
Chapter Two

Transfer Function Approach

In the previous chapter it has been indicated that modeling, analysis, and design
of control systems can be performed in two domains, namely in the time and
frequency domains. In this chapter we will consider the frequency (complex)
domain technique, also known as the transfer function method. Our main goal is
to present methods for finding the system transfer function. This is particularly
important for systems composed of many blocks, where each block represents an
internal transfer function. In Chapter 9, the frequency domain approach will be
used to design controllers for linear time invariant systems.

Modern control theory has its foundation in the state space approach; classical
control theory is based on the transfer function approach. The state space
method is widely used in modern control theory and practice due to the extensive
support from modern packages for computer-aided control system analysis and
design. The state space method will be considered in detail in Chapter 3. The
transfer function approach is based on the Laplace andZ-transforms and their
time derivative properties, which convert differential/difference equations into
algebraic equations with complex coefficients. The algebraic equations obtained
are frequency domain representations of the considered dynamic systems. The
basics of the Laplace andZ-transforms are reviewed in Appendices A and B.

In classical control theory, it is desirable to have a tool that permits analysis
and design of control systems, especially when instead of knowing the internal
state of the system, we just need to know the relationship between the system
inputs and outputs. This can be facilitated if the system model is transformed
from the time domain into the frequency domain. The transfer function—the main
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42 TRANSFER FUNCTION APPROACH

concept of the frequency domain technique—is considered for both continuous-
and discrete-time systems in Section 2.1. This book emphasizes continuous-time
systems since many discrete-time results are easily derived by analogy from the
corresponding continuous-time results.

A conventional way of representing linear time invariant systems is via block
diagrams. This provides a pictorial view of a control system. Block diagrams are
considered in Section 2.2. Block diagram algebra is introduced in Section 2.3 as
a suitable tool for obtaining transfer functions of systems whose block diagrams
are known. The use of block diagram algebra to find the system transfer function
is advisable for simple systems, but for complex systems it gets quite involved.

The signal flow graph technique is employed in Section 2.4 as an alternative
to the block diagram system representation. Mason’s gain rule, the main result of
the signal flow graph technique, is an elegant way of finding transfer functions,
especially for complex and high-dimensional systems. Several examples are
given in order to demonstrate the power of Mason’s rule.

In Section 2.5 we present specialized methods for finding transfer functions
of sampled data control systems obtained by sampling continuous-time systems.

At the end of this chapter, in Section 2.6, a laboratory MATLAB experiment
on the system transfer function is designed.

Chapter Study Guide and Objectives

Students not completely familiar with the Laplace andZ-transforms should
first read Appendices A and B. Instructors not interested in teaching transfer
functions of sampled data control systems may skip Section 2.5 without loss of
continuity. Sections 2.1–2.4 represent the core of the chapter. The main objective
of this chapter is that students master a technique for finding transfer functions
of any time invariant linear control system by using either the block diagram
algebra or Mason’s rule.

2.1 Frequency Domain Representations

Real dynamic systems operate in real continuous time so that it is natural to
describe and study their dynamical behavior and evolution in continuous time.
This is done by using differential equations to model them. Some artificial
dynamic systems operate in discrete time so that their models are represented
by difference equations. In addition, discrete-time systems can be obtained by
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discretizing continuous-time systems so that the obtained sampled data systems
are also described by difference equations. The study of dynamic systems in both
continuous and discrete time will be presented in detail in Chapter 3.

Another way of studying continuous- and discrete-time systems is the fre-
quency domain approach. This approach is performed in the space of complex
numbers: by using the Laplace andZ-transforms, the differential/difference equa-
tions are transformed into linear algebraic equations with complex coefficients.
In general, it is easier to solve linear algebraic equations than linear differen-
tial/difference equations, and hence the frequency domain approach seems to be
very attractive. The frequency domain approach is often called the complex
domain approach. Since all calculations have to be performed in the complex
domain, and since the complex numberss = � + j! and z = e�sT (where
T stands for a sampling period) are also known in engineering as complex fre-
quencies, the common name for these methods is the frequency domain methods.
The importance of such a representation of a system is especially emphasized in
classical control system theory.

We would like to point out that the frequency domain very often gives a better
understanding of the actual control system phenomena than the time domain, but
from the computational point of view the frequency domain is inferior to the time
domain state space approach, especially for high-order dimensional systems.

2.1.1 System Transfer Functions
The system transfer function relates to the frequency domain system outputs and
inputs. In other words, the system transfer function gives what is in between the
system inputs and outputs, i.e. it indicates what kind of dynamic elements input
signals have to face before they appear on the system outputs. This pictorial
definition can be put in rigorous mathematical form by using the Laplace and
Z-transforms.

In the first part of this section we present the transfer functions for single-
input single-output systems, and in the second part we study the general case of
multi-input multi-output systems.

Definition 2.1: The transfer function of acontinuous-time single-input
single-output systemis defined as the ratio of theLaplace transformof the system
output over theLaplace transformof the system input, whenall initial conditions
are zero.
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Definition 2.2: The transfer function of adiscrete-time single-input single-
output systemis defined as the ratio of theZ-transformof the system output over
theZ-transformof the system input, whenall initial conditions are zero.

Note that there are several other ways to introduce the definition of the
system transfer function (Franklinet al., 1990; Kuo, 1995), but all of them are
basically the same.

Some preliminary results on system transfer functions have been presented in
Section 1.3. Since the presentation of the discrete-time transfer function parallels
that for continuous time, we will mostly present the results for continuous-
time transfer functions and give only the final results for discrete-time transfer
functions. In Section 2.5 we will pay special attention to the transfer functions
of sampled data systems.

Consider a single-input single-output control system represented by an
n-order differential equation, that is

dny(t)

dtn
+ an�1

dn�1y(t)
dtn�1

+ � � �+ a1
dy(t)

dt
+ a0y(t)

= bm
dmu(t)

dtm
+ bm�1

dm�1u(t)
dtm�1

+ � � �+ b1
du(t)

dt
+ b0u(t)

(2.1)
with n � m. If the initial conditions are zero, its complex counterpart is obtained
simply by a substitution ofdi=dti by si and y(t) ! Y (s), u(t) ! U(s) (see
(a.4) in Appendix A), to give�

sn + an�1sn�1 + � � �+ a1s+ a0
�
Y (s)

=
�
bms

m + bm�1sm�1 + � � �+ b1s+ b0
�
U(s)

(2.2)

Hence, the transfer function of this system is

G(s) =
Y (s)

U(s)
=
bms

m + bm�1sm�1 + � � �+ b1s+ b0
sn + an�1sn�1 + � � �+ a1s+ a0

=
Nm(s)

Dn(s)
(2.3)

Similarly, for discrete-time systems the transfer function is obtained by applying
theZ-transform to the difference equation describing system dynamics

y(k + n) + an�1y(k + n � 1) + � � �+ a1y(k+ 1) + a0y(k)

= bmu(k+m) + bm�1u(k +m� 1) + � � �+ b1u(k+ 1) + b0u(k)
(2.4)
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This yields the discrete-time transfer function of the form

G(z) =
Y (z)

U(z)
=

bmz
m + bm�1zm�1 + � � �+ b1z + b0

zn + an�1zn�1 + � � �+ a1z + a0
=

Nm(z)

Dn(z)
(2.5)

PolynomialsNm and Dn (with the s and z arguments dropped) have real
coefficients, and for the so-called proper systems (real physical systems or causal
systems) it must be satisfied thatm � n. The meaning of a proper system is
that the system cannot respond before an input to the system is applied (system
causality, see for example, Kamen, 1990).

The polynomial in the denominator of a single-input single-output system
transferfunction, Dn, is called thecharacteristicpolynomial, and its roots are
known as thesystem poles. At any of thesen roots the denominator polynomial
Dn is zero, so that the overall transfer system function becomes infinite. The
roots of the numerator polynomialNm are called thesystem zerossince at these
m values both the numerator polynomial and the system transfer function are
zero. If the system poles and zeros are known, the transfer functionG(s) can
be recorded inpole-zeroform as

G(s) = K
(s+ z1)(s+ z2) � � � (s+ zm)

(s+ p1)(s+ p2) � � � (s+ pn)
(2.6)

or in time constantform

G(s) = K�
(�b1s+ 1)(�b2s+ 1) � � � (�bms + 1)

(�a1s+ 1)(�a2s +1) � � �(�ans + 1)
(2.7)

From (2.3) and (2.6)–(2.7) we have

K = bm; K� = K
z1z2 � � �zm
p1p2 � � �pn

and
�ai =

1

pi
; i = 1; 2; :::; n; �bi =

1

zi
; i = 1; 2; :::;m

Discrete-time transfer functions can be represented by the forms identical to (2.6)
and (2.7) with the complex frequencys replaced by the complex frequencyz.

