(s+ 10)(s% + 2s + 2)

G(s) =

It is desiredthat the closed-loopsystemhave a settling time of 1.5s and a
maximumpercentovershootof lessthan20%. From Example8.8 we know that
the systemoperatingpoint shouldbe at s; = —2 4+ 573.86. A controller’s phase
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contribution, obtainedfrom formula (8.33) is

6. =7 —0.7676 + 0.4495 + 1.9072 + 1.7737
= 6.5044rad = 0.2213rad = 12.6769°

Let uslocatea zeroat —15 (2. = 15), thenby (8.34)the compensator'pole
is at —p. = —59.2025. Theroot loci of the original and compensatedystems
aregivenin Figure8.15, andthe correspondingstepresponses Figure 8.16.
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Figure 8.15: Root loci for the original (a) and compensated (b) systems

It canbe seenthat the root locus indeedpasseghroughthe point —2 + ;3.86.
For this operatingpoint the static gain is obtainedas K = 101.56; hencethe
steady state constantsof the original and compensatedystemsare given by
K, = 30.468 and K, = K,(2./p.) = 7.7196, and the steadystateerrorsare
ess = 0.0317,e55. = 0.1147. Figure8.16revealghatfor the compensatedystem
both the maximum percentovershootand settling time are reduced. However,
the steadystateunit steperror is increasedas previouslynotedanalytically.
Considermow anotherphase-leadcompensatowith a zerosetat —9. From

(8.34) we get p. = 15.291. Theroot locus of the compensatedgystemwith a
new controller is given in Figure 8.17.
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Figure 8.16: Step responses of the original (a) and compensated (b) systems
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Figure 8.17: Root locus for the compensated
system with the second controller for Example 8.9
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The static gain at the desiredoperatingpoint —2 + 53.86 is K = 41.587,
and hencethe steadystate errors are e;s = 0.0742, essc = 0.11986. The
stepresponse®f the original and compensatedystems,for K = 41.587, are

presentedn Figure 8.18.

15

0.5F /

0 L L
0 0.5 1

15

2 25 3

Figure 8.18: Step responses of the original (a) and compensated
(b) systems with the second controller for Example 8.9

It can be seenthat this controller also reducesboth the overshootand settling
time, while the steadystateerror is slightly increased.

We canconcludethatboth controllersproducesimilartransientcharacteristics
andsimilar steadystateerrors,but the secondoneis preferredsincethe smaller
value for the static gain of the compensatedsystemhas to be used. The
eigenvaluef the closed-loopsystemfor K = 41.587 are given by

Aie = —12.4165, Age = —10.8725, Ayese = —2.000 + j3.8600

which indicatesthat the responseof this systemis still dominatedby a pair of

complex conjugatepoles.
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Remark: In someapplicationsfor a chosendesiredpoint, s;4, the required
phaseincrease,f., may be very high. In suchcasesone can use a multiple
phase-leaccontmller having the form

S+ 2.
S+ pe

) ;P> 2> 0 (8.35)

) =

sothateachsinglephase-leadontrollerhasto introducea phasencreaseof 6. /n.

8.5.3 PID and Phase-Lag-Lead Controller Designs

It canbe observedrom the previousdesignalgorithmsthatimplementatiorof a
P1 (phase-lagrontrollerdoesnot interferewith implementatiorof a PD (phase-
lead) controller. Since thesetwo groupsof controllersare usedfor different
purposes—onéo improve the transientresponseand the other to improve the
steadystateerrors—implementinghemjointly andindependentlywill take care
of both controller designrequirements.

Considerfirst a PID controller. It is representecs

- I{ K
Ii 32 + ZEs +
Gpip(s) = Ky + Kas + — = Kg— K¢ " Ka
’ ° (8.36)
- s+ Zcy
= Ka(s + ZCl)(si) = Gpp(s)Gpi(s)

which indicatesthat the transferfunction of a PID controlleris the product of
transferfunctionsof PD andPI controllers. Sincein DesignAlgorithms 8.1 and
8.3 there are no conflicting steps,the designalgorithm for a PID controller is
obtainedby combiningthe designalgorithmsfor PD and P1 controllers.

Design Algorithm 8.5: PID Controller

1. Checkthe transientresponseand steadystatecharacteristicof the original
system.

2. Designa PD controllerto meetthe transientresponseequirements.

Designa PI controllerto satisfythe steadystateerror requirements.