Example 2.1: The discrete transfer function of the following system

y(k + 4) + 3y(k+ 2)� y(k+ 1) + 5y(k) = u(k+ 1) + 2u(k)
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is obtained by assuming that all initial conditions are equal to zero and by applying
the derivative (left shift in time) property of theZ-transform, which leads to�

z4 +3z2 � z + 5
�
Y (z) = (z + 2)U(z)

so that

G(z) =
Y (z)

U(z)
=

z + 2

z4 + 3z2� z +5

�
Example 2.2: For the transfer function

G(s) =
s3 + 0:4s2 � 0:95s� 0:45

s5 +8:3s4 + 23:1s3 + 26:2s2 + 10:4s

we find the pole-zero form by using MATLAB functiontf2zp . This produces

G(s) =
(s� 1)(s+ 0:5)(s+ 0:9)

s(s+ 1)(s+1:3)(s+2)(s+ 4)

�
Example 2.3: The transfer function for the linearized system from Example

1.1 is easily obtained by setting all initial conditions to zero and taking the
Laplace transform, which leads to

G(s) =
�(s)

U(s)
=

�1
s2 � 1

�
It is important to point out that the system transfer function carries informa-

tion about thesystem impulse response. In general, we have

Y (s) = G(s)U(s)

Y (z) = G(z)U(z)
(2.8)

Using impulse delta functions as inputs (U(s) = 1; U(z) = 1), we get

Yimpulse(s) = G(s); Yimpulse(z) = G(z) (2.9)



TRANSFER FUNCTION APPROACH 47

so that, in the time domain

g(t) = L�1(Yimpulse(s)) = L�1fG(s)g
g(k) = Z�1fYimpulse(z)g = Z�1fG(z)g (2.10)

The impulse response is obtained simply by finding the inverse transformation
(from the frequency domain to the time domain) of the corresponding system
transfer function.

For multi-input multi-output (multivariable) systems the definition of the
transfer function is more general since vectors and matrices are involved in the
system transfer function description.

Definition 2.3: Transfer functions ofmultivariable systemsrelate the fre-
quency representation of system vector inputs and system vector outputs assum-
ing that all initial conditions are equal to zero, that is

Y(s) = G(s)U(s)

Y(z) =G(z)U(z)
(2.11)

Note thatG(s) andG(z) are matrices of dimensionsp � r since we have
assumed that the number of inputs isr and the number of outputs isp, so
that vectorsU(s);U(z) are of dimensionsr � 1 and vectorsY(s);Y(z) have
dimensionsp � 1. Due to this “matrix” nature, one has to be careful while
relating inputs and outputs for multivariable systems. For single-input single-
output systems, one can write

Y (s) = G(s)U(s) = U(s)G(s)

Y (z) = G(z)U(z) = U(z)G(z)
(2.12)

However, for multivariable systems this commutativity does not hold since in
that case we are dealing with vectors and matrices.

We have seen in Section 1.3 that the transfer matrix of a system withr

inputs andp outputs has the form

Gp�r(s) =

2664
G11(s) G12(s) . . . G1r(s)

G21(s) G22(s) . . . G2r(s)
...

...
.. .

...
Gp1(s) Gp2(s) . . . Gpr(s)

3775
p�r

(2.13)
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where the coefficientsGij denote the transfer functions between thejth input
and theith output, when all other inputs are zero, that is

Gij(s) =
Yi(s)

Uj(s) jall inputs except jth are set to zero
(2.14)

The following example illustrates the procedure for finding the transfer function
for an inverted pendulum, which can be viewed as a multivariable system with
two outputs and one input.

Example 2.4: Recall a linearized model of the inverted pendulum, given
by (1.77), that is

(m1 +m2)
d2x(t)

dt2
+m1l

d2�(t)

dt2
= F (t)

d2x(t)

dt2
+ l

d2�(t)

dt2
= g�(t)

Let us first find the transfer function�(s)=F (s). The above system of two
equations can be simplified by eliminatingd2x=dt2, which produces

m2l
d2�(t)

dt2
� (m1 +m2)g�(t) = �F (t)

After taking the Laplace transform of this equation, the transfer function is
obtained as

G11(s) =
�(s)

F (s)
=

� 1
m2l

s2 �
�
1 + m1

m2

�
g
l

The second transfer function,X(s)=F (s), is obtained by taking the Laplace
transform of the second equation, that is

s2X(s) + ls2�(s) = g�(s)

so that

X(s) = � ls2 � g

s2
�(s) = � ls2 � g

s2
G11(s)F (s)

which implies

G21(s) = � ls2 � g

s2
G11(s)
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The same result could have been obtained by taking simultaneously the Laplace
transform of both the equations�

(m1 +m2)s2 m1ls
2

s2 ls2 � g

��
X(s)


(s)

�
=

�
F (s)

0

�
and then solving this system of algebraic equations with respect toX(s) and
�(s), that is�

X(s)


(s)

�
=

�
(m1 +m2)s

2 m1ls
2

s2 ls2 � g

��1�
F (s)

0

�
=

�
G11(s)

G21(s)

�
F (s)

�
Sometimessystems are so complex that playing with algebraic equations

in the complex domain in order to obtain the system transfer function(s) is
mathematically very involved. A graphical system representation in terms of
either block diagrams or signal flow graphs will help us to develop systematic
methods for finding the system transfer function(s).

2.2 Block Diagrams

A pictorial description is a very convenient way of representing dynamic systems.
It gives a clear picture of all components of the control system and the flow of
information (signals) in the system. Such a representation is called thesystem
block diagram. In the following, we show how to use block diagrams in order to
obtain information about input and output variables, the relationships between
these variables, and how to get the transfer function(s). In some cases the
block diagram is used just to represent the composition and interconnections
of a system.

The simplest possible block diagram of a single-input single-output system
is represented in Figure 2.1, whereU(s) andY (s) are, respectively, the Laplace
transforms of the input and output signals, andG(s) is the block transfer function.
This is consistent with the transfer function definition given in (2.3). The rule
that connects (2.3) and the block diagram in Figure 2.1, and which is also valid
for all block diagrams, can be formulated as follows.

Main Block Diagram Rule: The output signal is a product of the transfer
function of the given block and block’s input signal.
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U(s) Y(s)Nm(s)

Dn(s)
G(s) =

Figure 2.1: Block diagram of a general linear system defined in (2.3)

The basic structure of a single-input single-outputclosed-loop systemwith a
non-unit feedback is presented in Figure 2.2a, and with a unit feedback is given
in Figure 2.2b. Applying the main block diagram rule and taking into account the
directions of the flow of signals in the system as indicated by arrows, we have

Y (s) = G(s)E(s)

E(s) = U(s)�H(s)Y (s)

+ -

U(s) E(s) E(s)Y(s)
G(s)

H(s)

+ -

U(s) Y(s)
G(s)

(a) (b)

Figure 2.2: Simple feedback structures

Eliminating E(s) from the last equation, it follows

Y (s) = G(s)U(s)�G(s)H(s)Y (s)
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so that for a single-input single-output control system theclosed-loop transfer
function, denoted byM(s), is given by

M(s) =
Y (s)

U(s)
=

G(s)

1 +G(s)H(s)
(2.15)

Note that if the system loop is open, which is the case forH(s) = 0, we have
the open-loop system transfer function

Y (s) = G(s)E(s) = G(s)U(s) ) Y (s)

U(s)
= G(s) (2.16)

A more general block diagram of a closed-loop control system is given in
Figure 2.3.

U(s) E(s)

D(s)

Y(s)
Gr(s) Gp(s)

+

+ - +

Figure 2.3: Basic structure of a control system

The two principal components (blocks) in this diagram are theplant and the
controller. The plant has its own dynamics represented by the transfer function
Gp(s). The purpose of the controller (often called the regulator)Gr(s) is to
“reshape” the dynamics of the plant, such that the overall system transfer function
has the desired form. In Figure 2.3, the signalD(s) represents the potential
system disturbance. The main roles of the controllers (regulators) are system
stabilization, improvement of the system transient response, reduction of steady
state errors, disturbance rejection, etc. These issues will be addressed in the
subsequent chapters. Here, we study only the problem of obtaining the system
transferfunction from the block diagrams.
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In this block diagram we have two inputs,U(s) andD(s), and one output,
Y (s). SettingD(s) = 0, we get

Y (s) = Gp(s)Gr(s)E(s)

E(s) = U(s)� Y (s)
that is

Y (s) = Gp(s)Gr(s)U(s)�Gp(s)Gr(s)Y (s)

so that the system closed-loop transfer function is given by

M(s) =
Y (s)

U(s)
=

Gp(s)Gr(s)

1 +Gp(s)Gr(s)
(2.17)

It is interesting to find the transfer function from the system disturbance
D(s) to the system outputY (s). By settingU(s) = 0, we get

E(s) = �Y (s)
Y (s) = Gp(s)[D(s) +Gr(s)E(s)] = Gp(s)D(s)�Gp(s)Gr(s)Y (s)

so that

Y (s)

D(s)
=

Gp(s)

1 +Gp(s)Gr(s)
(2.18)

Since it is not desirable for the disturbance to affect the system output, the
magnitude of the corresponding transfer function���� Gp(s)

1 +Gp(s)Gr(s)

���� (2.19)

should be minimized as much as possible by a proper choice of the controller
Gr(s).

In the case ofmultivariable systems, the closed-loop transfer function can be
found using the same technique, bearing in mind that the corresponding quantities
are vectors and matrices. The closed-loop block diagram of a multivariable
system is given in Figure 2.4.
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+ -

U(s) E(s) E(s)Y(s)
G(s)

H(s)

+ -

U(s) Y(s)
G(s)

(a) (b)

Figure 2.4: Multivariable feedback system

From this block diagram by using the main block diagram rule,to be applied
strictly in the order: output = transfer function� input, it follows

Y(s) = G(s)E(s)

E(s) = U(s)�H(s)Y(s)

so that

Y(s) = G(s)U(s)�G(s)H(s)Y(s)

which implies

Y(s) = [I+G(s)H(s)]�1G(s)U(s) (2.20)

The closed-loop multivariable control system transfer functionrelates the fre-
quency representations of the system vector input and vector output. From
(2.20) it is given by

M(s) = [I+G(s)H(s)]�1G(s) (2.21)

ForH(s) = 0, we have the open-loop transfer function of a multivariable control
system obtained from (2.20) asG(s).

In the next subsection we show how to perform modeling and construct a
block diagram from mathematical equations describing system dynamics. We
considera model of a DC motor, which is frequently used in control systems.
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2.2.1 Modeling and Block Diagrams of a DC Motor
A DC motor is an electromechanical energy converter which converts electrical
energy into mechanical energy. It is often used as an actuator in control systems.
Figure 2.5 illustrates such a motor schematically. In this section we present the
modeling of a DC motor and draw two block diagrams corresponding to two
different working conditions.

J

va

ia

vf

if

Rf

Lf

Ra

La

em T Fω

Figure 2.5: Schematic of a DC motor

The basic equations of a DC motor (electric part) are obtained from
Maxwell’s electromagnetic theory. Themagneticflux �(t) is proportional to
the field currentif (t)

�(t) = k1if(t) (2.22)

The torque produced by a motor is proportional to the product of the magnetic
flux �(t) and the armature currentia(t)

T (t) = k2�(t)ia(t) = k1k2if(t)ia(t) (2.23)

The motor’s electromotive force (induced voltage), denoted byem(t), is propor-
tional to the product of the magnetic flux and the rotor shaft rotational speed!(t)

em(t) = k3�(t)!(t) = k1k3if(t)!(t) (2.24)
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The last three equations are valid if the values of�(t), T (t), andem(t) are close
to their nominal values.

On the mechanical side, the torqueT (t), developed by the motor, is balanced
by the load and disturbance torques.T (t) is also related to the rotational speed
!(t) by the differential equation

T (t) = Tl(t) + Td(t) = J
d!(t)

dt
+ F!(t) + Td(t) (2.25)

whereJ is the combined load and armature mass moment, andF is the viscous
friction coefficient. Tl(t) represents the load torque andTd(t) is a disturbance
torque (Td is frequently negligible).

Balancingthe voltages in the field and armature windings, we obtain

vf (t) = Lf
dif (t)

dt
+Rf if(t) (2.26)

va(t) = La
dia(t)

dt
+Raia(t) + em(t)

= La
dia(t)

dt
+Raia(t) + k1k3if (t)!(t)

(2.27)

The above set of equations is nonlinear due to the presence of the products
if(t)ia(t) and if(t)!(t). However, usually one of the currents is kept constant.
For constantif(t), we have the so-calledarmature-controlledDC motor; if ia(t)
is constant, then the motor is said to befield-controlled. Mathematical models
for these two regimes are different. They are presented below.

Armature-Controlled DC Motor

In this caseif (t) = Ifo = const, so thatvf (t) = RfIfo. Balancing the
voltages and torques, we obtain from (2.23), (2.25), and (2.27)

va(t) = La
dia(t)

dt
+Raia(t) + k4!(t) (2.28)

k5ia(t) = J
d!(t)

dt
+ F!(t) + Td(t) (2.29)

where
k4 = k1k3Ifo; k5 = k1k2Ifo
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Quantities�a = La=Ra and �m = J=F are usually called the system time
constants. The Laplace transform of the above system of equations produces

Ia(s) =
1

(Las+Ra)
[Va(s)� k4
(s)] (2.30)


(s) =
1

(Js + F )
[k5Ia(s)� Td(s)] (2.31)

The block diagram for this system is easily drawn by looking at equations (2.30)
and (2.31) and using themain block diagram rule. This is shown in Figure 2.6.

Va(s) Ia(s) Ω(s)1

Las+Ra
k5

Td(s)

1

Js+F

k4

+ -

+ -

Figure 2.6: Block diagram for an armature-controlled DC motor

Field-Controlled DC Motor

In this caseia = Iao = const, the following differential equation is obtained
from (2.23) and (2.25)

k6if (t) = J
d!(t)

dt
+ F!(t) + Td(t); k6 = k1k2Iao (2.32)

Taking the Laplace transforms of (2.26) and (2.32), we get

Vf(s) = Rf(�fs + 1)If (s); �f =
Lf
Rf

k6If (s) = F (�ms+ 1)
(s) + Td(s)

(2.33)

where�f is a time constant. Rearranging these equations in the form

If (s) =
1

Rf (�fs +1)
Vf(s)


(s) =
1

F (�ms+ 1)
[k6If(s)� Td(s)]

(2.34)
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and using themain block diagram rule, the block diagram is easily drawn and
is represented in Figure 2.7.

1/Rf 1/F
τfs + 1 +

-

τms + 1

Vf (s) If(s)

Td(s)

Tl(s)T(s)
k6

Ω(s)

Figure 2.7: Block diagram for a field-controlled DC motor

Real control systems can have complex structures including several local
feedback loops, and many inputs and outputs. Local feedback loops can arise
for two reasons: they are either the result of the physical nature of the specific
element in the system or the system as an entity, or they can be intentionally
built in, with the aim of achieving a desirable performance for the system. No
matter how complex the block diagram of a system is, it can be reduced to one of
the basic structures given in Figures 2.1–2.3 by using the block diagram algebra
rules. In the following we present the main results of the block diagram algebra.

2.3 Block Diagram Algebra

Block diagram algebra is a set of rules that facilitates modification and simplifi-
cation of block diagrams. The rules of block diagram algebra for continuous-time
systems are quite simple. They are based on simple principles of algebra that
are used for writing input–output relations for the specific blocks in the block
diagram.

Cascade(serial) connection: The transfer function equivalent to a serial
connection ofn blocks with transfer functionsG1(s); G2(s); :::; Gn(s), repre-
sentedin Figure 2.8, is given by

G(s) = G1(s)G2(s) � � �Gn(s) =
nY

i=1

Gi(s) (2.35)
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This rule is obtained by generalizing the main block diagram rule.