4. Checkthatthe compensatedystemhasthe desiredspecifications.

w
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Example 8.10: Considerthe problemof designinga PID controllerfor the
open-loopcontrol systemstudiedin Example8.8, that is

K(s+ 10)
G(s) =
&) = G161
In fact, in thatexample,we havedesigneda PD controller of the form

GPD(S) = s + 24.1815

suchthat the transientresponsehas the desiredspecifications. Now we add a
P1 controllerin orderto reducethe steadystateerror. The correspondingteady
state error of the PD compensatedystemin Example8.8 is es;. = 0.1074.

Sincea PI controlleris a dipole that hasits pole at the origin, we proposethe
following PI controller

s+ 0.1

S

Gpils) =

In comparisonto (8.36), we are in fact using a PID controller with K; = 1,
ze1 = 24.1815, z, = 0.1. The correspondingoot locusof this systemcompen-
satedby a PID controlleris representedn Figure 8.19.
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Figure 8.19: Root locus for the system from
Example 8.8 compensated by the PID controller
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It can be seenthat the Pl controller doesnot affect the root locus, and hence
Figures8.11band 8.19 are almostidentical exceptfor a dipole branch.

On the other hand, the step response®f the systemcompensatedy the
PD controller and by the PID controller (see Figures8.13 and 8.20) differ in
the steadystate parts. In Figure 8.13 the steadystate step responsetendsto
yss = 0.8926, and the responsdrom Figure 8.20 tendsto 1 since due to the
presenceof an open-looppole at the origin, the steadystate error is reduced
to zero. Thus, we can concludethat the transientresponsés the sameone as
that obtainedby the PD controllerin Example8.8, but the steadystateerror is
improveddue to the presenceof the PI controller.

1.2

Amplitude
o o
o 0

o
~

0.2

L L L
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0 I I

Figure 8.20: Step response of the system from
Example 8.8 compensated by the PID controller

o

Similarly to the PID controller, the designfor the phase-lag-leadontroller
combinesDesignAlgorithms 8.2 and8.4. Looking at the expressiorfor a phase-
lag-leadcontroller givenin formula (8.20), it is easyto concludethat

Glag/lead(s) = Glag(S)Glead(S) (837)
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The phase-lag-leadtontroller designcan be implementedby the following al-
gorithm.

Design Algorithm 8.6: Phase-Lag-Lead Controller

1. Checkthe transientresponseand steadystatecharacteristicof the original
system.

2. Designaphase-leadontrollerto meetthe transientresponseequirements.

Designa phase-lagcontrollerto satisfythe steadystateerror requirements.

4. Checkthatthe compensatedystemhasthe desiredspeciications.

w

Example 8.11: In this examplewe designa phase-lag-leadontrollerfor a
control systemfrom Example8.9, that is

_ K(s+6)
@) = GriT 125 1 2)

suchthat boththe systemtransientresponsendsteadystateerrorsareimproved.
We haveseenin Example8.9 that a phase-leaaontroller of the form

s+9
s+ 15.291
improvesthe transientresponseo the desiredone. Now we addin serieswith
the phase-leactontroller anotherphase-lagcontroller, which is in fact a dipole
nearthe origin. For this examplewe usethe following phase-lagcontroller
s+ 0.1
s+0.01

Glead(s) =

Gilag(s) =

so that the compensatedystembecomes

K(s+6) (s+9) (s+0.1)
(s4+10)(s2 +2s+2)(s+ 15.291) (s + 0.01)

The correspondingoot locusof the compensatedystemandits closed-loopstep
responsarerepresenteth Figures8.21and8.22. We canseethatthe additionof

the phase-lagcontroller doesnot changethe transientresponsei.e. the root loci

in Figures8.17 and 8.21 are almostidentical. However,the phase-lagontroller
reducesthe steadystateerror from e jeas = 0.11986 10 €4, 14g/1caq = 0.01344

since the position constantis increasedo

- _ 0.1 41587 x 9 x 0.1
pilag/lead = Bplead(y 51 = 707579 % 15 x 0.01

G(s) = G(s)Ge(s) =

= 73.432
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Figure 8.21: Root locus for the system from Example
8.9 compensated by the phase-lag-lead controller
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Figure 8.22: Step response of the system from Example
8.9 compensated by the phase-lag-lead controller
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so that
1

€oslun/load = ——— = 0.01344
dag/lead I+ I‘p,lag/lead

8.6 MATLAB Case Studies

In this sectionwe considerthe compensatodesignfor two real control systems:
a PD controllerdesignedo stabilizea ship,anda PID controllerusedto improve
thetransientresponsandsteadystateerrorsof avoltageregulatorcontrolsystem.