U Y1 Y2 Yn-1 Yn=Y
G1 G2 Gn

Figure 2.8 A serial connection of n blocks

Parallel (tandem) connection: The equivalent transfer function for such a
connection representing a summation of signals, given in Figure 2.9, is obtained
as

G(s) = G1(s) +G2(s) + � � �+Gn(s) =
nX

i=1

Gi(s) (2.36)

U

Y1

Y2

Yn

Y
Σ

G1

G2

Gn

Figure 2.9: Parallel connection of n blocks

Feedbackconnection: The simplest form of a feedback control system is
given in Figure 2.2. For such a system connection the transfer function is given
by (2.15).
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Example 2.5: In this example we demonstrate the procedure for obtaining
the transfer functions for cascade, parallel, and feedback connections by using
MATLAB. Consider the transfer functions

G1(s) =
5

s(s+ 1)(s+ 2)
; G2(s) =

s +4

s +5

We obtain thecascade(series) transfer function by the following sequence of
MATLAB operators

% define G1(s)
z1=[inf;inf;inf];
% all three zeros of G1(s) are at infinity
p1=[0;-1;–2];
k1=5;
[n1,d1]=zp2tf(z1,p1,k1);
% zp2tf maps zero-pole transfer function into

numerator-denominator transfer function
% define G2(s)
n2=[1 4];
d2=[1 5];
% find the series connection
[ns,ds]=series(n1,d1,n2,d2);
% print
printsys(ns,ds,’s’)

Execution of these operators produces the following result

G1(s)G2(s) =
5s+20

s4 + 8s3 +17s2 + 10s

The transfer function forparallel connection is obtained by using

[np,dp]=parallel(n1,d1,n2,d2);
printsys(np,dp,’s’)

This produces

G1(s) +G2(s) =
s4 + 7s3 + 14s2 +13s+ 25

s4 + 8s3 +17s2 + 10s

The feedbackconnection is executed by
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[nf,df]=feedback(n1,d1,n2,d2,-1);
% –1 indicates negative feedback
printsys(nf,df,’s’)

which leads to

G1(s)

1 +G1(s)G2(s)
=

5s+25

s4 +8s3 + 17s2 + 15s+ 20

�
In addition to algebraic formulas (2.35) and (2.36), block diagram algebra is

complemented by several “geometric” rules. Two of them are given below.

Moving Pick-Off Point:In some cases it is desirable to move a pick-off point
in front or behind a block in a block diagram, such that the terminal signals do
not change their values. Figure 2.10 shows the equivalent block diagrams for the
cases before and after replacement of the pick-off points.

Moving Summing Point:An adder or subtracter may be moved from one
side of a block to another as Figure 2.11 illustrates. It is easy to show that
the diagrams on the left-hand and right-hand sides are equivalent. We leave the
proofs to the reader.

X

X X

X

XY

Y

Y
Y

Y

Y

X

G

G
G

G

G

1/G

Figure 2.10: Moving pick-off point transformation
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X

X
X

Y

Y

Y

G

G

1/G

G

Z

Z
Z

+ +_

+ +_
+ +_

X

Y

G

G

Z

+ +_

Figure 2.11: Moving adder/subtracter transformation

Using formulas (2.35) and (2.36) and moving pick-off and summing point
rules, additional block diagram algebra rules can be derived. A summary of some
additional useful block diagram algebra “geometric” rules is given in Table 2.1.

Next we solve two simple examples in order to demonstrate the procedure
for finding the system transfer function from block diagrams.

Example 2.6: The original block diagram, presented in Figure 2.12a, is first
simplified by moving the adder in front of the blockG1 (Figure 2.12b), then by
interchanging adder and adder/subtracter (Figure 2.12c), and finally by finding
the corresponding closed-loop transfer functions (Figure 2.12d).

�

Example 2.7: The block diagram from Figure 2.13a is redrawn in Figure
2.13b in order to explicitly indicate block connections and signal flows. In the
next step, presented in Figure 2.13c, the closed-loop transfer function of blocks
G1 andH2 is found and the pick-off point is moved in front of blockG2. Finally,
two closed-loop transfer functions are found (Figure 2.13d) and their cascaded
connection is evaluated (Figure 2.13e).

�
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G1

G2

G3

U

Y1

Y2

Y3

G1

G2

G3

U

Y1

Y2

Y3

U1

U1

U1 U1

U2

U2

U2
U2

U3 U3

U3

Y

U1

U1 U2

Y

Y

1/H

U1

U2

Y

YY

U1

U1U2

Y

Y Y+

+

+

G

H

U Y

-

+
GH

U Y

-

+

+

+

+

+

+ + + +

+

+

+_

+_

+_ +_
+_

+_

+_

+_ +_ +_ +_

Table 2.1: Block diagram algebra rules
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Y
Y

Y Y

U

U

U

U

G3
G3/G1

G3/G1

G1
G1

G1

G2
G2

G2

+
+

+

+
+

+

+
+

+

-
-

-

H1
H1

H1

(a) (b)

(c) (d)

G3/G11+
G1G2

G11+ G2H1

Figure 2.12: Simplification of the block diagram in Example 2.6

Y Y

Y
Y

Y

U U

U
U

U

H2 H2

H2

H2

H2

G1 G1G2 G2

G2

G2

G2

G3 G3

G3

+ G3

G1(G2+G3)

1+G1H2+G1G2H1

+

-

+

-

+

+

+ +

+

+ +

+

- -

-

H1 H1

H1

(a) (b)

(c)

(d)

(e)

G1

G1

G1H1G2

G1

G1

G11+

1+

1+1+

Figure 2.13: Simplification of the block diagram in Example 2.7
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Using the rules for simplifying the block diagrams presented in formulas
(2.35) and (2.36), Figures 2.10 and 2.11, and Table 2.1, and finding the corre-
sponding transfer functions is relatively easy for simple systems. However, for
complex systems the procedure can be quite involved since it requires drawing
of many intermediate block diagrams before the final (simple feedback form)
is reached. Example 2.8 demonstrates the required procedure for a complex
feedback system.

Example 2.8: The reduction of a complex block diagram for a system shown
in Figure 2.14a is illustrated in Figures 2.14b–i. The process of reduction is
pretty much self-explanatory from the corresponding Figures 2.14b–i. The above
simplification is primarily done by using the established rules, but in addition,
one has to use common sense, as was done in going from Figure 2.14b to Figure
2.14c and from Figure 2.14c to Figure 2.14d (see Problems 2.12 and 2.13).

The final expression for the transfer function is given by

Y (s)

U(s)
=

G1G3G4(G2 +G5)

1 +G2(H1G1 +H2G3) +H3G1G3G4(G2+G5)�H1H2G1G2G3G5

It can be seen from this particular example that for complex systems the
block diagram algebra produces the required answer after many redrawings of
the original block diagram.

U Y
G1

G5

G2 G3 G4+ + + +

+

- - -

H1

H2

H3

(a)

Figure 2.14a: Block diagram of the control system for Example 2.8
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U G1

G5

G2
Y

G3 G4+ + + +

+
+

-

-

-

-
H1

H2

H3

(b)

H1

U
G1

G5

G5

+ +

+

+-

-

-

Y
G2 G3 G4+

+

-

H2

H3

(c)

H1

U
G1

G5H1G5

+ +
+

+-

- Y
G2 G3 G4+

+

-

H2

H3

G6

G1G6 = G1H1G51 -

(d)

(e)
U

G5

+ +
+

+-

- YG2 G3G4+

+

-

G4H2 /

H3

G6

H1
G3G4

Figure 2.14b–e: Simplification of the block diagram from Figure 2.14a



66 TRANSFER FUNCTION APPROACH

(f)

U

G5

+ +-

Y
G2 G3G4+

+

-

G4H2 /

G6

+H3
H1

G3G4

(g)

(h)

(i)

U
G5

+

+

-

YG2 G3G4+

+

-
G6

+H3
H1

G3 G4

G4

H2G2

U
+ -

Y

+H3
H1

G3G4

G2+G5
G1

H1G1G5-1

U
+ -

YG3G4G1 (G2+G5)

H1G1G5)-(1 H2G2G3)+(1

+H1 H3G3G4

G3G4

G3G4

H2G2G3+1

Figure 2.14f–i: Simplification of the block diagram from Figure 2.14a

�

In the next section we present another method, based on signal flow
graph theory, known as Mason’s rule, which is particularly efficient for high-
dimensional and complex systems.
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2.4 Signal Flow Graphs and Mason’s Rule
Another way of finding transfer functions of linear time invariant systems rep-
resented by their block diagrams is the so-called Mason’s rule, which is based
on signal flow graph theory (Mason, 1953, 1956). Signal flow graph techniques
are also used in several other areas of engineering and sciences (Robichaudet
al., 1962; Rao and Koshy, 1991).

There is an analogy between block diagrams and signal flow graphs. The
main elements of the signal flow graph technique arenodesandbranches, with
the nodes being connected by branches.A branch is equivalent to a block in
the block diagram and represents the transfer function between the nodes.A
branchconsists of input node, output node, and an arrow showing the signal flow
direction. A transfer function is associated with each branch. A branch in a signal
flow graph and its transfer function counterpart are represented in Figure 2.15.

U G(s) Y U
G(s)

Y

Figure 2.15: Equivalent elements in a block diagram and a signal flow graph

A node represents a signal.The basic rule for nodes is thata signal at a
node is equal to the sum of signals coming into the node from branches. Note
that signals leaving a node do not count. It is only important to pay attention
to the signals coming into a node.A signal entering a node from a branch is
equal to the signal from the input node of that branch multiplied by the branch
transfer function.

In Figure 2.16 a simple feedback block diagram and its signal flow graph
are given. It can be seen from this figure that the expressions for two signals
at two nodes are given by

E = 1� U �HY
Y = GE

(2.37)
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which produces our familiar closed-loop result

Y = GU �GHY ) Y =
G

1 +GH
U (2.38)

U E
E

Y
G

H

+ - U YYG

-H

1 1

(a) (b)

Figure 2.16: Equivalence between closed-loop systems

In order to be able to present the method for finding transfer functions by
the signal flow graph technique, we need to introduce the following terminology.

Source node — a node at which signals flowonly away from the node.
Input signals are represented by such nodes.

Sink node — a node at which signals flowonly towardsthe node. These
nodes represent output signals. It is customary to extract the inputs and outputs
out of a signal flow graph by using additional branches whose transfer functions
are equal to 1 (see Figure 2.16b).

Path — a succession of branches from a source node (input) to a sink node
(output) with all arrowheads in the same directionwhich does not pass any node
more than once. The path gain is the product of all transfer functions in the path.

Loop — a closed path of branches with all arrowheads in the same direction
in which no node is encountered more than once. A source node cannot be a
part of a loop since each node in the loop must have at least one branch into the
nodeand at least one branch out of it.The loop gain is the product of transfer
functions of the branches comprising the loop.

Nontouching loops— two loops are nontouching if they have no common
node.
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The above notions are demonstrated on a signal flow graph presented in
Figure 2.17.

U 1 1G1

E1

G2

E2

G3

E3

G4

E4

G5

E5

G6

-H2

-H1

-H3

Y

Figure 2.17: Example of a signal flow graph

In this figure the input node isU and the output node isY . There are
two paths connecting the inputU and the outputY . One of them has a path
gain equal toG1G2G3G4G5, and the other has a path gain ofG1G6G4G5.
There are four loops in this signal flow graph with gains�G1H1, �G3G4H2,
�G1G2G3G4G5H3, and�G1G6G4G5H3. Two loops,�G1H1 and�G3G4H2,
do not touch each other, i.e. they represent nontouching loops.

Note that the signal flow graph contains fewer elements than the correspond-
ing block diagram. Signal flow graphs can be simplified by employing similar
rules to those we have been using in block diagram algebra in order to deter-
mine system transfer functions. However, we have seen from the examples in
the previous section that the simplification procedure based on block diagram
algebra is quite lengthy.

In Mason (1953, 1956) an elegant and powerful formula for finding the
transfer function between input and output nodes was derived. That formula is
known as Mason’s gain formula and is given by

G(s) =
1

�

NX
k=1

Pk�k =
1

�
(P1�1 + P2�2 + � � �+ PN�N) (2.39)

wherePk is the path gain for thekth path,N stands for the number of paths,�
is the determinantof the signal flow graph, and�k is the cofactor of pathk.
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� and�k are computed as follows:

� = 1 – (sum of all loop gains) + (sum of products of the loop gains of all
possible combinations of nontouching loops taken two at a time) – (sum of products
of the loop gains of all possible combinations of nontouching loops taken three
at a time) + � � � .

�k = value of� for the part of the flow graph not touching thekth forward
path.

The application of formula (2.39) is demonstrated on the signal flow graph
presented in Figure 2.17. We have already found that there are two paths with
the corresponding gains

P1 = G1G2G3G4G5; P2 = G1G4G5G6

and four loops whose loop gains are

L1 = �G1H1; L2 = �G3G4H2

L3 = �G1G2G3G4G5H3; L4 = �G1G4G5G6H3

There are also two nontouching loops with gainsL1 andL2. Then

� = 1� (L1 +L2 + L3 + L4) + L1L2

Apparently, if we eliminate the pathG1G2G3G4G5, the remaining signal flow
graph will have no loops left, so that�1 = 1. The same conclusion is obtained if
we eliminate the pathG1G6G4G5 leading to�2 = 1. Thus, the transfer function
of the considered signal flow graph, according to formula (2.39), is given by

Y (s)

U(s)
= G(s) =

P1 � 1 + P2 � 1

1� (L1 + L2 +L3 + L4) + L1L2
=

G1G2G3G4G5 +G1G4G5G6

1 +G1H1 +G3G4H2+G1G2G3G4G5H3 +G1G4G5G6H3 +G1G3G4H1H2

In the above expressionGi; i = 1; :::;6; andHj ; j = 1;2;3; are either constants
or functions of the complex frequencys.

Note that all signals in a signal flow graph are mutually related by linear
algebraic equations. For example, in the case of the signal flow graph given in
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Figure 2.17 we have

E1 = U �H1E2 �H3Y

E2 = G1E1

E3 = G2E2 �H2E5

E4 = G6E2 +G3E3

E5 = G4E4

Y = G5E5

whereGi; i = 1; :::;6; andHj ; j = 1; 2;3; are coefficients. By playing simple
algebra with the above system of linear equations one is able to obtain the required
relationshipbetweenY andU , i.e. the required transfer function. However, that
approach is not systematic. Mason’s formula (2.39) is derived by using Kramer’s
determinant method for solving systems of linear algebraic equations, which are
obtained by relating signals in a signal flow graph. The complete proof of formula
(2.39) is beyond the scope of this textbook; it can be found in Mason (1956) and
Younger (1963).

Next, we give an example to find the system transfer function by using both
block diagram algebra and Mason’s rule.

Example 2.9: Consider the block diagram given in Figure 2.18.

U Y

+ +

+

+- -

G3

E3G1

E1
G2

E2

H2

H1

Figure 2.18: Block diagram of a feedback control system

The block transfer functions are given by

G1(s) =
5

s(s+1)
; G2(s) =

2

s
; G3(s) = 2
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H1(s) =
s

s + 4
; H2(s) =

5s

s +2

(a) Using block diagram algebra rules, this block diagram is simplified as
shown in Figure 2.19. The required transfer function is given in Figure 2.19d.

U Y
(a)+ +

+

-

G3

E1
G2

H2

G1

1+G1H1

U Y

(b)

(c)

(d)

+ +

+

-

G3

E1

H2

G1G2

1+G1H1

U Y

+ -
E1

H2

+ G3

G1G2

1+G1H1

U YG1G2+G3+G1G3H1

1+G1H1+G3H2+G1G2H2+G1G3H1H2

Figure 2.19: Block diagram simplification using block diagram algebra rules

(b) The signal flow graph for this example is represented in Figure 2.20. It
containstwo paths and three loops. In addition the loopsG1H1 andG3H2 are
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nontouching ones. Expressions for path and loop gains are

P1 = G1G2; P2 = G3; L1 = �G1H1; L2 = �G3H2; L3 = �G1G2H2

The graph’s determinant and path’s cofactors are obtained as

� = 1� (L1 + L2 +L3) + L1L2; �1 = 1; �2 = 1� L1

U 1 1G1E1 E2 G21

G3

E3

-H2

-H1

Y Y

Figure 2.20: Signal flow graph for the system given in Figure 2.18

The required closed-loop transfer function, according to Mason’s formula (2.39),
is given by

Y (s)

U(s)
=

P1 + P2(1� L1)

1� (L1 +L2 + L3) +L1L2

=
G1G2 +G3 +G1G3H1

1 +G1H1 +G3H2 +G1G2H2 +G1G3H1H2

After substitution of the given values forGi(s); i = 1;2;3; andHj(s); j = 1; 2;

the transfer function is obtained as a ratio of two polynomials with respect to
the complex frequencys. The final result for the transfer function is given in
Part (c) of this example.