8.6.1 Ship Stabilization by a PD Controller

Considera ship positioning control systemdefinedin the state spaceform in
Problem7.5. The open-looptransferfunction of this control systemis

0.8424
G(s) =
s(s+ 0.0546)(s + 1.55)
The root locus of the original systemis presentedn Figure 8.23a.
1
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Figure 8.23: Root loci for a ship positioning control
problem: (a) original system, (b) compensated system
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It can be seenthat this systemis unstableeven for very small valuesof the
staticgain. Thus,the systemtransientresponselows up very quickly dueto the
system’sinstability. Our goal is to designa PD controllerin orderto stabilize
the systemandimproveits transientresponselLet the desiredoperatingpoint be
locatedat s; = —0.2 £ 0.3, which impliesw,, = 0.3606rad/s and{ = 0.5547.
We find from (8.30) that the requiredphaseshift is a, = 72.0768°, and from
(8.31) thelocationof the compensatorzerois obtainedat —0.297. Thus,the PD
compensatosoughtis of the form

Go(s) = s+0.297

It canbe seenfrom Figure 8.23 that the root locus of the compensatedystem
indeed passeshrough the point s; = —0.2 £ ;0.3 and that the compensated
systemis stablefor all valuesof the static gain. The static gain at the desired
operatingpoint is given by K, = 0.6258 and the correspondingclosed-loop
eigenvaluesat this operatingpointare Ay, = —1.2046, Ay, 3. = —0.2+ 70.3. In
Figure 8.24 the unit stepresponseof the compensatedystemis presented.
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Figure 8.24: Step response of a ship positioning compensated control system

It is found that y,,,., = 1.2863, t, = 7.3043s, andt, = 12.7826s. From
the samefigure we observethat the steadystateerror for this systemis zero,
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which alsofollows from the fact that the systemopen-looptransferfunction has
one pole at the origin.

8.6.2 PID Controller for a Voltage Regulator Control System

The mathematicamodelof a voltageregulatorcontrol system(Kokotovi€, 1972)
is givenin Section6.7. The open-looptransferfunction of this systemis

e — 154280
() = 0261056+ 10)6 F 1428) £ 25)

The correspondingroot locus is presentedn Figure 8.25. Since one of the
branchegoesquite quickly into the instability region,our designgoalis to move
this branchto the left so that it passeghroughthe operatingpoint selectedas
sq = —1441. Forthis operatingpoint, we havew,, = v/2 rad/s and{ = 0.7071
sothat the expectednaximumpercentovershootandthe 5%-settlingtime of the
compensatedystemare M PO S = 4.3214%, ts = 3s. In addition,the design
objectiveis to reducethe steadystateerror due to a unit stepto zero.
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Figure 8.25: Root locus for a voltage regulator system

We usea PID controllerto solvethe controllerdesignproblemdefinedabove.
Therequiredphasémprovementor theselectedperatingpointis foundby using
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(8.30)asa. = 1.3658 rad = 78.2573°. From formula (8.31) the location of the
compensator'zerois obtainedas —z. = —1.2079, sothatthe PD partof a PID
compensatotis

GPD(S) =s+ 1.2079

The branchesof the root loci in the neighborhoodf the desiredoperatingpoint
of the original and PD compensatedystemsare presentedn Figure 8.26. It
can be seenthat the compensatedoot locus indeed passeshrough the point
s¢g = —1 £ 71,

)]
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Figure 8:26: Root loci of the original (a) and PD (b) compensated systems

The closed-loopunit step responseof the systemcompensatedyy the PD
controlleris representeih Figure 8.27. Using the MATLAB programsgivenin
Example8.8, gives M POS = 6.08%, t, = 2.1s, andt; = 3.5s, which is quite
satisfactory.However,the steadystateunit steperroris e;;pp = 0.0808. Note
that the static gain at the operatingpoint, obtainedby applying the root locus
rule number9 from Table 7.1, is K, = 4060.8. The closed-loopeigenvalues
at the operatingpoint are

Ay, = —23.7027, Ay, = —18.1675, A3, = —6.1105
Aispp = —0.997 + 71,0011
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which indicatesthat the system has preserveda pair of dominant complex
conjugatepoles.

In orderto reducethis steadystateerror to zerowe usea PI controller of
the form

s+ 0.1
S

Gpr(s) =

Sincethe compensatedystemopen-looptransferfunction now hasa pole at the
origin, we concludethat the steadystateerror is reducedto zero,which canalso
be observedfrom Figure 8.27.

1.2

0.6 b

0.4 b

0.2 b

Figure 8.27: Step responses of PD and PID compensated systems

The transientresponsespecificationsfor the systemcompensatedy the
proposedPID controllerare M POS = 11.277%, t, = 2.1s, andt; = 3.1s.
Thus, the proposedPI controller has slightly worsenedthe transientresponse
characteristics. It is left to students,in the form of a MATLAB laboratory
experimentto checkthatthe transientresponsepecification®f the compensated
systemobtainedby using PI controllersthat have zeroslocatedat —0.01 and
—0.001 are improved.
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8.7 Comments on Discrete-Time Controller Design

Similarly to the continuous-timecontroller design, the root locus method can
be usedfor designof controllers(compensatorsin the discrete-timedomain. In
Section7.4we haveindicatedthatthe discrete-timeootlocusmethodis identical
to its continuous-timecounterpart.Thus, the resultspresentedn this chaptercan
be easily extendedand usedfor the controller designof discrete-timesystems.
For moredetails,the readeris referredto Kuo (1992)for theoreticalaspectsand
to ShahianandHassul(1993) for MATLAB discrete-timecontroller design.

8.8 MATLAB Laboratory Experiment

Part 1. Considerthe control systemgivenin Example8.8, thatis

K(s + 10)

) = DT D112

with the transientresponseequirementsleterminedoy a desiredoperatingpoint
locatedat sy = —2 + 53.

(a) Designa PD controllersuchthatthetransientresponseequirementsiremet.

(b) Designa PID controllersuchthat the steadystateerror is reducedto zero.

(c) Designa phase-leadtontrollerfor the designproblemdefinedin (a).

(d) Add a phase-lagcontroller in serieswith the controller obtainedin (c) in
order to reducethe steadystateerror by 50%.

Plot theroot loci andunit stepresponsesor (b) and(d) of both the original
and compensatedystemsand comparethe resultsobtainedwith PID and phase-
lag-lead controllers.

Part 2. Use MATLAB to designa phase-lag-leadontrollerfor the control
systemof Example8.9 suchthatt; < 2s, M POS < 10%, andegs. < 0.01.

Use the MATLAB programfrom Example8.8 to find the actualresponse
overshoo@ndsettlingtime. Find the eigenvalue®f the compensatedystemand
checkwhetherthe systemresponseas dominatedoy a pair of complexconjugate
poles.

Part 3. Forthevoltageregulatorsystemconsideredn Section8.6.2,usethe

samePD controllerasin Section8.6.2,but takefor a Pl controllerthe following
forms:
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(@) Gpr(s) = (s+0.01)/s.

(b) Gpir(s) = (s+0.001)/s.

For both casesfind the unit stepresponsesf the PID compensatedystems
and determinethe transientresponseparameters.Comparethe resultsobtained
with the resultsfrom Section8.6.2.
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8.10 Problems

8.1 Considerasingle-inputsingle-outpusystemwhoseopen-looptransferfunc-
tion is given by

10
st 4353 4452 + 1

G(s) =
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8.2

8.3

8.4

8.5

8.6
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Find the phasevariable canonicalform for this systemand designthe full
statefeedbackstatic controller suchthat the systemclosed-looppolesare
locatedat \; o = —1 £ 72, 3 = =3,y = —10.

Find the feedbackgain f suchthat the system
S A N
S R

with v = —fx hasa pair of dominantcomplexconjugateclosed-looppoles
at —1 + 52 and a closed-looppole at —10.

Plot the function

__ ¢

e Vi-¢?

andcommenton the maximumpercentovershoodependencen the damp-
ing ratio.
Design a rate feedbackcontroller such that for the second-ordesystem
representedby the closed-looptransferfunction
9

s24+3s+9
the maximum percentovershootis 10%. Find the settling time of the
compensatedystem.

Considerthe second-ordesystemfrom Example6.6. Its steadystateerror
is ess = 0.4. Designa PI controllerto reducethe steadystateerrorto zero.
Use MATLAB to plot the root loci and unit stepresponse®f the original
and compensatedystems.

For the open-loopcontrol system

_ K(s + 10)
@) = a0y 125 1 10)

draw the root locus. Checkthat the staticgain K = 3 producesa pair of

complex conjugatedominantpoles. Find the correspondingsteadystate
errors and transientresponseparameters. Design a Pl controller such
that the steadystateerror is reducedto zero while the transientresponse
characteristicare preserved.
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8.7

8.8

8.9

8.10

8.11

8.12
8.13

Considerthe controllerdesignproblemfor the hydroturbinegovernorsof a
power system(Arnautovic and Skatar¢, 1991), representedby

-0.71 0 0 0 0 0.71
0 -2 0 0 0 2
A=061 1.28  —1.46 0.566 0 , B=10
-0.18 —=0.37 0.56 —0.594 -0.23 0
0 0 0 314.16 0 0

Assumethat the output matricesare given by
C=0 01 0 1], D=0

Using MATLAB, perform the following:

(a) Findits open-looptransferfunction andthe steadystateerror.