(c) The same problem can be solved by MATLAB using its functions for
feedback,parallel, and series connections. Note that the procedure given below
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cannot be applied to any signal flow graph. It can be applied only to those
with explicitly distinguished feedback loops, series, and parallel connections.
However, using the SIMULINK package one is able to obtain the transfer function
for any block diagram and the corresponding signal flow graph. The transfer
function of the feedback control system given in Figure 2.18 is found by using
the following sequence of MATLAB instructions

% feedback configuration of G1 and H1
[n,d]=feedback([0 0 5],[1 1 0],[1 0],[1 4],-1);
% cascade connection to G2
[n,d]=series(n,d,[0 2],[1 0]);
% parallel connection to G3
[n,d]=parallel(n,d,[2],[1]);
% feedback connection with H2
[n,d]=feedback(n,d,[5 0],[1 2],-1);
printsys(n,d,’s’)

This MATLAB program produces the following result

Y (s)

U(s)
=

2s5 + 14s4 + 38s3 + 46s2 + 60s+ 80

11s5 +57s4 + 109s3 +68s2 + 200s

�
Example 2.10: Consider the block diagram given in Figure 2.21.

U E E1 Y
G1

G5

G2
E2 G3

E3 G4+ + + +

+

- - -

H1

H2

H3

Figure 2.21: Block diagram of a feedback control system
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The corresponding signal flow graph is presented in Figure 2.22. In this example
we have two paths and five loops. There are no nontouching loops.

U 1 111 1G1 G2 G3E3
G4E4

G5

-H2-H1

-H3

Y YE E1 E2

Figure 2.22: Signal flow graph for the system given in Figure 2.21

The corresponding path gainsPi; i = 1;2; loop gainsLj ; j = 1; 2; :::;5; signal
flow graph determinant, and cofactors are given by

P1 = G1G2G3G4; P2 = G1G5G3G4

L1 = �G1G2H1; L2 = �G2G3H2; L3 = G1G5G3H2G2H1

L4 = �G1G5G3G4H3; L5 = �G1G2G3G4H3

�1 = 1; �2 = 1

� = 1+G1G2H1+G2G3H2+G1G2G3G4H3+G1G5G4H3�G1G5G3H2G2H1

so that the closed-loop transfer function for this system is obtained as

Y (s)

U (s)
=

G1G2G3G4 + G1G3G4G5

1 +G1G2H1 + G2G3H2 +G1G2G3G4H3 +G1G3G4G5H3 � G1G2G3G5H1H2

�



76 TRANSFER FUNCTION APPROACH

Note that the same problem is studied in Example 2.8 using block diagram
algebra. Comparing the required calculations done in Examples 2.8 and 2.10, it
is obvious that for complex systems Mason’s rule is much more efficient than
the block diagram algebra approach.

It should be pointed out that Mason’s rule is also applicable to the signal flow
graphs corresponding to multi-input multi-output linear systems (see Problem
2.17d). Mason’s rule can be also used for finding transfer functions from any
two nodes in the signal flow graph (see Problem 2.14).

Having obtained the system transfer functions, we will be able to design
controllers in the frequency domain such that feedback systems satisfy certain
specifications, like desired transient and steady state responses. A frequency
domaincontroller design technique based on Bode diagrams will be presented in
Chapter 9. Note that Bode diagrams, in fact, represent the frequency plots, for
s = j!, of the magnitude and phase of the system transfer function.

For discrete-time systems that are inherently discrete, duality can be em-
ployed and the same rules for finding discrete transfer functions as for continuous-
time systems are valid. However, there are some differences in the case of
discrete-time systems obtained through sampling (sampled data systems). Trans-
fer functions of sampled data systems are considered in the next section.

2.5 Sampled Data Control Systems1

In determining discrete transfer functions of sampled data systems the procedure
is a little bit more complex. In some cases, the corresponding transfer function
even does not exist since it is impossible to find a linear relationship in the
frequency domain between output and input signals.

In Sections 2.5.1 and 2.5.2 we present procedures for finding the basic
transfer functions of open-loop and closed-loop sampled data control systems.
Section 2.5.3 studies the closed-loop transfer function for a special class of
sampled data control systems known as digital computer controlled systems.
Here, we present only the basics. For more information about the sampled data
control systems, the reader is referred to specialized books (e.g. Astrom and
Wittenmark, 1990; Ogata, 1987; Franklinet al., 1990; Kuo, 1992; Phillips and
Nagle, 1995).

1 This section may be skipped without loss of continuity.
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2.5.1 Open-Loop Transfer Functions
Depending on where the samplers are positioned, even for very simple block
diagrams, several interesting cases may arise. These are illustrated in Figure
2.23, whereT stands for the sampling period.

G(s)U U* Y Y*

G1(s)

G1(s)

G1(s)

G2(s)

G2(s)

G2(s)

U

U

U

U*

U*

Y

Y

Y

TT

T T

T

T

T

T

T

Y*

Y*

Y*

U1

U1

U1

U1*

U1*

(a)

(b)

(c)

(d)

Figure 2.23: Possible cascade connections in a sampled data system

From Figure 2.23a, it follows that

Y (s) = G(s)U�(s)
Y �(s) = [G(s)U�(s)]� = G�(s)U�(s)

(2.40)

Formula (2.40) indicates one of the main properties of the starred Laplace
transformdefined in Appendix B in (b.11), see also (b.16). Since the starred
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Laplace transform of a signal is equal to itsZ-transform (see (b.12) in Appendix
B), it follows from the above equation that

Y (z) = G(z)U(z)

Y (z)

U(z)
= G(z) = G�(s)js= 1

T
ln z

(2.41)

whereT is the sampling period, andG(z) the required transfer function.

Serial connection of two cascaded blocks with samplers, presented in Figure
2.23b, can be described by the following set of equations

U1(s) = G1(s)U
�(s)

Y (s) = G2(s)U
�
1 (s)

(2.42)

Using the same procedure as in the previous example, we have

U�
1 (s) = G�

1(s)U
�(s)

Y �(s) = G�
2(s)U

�
1 (s)

(2.43)

and
U1(z) = G1(z)U(z)

Y (z) = G2(z)U1(z)
(2.44)

which yields

Y (z) = G2(z)G1(z)U(z) (2.45)

so that the transfer function for this system is

Y (z)

U(z)
= G2(z)G1(z) (2.46)

Note that in this case the transfer function is equal to the product of the transfer
functions of each block, as in the case of two cascaded blocks representing
continuous-time systems.

A sampled data system with cascaded elements and no sampler in between
is given in Figure 2.23c. Here, we have

Y (s) = G1(s)G2(s)U
�(s) (2.47)
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The starred Laplace transform of (2.47) gives

Y �(s) = G1G
�
2(s)U

�(s) (2.48)

whereG1G
�
2(s) stands for[G1(s)G2(s)]

�. Then, it follows

Y (z) = G1G2(z)U(z)

Y (z)

U(z)
= G1G2(z)

(2.49)

It is important to note that the transfer functions in (2.46) and (2.49) are not the
same, i.e. in general

G1(z)G2(z) 6= G1G2(z) (2.50)

The last case, given in Figure 2.23d, is a serial connection of two elements
with a sampler in between. For such a structure, we have

U1(s) = G1(s)U(s) ) U�
1 (s) = G1U

�(s)
Y (s) = G2(s)U

�
1 (s)

(2.51)

Equation (2.51) gives, afterY (s) is starred

Y �(s) = G�
2(s)G1U

�(s) (2.52)

so that

Y (z) = G2(z)G1U1(z) (2.53)

It can be seen from (2.53) that, in this case, we are not able to identify the
quantity that relates the system input and output in the frequency domain, in
other words,for this particular open-loop sampled data structure the transfer
function does not exist.

The above discussion suggests that similar rules for continuous- and discrete-
time block diagrams of the same structure are valid if there exists a sampler in
front of each block of a sampled-data system (see Figure 2.23b).
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2.5.2 Closed-Loop Transfer Functions
Typical structures for closed-loop sampled data control systems are given in
Figure 2.24. We will find that in two cases the closed-loop transfer function

(a)

(b)

(c)

(d)

+ -
G(s)

H(s)

U Y Y*

Y1

E

Y*

+ -
G(s)

H(s)

U Y

Y1

E E*

+ -
G(s)

H(s)

U Y Y*

Y1

E*E
T

T

T

T

TT

T

+ -
G(s)

H(s)

U Y Y*

Y*

Y1

E

Figure 2.24: Four possible positions of a sampler in a closed-loop system
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does not exist, and that in one case it has the same form as for the closed-
loop continuous-time system given by (2.15). However, in this case, the transfer
function depends on the complex frequencyz.

According to Figure 2.24a, we have

Y (s) = G(s)E�(s)
E(s) = U(s)� Y1(s) = U(s)�G(s)H(s)E�(s)

(2.54)

By taking the starred Laplace transform, we obtain

E�(s) = U�(s)�GH�(s)E�(s) (2.55)

or

E�(s) =
U�(s)

1 +GH�(s)
(2.56)

Since
Y �(s) = G�(s)E�(s) (2.57)

it follows

Y �(s) =
G�(s)

1 +GH�(s)
U�(s) (2.58)

In terms of theZ-transform notation, the output is given by

Y (z) =
G(z)

1 +GH(z)
U(z) (2.59)

and the transfer function for the closed-loop system in Figure 2.24a is

Y (z)

U(z)
=

G(z)

1 +GH(z)
(2.60)

In a similar way, we obtain for the system in Figure 2.24b

Y (z) =
GU(z)

1 +GH(z)
(2.61)

which means thatit is not possible to determine the transfer function for this
sampled data feedback system configuration. The same expression for the output
as the one in (2.61) is obtained for the system given in Figure 2.24c.
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Using the above procedure it is easy to find that the closed-loop system in
Figure 2.24d has the transfer function given by

Y (z)

U(z)
=

G(z)

1 +G(z)H(z)
(2.62)

which corresponds to (2.15), obtained for continuous-time closed-loop systems.

The study of this section shows thatthe position of the sampler has a very
important role, because it determines whether or not the input signalU(s)

can be separated from the system dynamics. Therefore, we have seen from
these examples that the transfer function exists if the sampler is just behind the
comparator(subtracter), and conversely, does not exist if the sampler is in any
other place in the system.

It is important to note that in the case of sampled data systems, it is forbidden
for a sampler and a continuous-time system element in cascade to mutually
interchange their positions, because in that case the performance of the control
system is changed. In other words, thecommutative lawis not, in general,
applicable for such systems.

2.5.3 Transfer Functions of Digital Control Systems
A typical block diagram of a digital control system (digital computer controlled)
is shown in Figure 2.25. One part of this configuration is a plant representing
a continuous-time process that has to be controlled. Another part is a digital

u(t) e(t)

-
+

e(k) v(k) u1(t) y(t)
Sampler

A/D
Digital

controller
Zero-order

hold
D/A

Plant

Figure 2.25: Block diagram of a digital control system
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controller, usually a digital computer. The interfacing of these two parts is
realized by a sampler (A/D converter), which converts analog signals into digital
ones, and a zero-order hold (D/A converter), which converts digital signals into
continuous-time signals. The continuous-time signals obtained are fed to the plant
as control inputs. The block diagram showing transfer functions of all blocks in
the above digital control system is given in Figure 2.26.

U(s)

T

E(s)

-
+

E*(s)
Gd

* (s) Gp(s)
V*(s) 1- e-Ts

s
U1(s) Y(s)

Figure 2.26: Transfer functions in a digital control system

In this system the error signale(t) = u(t)�y(t) is sampled so that the analog
signale(t) is converted into a digital signal by an A/D device. The digital form
of the error signale(k) is fed to the digital controller, whose transfer function
is Gd(z). After the controller has solved the difference equation described by
this transfer function, the control signalv(k) is fed to a zero-order hold. The
zero-order hold in time domain is represented by a unit pulse of durationT so
that its the transfer function is

Gh(s) = Lfh(t)� h(t� T )g = 1

s
� 1

s
e�Ts =

1

s

�
1� e�sT

�
(2.63)

The plant transfer function isGp(s). From Figure 2.26 it follows

Y (s) = Gh(s)Gp(s)G
�
d(s)E

�(s) = G(s)G�
d(s)E

�(s); G(s) = Gh(s)Gp(s)

(2.64)
By the property of the starred Laplace transform given in (2.40), we have

Y �(s) = G�(s)G�
d(s)E

�(s) (2.65)



84 TRANSFER FUNCTION APPROACH

which in the z-domain produces

Y (z) = G(z)Gd(z)E(z) (2.66)

Since
E(z) = U(z)� Y (z) (2.67)

the last two equations give the required closed-loop transfer function of the system
in Figure 2.26 as

Y (z)

U(z)
=

Gd(z)G(z)

1 +Gd(z)G(z)
(2.68)

Note that in this introductory control theory course we will not pay attention
to sampled data control systems. Material presented in this section is used to
demonstrate the procedures for finding transfer functions of a class of linear
discrete-time control systems known as sampled-data control systems and to
indicate that special care has to be taken while finding the corresponding transfer
functions. However, in this book we will study fundamental concepts and
methods for discrete-time linear control systems mostly by using dualities with
continuous-time linear control systems.

2.6 Transfer Function MATLAB Laboratory Experiment

Part 1. Consider the continuous-time system represented by its transfer
function

G(s) =
s+ 1

s2 + 5s+ 6

Using MATLAB plot:

(a) The impulse response of the system. Useimpulse(num,den,t) with
t=0:0.1:5 .

(b) The step response of the system. Use the functionstep(num,den,t)
with t=0:0.1:5 .

(c) The system output response due to the inputsin (2t). Use the function
lsim(num,den,u,t) with t=0:0.2:20 andu=sin(2*t) .

(d) The system output response due to the inpute�t. Use the function
lsim(num,den,u,t) with t=0:0.1:5 andu=exp(-t) .
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Part 2. A discrete-time system is described by the transfer function

G(z) =
z � 2

z2 � 2:5z +1

Using MATLAB plot:

(a) The impulse response of the system. Usedimpulse(num,den) and
axis([0 10 0 1.5]) .

(b) The step response of the system. Usedstep(num,den) and axis([0
10 0 3]) .

(c) The response due to the inputsin (2k). Use dlsim(num,den,u) with
k=0:1:50 and u=sin(2*k) .

(d) The steady state response due to the input2�k. Usedlsim(num,den,u)
with u=2.ˆ(-k) and axis([0 11 0 1.1]) . Note that “.” after 2 in
MATLAB indicates a pointwise operation.

Part 3. Consider a flexible beam system (Qiu and Davison, 1993) whose
linearized model has the transfer function

G(s) =
1:65s4 � 0:331s3 � 576s2 + 90:6s+19080

s6 +0:996s5 +463s4 + 97:8s3 + 12131s2 + 8:11s

Use MATLAB in order to find:

(a) The system open-loop poles and zeros. Use the functionsroots(num)
and roots(den) .

(b) The system closed-loop transfer function assuming unity negative feedback.
Use [numc,denc]=cloop(num,den,-1) .

(c) The closed-loop poles and zeros and compare them to the open-loop poles
and zeros found in (a). Useroots(numc) and roots(denc) .

Part 4. The block diagram of a simple positioning control system using a
field-controlled DC motor is shown in Figure 2.27.

(a) Using the rules of block diagram algebra reduce this system to the basic
feedback system shown in Figure 2.2a, and find the system transfer function
Y (s)=U(s).

(b) Find the transfer function of this system using Mason’s gain formula.
(c) If K = 2, k1 = �0:05; k2 = 0:16, and k3 = 0:24, write the MATLAB

script to find the transfer function of this system (see Example 2.5).
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(d) Using MATLAB functions, find the poles of the closed-loop system.
(e) For the given system poles find the partial fraction expansion using the

MATLAB function residue . From the partial fraction expansion find
analytically the system response to a unit step input. Check the obtained
results using the MATLAB functionstep .

(f) Plot the unit step response of the system for the time interval of 10 seconds.