(b) Suggestphase-lagontrollerto reducets steadystateerrortentimes.

(c) Locatethe systemoperatingpoint on the root locus approximatelyat
—1.5 4+ 51 andfind the static gain at that point.

Designa phase-lagcontroller for the systemrepresentedby

K
G(s) =
(%) (s+ 1)(s+5)(s+ 10)
which producesa steady state unit step error of less than 0.01. Take
K = 200.

Considerthe synchronousnachinefrom Section7.5.2. Designa Pl con-
troller to reducethe steadystateunit steperror by 100%. Choosean op-
eratingpoint on the root locus andfind the correspondingstatic gain. Use
MATLAB to checkthatthe closed-loopsystemis asymptoticallystable.

Forthe second-ordesystemfrom Example6.1, designa PD controllersuch
that the compensatedystemhast; ~ 2s and M PO S < 15%.

Repeat Problem 8.10 with the following requirementst; ~ 2s and
MPOS < 10%.

Solve Problem8.11 using a phase-leactontroller.

Considerthe problemof a PD controllerdesign. Assumethata controller’s
zeroanddesiredoperatingpointsatisfy£(sq + z.) > 90°. Deriveaformula
correspondingo (8.31).
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8.14

8.15

8.16

8.17

8.18

8.19

8.20

8.21
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Considerthe phase-leadontroller designfor the systemgivenin Example
8.9. Use differentvaluesfor the controller’s polesand zerosand examine
their impact on the steadystate errors. Suggestat least five different
controllers.

Derive formula (8.34) for finding the location of the pole of a phase-lead
controllerassumingthat the location of its zerois chosen.

Design a phaselead-controllersuchthat

K(s+ 10)
(s +20)(s®+2s42)

G(s) =

hasts; < 1.5s and MPOS < 20%.

Considerthe voltage regulatorcontrol systemfrom Section8.6.2. Use a
double PD controller of the form

Gpp(s) = (s + 1.2079)*

to compensatehis system.

(&) Draw the root locus of this systemcompensatedvith a double PD
controller and compareit with the correspondingone from Section
8.6.2 obtainedusing a single PD controller.

(b) Choosehe operatingpointfor a pair of complexconjugatepolessuch
thatthe dampingratio is the sameasin Section8.6.2,i.e. ( = 0.7071.
Findthe staticgainatthatpointandtheclosed-loogeigenvaluesDoes
the compensatedystempreservehe responselominanceof a pair of
complex conjugatepoles?

Design a phase-lag-leadontroller for the voltage regulator systemfrom
Section8.6.2 suchthat M POS < 5%, ts < 3s, andess < 1%.

Considerthe ship position control systemfrom Section8.6.1. Designa
phase-leactontrollersuchthat M POS < 10% andts < 10s.

Use MATLAB to find and plot the ramp responsef the original and
compensatedystemsstudiedin Example8.7.

Considerthe F-15 aircraft undersupersonidlight conditionswith its state
spacematricesgivenin Examplel.4. Note that this aircraft hasoneinput
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and four outputs, where the outputs representthe state spacevariables.
Thus,we are ableto get four transferfunctionsof the form

(@)
(b)

(©)
(d)
(e)

(f)

Gi(s)=Ci(sI—A) 'B, i=1,2,3,4

Using MATLAB, find all four transferfunctionsof the F-15 aircraft.
Plot the root loci for G(s), i = 1,2,3,4. Commenton the stability
propertiesof this aircraft with respectto the values of the static
feedbackgains K;, + = 1,2,3,4.
Findtheclosed-loopgransferfunctionswith unit feedbackandexamine
their stability.

Proposecontrollerswhich will stabilizeall outputsof this aircraft.
For the proposedcontrollersthat assurestabilization,find the closed-
loop stepresponsesand determinethe responsesteadystate errors
and transientparameters.

If necessary,design dynamic controllers basedon the root locus
technique,as discussedn this chapter,suchthat steadystateerrors
and transientresponsgparametersare improved.

8.22 RepeatProblem8.21 for the F-15 aircraft undersubsonicflight conditions

with the statespacematricesgiven in Example1.41

1

Problems8.21 and 8.22 can be assignedhs eitherterm papersor final projects.