U

+ + +- - -
K

Field controlled DC motor

Vf I f Ω

k3

k2

k1

10
s+10

5
s+2

Θ=Y1
s

Figure 2.27: Position control system
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2.8 Problems

2.1 A control system is described by the following set of equations

d2y(t)

dt2
+2

dy(t)

dt
= e(t); e(t) = u(t)� y(t)

(a) Find the transfer function of this system and its impulse response.
(b) Using the inverse Laplace transform, find the response of the system

to a unit step input and zero initial conditions.
(c) Using the final value theorem, calculate the steady-state error due to

a unit step input, i.e. finde(t) for t ! 1.
(d) Plot the unit step response of this system by using the MATLAB

function step(num,den,t) for the time interval of 10 seconds.
Take t=0:0.1:10 .

2.2 Consider the electrical circuit given in Figure 2.28.

(a) Find the voltage transfer functionV0(s)=Vi(s).
(b) Suppose that an inductorL1 is connected in parallel to resistorR2.

Find the voltage transfer function for the modified circuit.
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(c) If a constant input voltagevi(t) = 5V is applied to the circuit, find
the output voltagesvo(t) for the circuits given in (a) and (b) by using
the inverse Laplace transform.

(d) Using the final value theorem of the Laplace transform, find the steady
state values of the output voltages in cases (a) and (b).

(e) If R1 = 1; C1 = 1; R2 = 2; L1 = 1, plot the outputvo(t) for the
circuits given in (a) and (b) by using MATLAB.

vovi

R1

R2

C1

Figure 2.28: An RC network

2.3 Find the transfer function of the following continuous-time system

y(5) + 3y(4) + 2y(3) + y(2) +5y(1) + y = 3u(2) + 2u(1) + u

2.4 Consider the continuous-time linear system represented by the transfer
function

G(s) =
2s5 + s3 � 3s2 + s+ 4

5s8 +2s7 � s6 � 3s5 + 5s4 + 2s3 � 4s2 + 2s� 1

Use MATLAB to find:

(a) The zeros and poles of the system.
(b) The inverse Laplace transform of the transfer function. Use the

residue function.
(c) The system closed-loop transfer function assuming a negative unit

feedback and find the corresponding closed-loop poles.
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2.5 Consider the control system given in Figure 2.29.

U1(s) E(s)

U2(s)

Y(s)+

+ - +s+2
2

s+4
4

Figure 2.29: A control system with two inputs

(a) Assuming that the initial conditions are zero, find the Laplace trans-
form of the system output due to inputs:u1(t) = 2e�t; u2(t) = 4h(t);

whereh(t) is a unit step function.
(b) Find y(t) by using the partial fraction expansion and the inverse

Laplace transform.
(c) Using MATLAB, find y1(t) = y(t) for u2(t) = 0, and y2(t) = y(t)

for u1(t) = 0. Then, using superposition, findy(t) as a response to
both u1(t) andu2(t). Plot the outputs,y1(t); y2(t), andy(t).

2.6 Using the Laplace transform, find the transfer function of the electric
network given in Figure 1.7, i.e. findVc2(s)=Ei(s).

2.7 Find the transfer functions
(s)=Va(s) and
(s)=Td(s) of the armature-
controlled DC motor given in Figure 2.6.

2.8 Use formula (2.21) to find the closed-loop transfer function of a multivari-
able system represented by

G(s) =

�
s+1

s2+6s+8
s

s2+6s+8�s
s2+6s+8

s+3
s2+6s+8

�
; H(s) =

� 1
s+1 0

0 1
s+2

�
2.9 The block diagram of a control system is shown in Figure 2.30.

(a) Reduce this system using block diagram algebra rules and find its
transfer functionY (s)=U(s).

(b) Draw the signal flow diagram of the system and find the transfer
function by Mason’s rule.

(c) Find the transfer function of the system using the MATLAB functions
series and feedback repeatedly.
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(d) Find the unit step response of this system using MATLAB.

U

+ + +- --

4

10

1
s+1

1
s+1

1
s+2

Y1
s

2
s

Figure 2.30: Block diagram of a control system

2.10 Using block diagram algebra rules, simplify the block diagrams shown in
Figure 2.31 and find their transfer functions (the matrix transfer function
for multi-input multi-output case).

(b)

Y2 U2

U1 Y1

+

+ +

G1-

G2

(a)

U Y

+ +
G1-

G2-

-

Figure 2.31: Block diagrams

(a) Repeat the procedure using Mason’s gain formula.
(b) Find the transfer functions using MATLAB with

G1(s) =
3

s(s+ 1)
; G2(s) =

5

s2 + 2

2.11 Verify that the block diagrams shown in Figure 2.32 are equivalent, i.e.
show that they have identical transfer functionsY (s)=U(s) andY (s)=D(s).
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(b)

U Y+ G2

G1

G1 -

(a)

U

D
D

Y

+ +
G1

H1
H1

-
G2

+
+

Figure 2.32: Equivalent block diagrams

2.12 Show that the transfer functions of the block diagrams given in Figures
2.33a and 2.33b are identical, i.e. conclude that the block diagrams are
equivalent. Note that this equivalence has been used to move from Figure
2.14b to Figure 2.14c in Example 2.8.

(b)

U Y

+

H1G3

G1 G2

G3

-

(a)

U Y

+

-

+
G1

H1

G2

G3

+ +

+

Figure 2.33: Equivalent block diagrams

2.13 Show that both transfer functionsY (s)=U1(s) andY (s)=U2(s) in the block
diagrams given in Figures 2.34a and 2.34b are identical, i.e. conclude that
theblock diagrams are equivalent. Note that this equivalence has been used
to move from Figure 2.14c to Figure 2.14d in Example 2.8.
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(b)

Y

+
+

H1G2

G1

H1

-

(a)

U1

U1

U2

U2

Y
+

+

G1

H1 G2

-

-

Figure 2.34: Equivalent block diagrams

2.14 Find the transfer function between the nodesE2 andE5, i.e. find the ratio
E5(s)=E2(s) for the signal flow graph given in Figure 2.17.

2.15 SIMULINK can be used for drawing block diagrams. Once a block diagram
has been drawn and a name to it given, we can obtain the state space
model by invoking the SIMULINK functionlinmod(’block diagram
name’) . From the state space representation, the MATLAB function
ss2tf produces the corresponding transfer function. Find the transfer
functions for the block diagrams considered in Problems 2.9–2.13 by using
the SIMULINK package.

2.16 Omit the branch containing blockG5 in the block diagram presented in
Figure 2.14a and find the system transfer function by using:

(a) Mason’s rule.
(b) Block diagram algebra.

2.17 Using Mason’s gain formula, find the transfer functions of the systems
whosesignal flow graphs are shown in Figure 2.35.

2.18 Consider the discrete-time linear system represented by the transfer function

G(z) =
z4 � 3z3 + 5z2 + 2z

2z7 +5z5 � 3z4 + z3 � 2z2 + 3z � 1

Use MATLAB in order to find:

(a) The zeros and poles of the system.
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(b) The inverseZ-transform of the transfer function. Hint: Use the
residue function.

(c) The closed-loop zeros and poles.

U 1 1G1 G2 G3 G4 G5

G6

-H2
-H4

-H5

-H1 -H3

Y

(a)

(b)

(d)

(c)
U 1 1

G1

G7 G8

G2

G3

G4

G5

G6

-H2

-H4

-H1

-H3

Y

U 1 G1 G2 G3 G4

G5

-H2-H1

-H3

Y

U2 1 1

G7

G3

G4 G5

G6
-H3

Y2

U1 1 1G1

G2

-H2

-H4

-H1 Y1

Figure 2.35: Signal flow graphs of control systems
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2.19 Find the inverseZ-transform for the following discrete transfer functions

H(z) =
3z2 � z

z2 + 2z + 5
; H(z) =

2z2 + z

(z +0:4)(z � 1)(z � 0:2)

Using MATLAB, find the first 10 samples of system outputsy(k) if the
system input isu(k) = 1; k = 0; 1; 2; :::; andu(k) = 0 for k < 0.

2.20 For the digital control system shown in Figure 2.26 the plant transfer
function is

G(s) =
1

s(s+ 1)

(a) Find the discrete transfer function of the closed-loop system if the
sampling interval isT = 0:5s, and the digital controller is

Gd(z) = Kp +
Ki

1� z�1

(b) Using MATLAB, find the poles and zeros of the closed-loop system
if Kp = 1; Ki = 1. Plot the output response to a unit step input.


