Chapter Ten

Control System Theory Overview

In this bookwe havepresentedesultsmostlyfor continuous-timetime-invariant,
deterministiccontrol systems. We have also, to some extent, given the corre-
spondingresultsfor discrete-time time-invariant,deterministiccontrol systems.
However,in control theoryandits applicationsseveralothertypesof systemap-
pear.If the coeficients(matricesA, B, C, D) of alinear control systemchange
in time, oneis facedwith time-varyingcontmol systems If a systemhassome
parametersor variablesof a randomnature, such a systemis classfied as a
stochasticsystem. Systemscontainingvariablesdelayedin time are known as
systemawith time delays

In applyingcontrol theoryresultsto real-world systemsijt is very important
to minimize both the amountof enegy to be spentwhile controlling a system
and the difference (error) betweenthe actual and desired systemtrajectories.
Sometimesa control action has to be performedas fast as possible,i.e. in
a minimal time interval. Theseproblemsare addressedn modern optimal
control theory The most recentapproachto optimal control theory emeged
in the early eighties. This approachis called the H., optimal control theory,
and dealssimultaneouslywith the optimization of certain performancecriteria
and minimization of the norm of the systemtransferfunction(s)from undesired
guantitiesin the system(disturbancesmodelingerrors)to the system’soutputs.

Obtainingmathematicamodelsof real physicalsystemscanbe doneeither
by applying known physical laws and using the correspondingmathematical
equationspor throughan experimentatechniqueknown as systenidentification
In thelatter casea systemis subjectedo a setof standarcknowninput functions
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434 CONTROL SYSTEM THEORY OVERVIEW

and by measuringhe systemoutputs,undercertainconditions,it is possibleto
obtain a mathematicamodel of the systemunderconsideration.

In someapplications,systemschangetheir structuresso that one hasfirst
to performon-line estimationof systemparameterandthento designa control
law that will producethe desiredcharacteristicdor the system. Thesesystems
areknown as adaptivecontmwol systemsEventhoughthe original systemmay be
linear, by usingthe closed-loopadaptivecontrol schemeoneis faced,in general,
with a nonlinearcontrol systemproblem.

Nonlinearcontmol systemsare describedoy nonlineardifferential equations.
Oneway to control suchsystemsds to usethe linearizationproceduredescribed
in Sectionl1.6. In that caseonehasto know the systemnominal trajectoriesand
inputs. Furthermorewe haveseenthat the linearizationprocedureis valid only
if deviationsfrom nominaltrajectoriesandinputsaresmall. In the generalcase,
onehasto be ableto solvenonlinearcontrol systemproblems.Nonlinearcontrol
systemshavebeena “hot” areaof researctsincethe middle of the eighties,since
when many valuable nonlinear control theory results have beenobtained. In
the late eightiesand early nineties,neural networks which are in fact nonlinear
systemsvith manyinputsand manyoutputs emegedasa universaltechnological
tool of the future. However,many questionsremainto be answeredlueto the
high level of complexity encounteredn the study of nonlinearsystems.

In the last sectionof this chapter,we commenton other important areas
of control theory suchas algebraicmethodsin control systemsdiscreteevents
systemsjntelligent control, fuzzy control, large scalesystemsand so on.

10.1 Time-Varying Systems

A time-varying, continuous-timeJinear control systemin the statespaceform
is representedy
x(t) = A(t)x(t) + B(t)u(t), x(to) = %,

(10.1)
y(t) = C(t)x(t) + D(t)u(t)

Its coeficient matricesaretime functions,which makeshesesystemsnuchmore
challengingfor analyticalstudiesthanthe correspondingime-invariantones.
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It canbe shownthat the solution of (10.1)is given by (Chen,1984)

t

x(1) = B(4, to)x(to) + / o(t,7)B(r)u(r)dr (10.2)

to

where ®(¢,%;) is the state transition matrix. For an input-free system the
transition matrix relatesthe stateof the systemat the initial time and the state
of the systemat any given time, that is

x(1) = ®(t, o)x(1o) (10.3)

It is easyto establishfrom (10.3)thatthe statetransitionmatrix hasthe following
properties:
(1) ®(t,t0) satisfiesthe systemdifferential equation

%‘I’(tato) = A()®(t,t0),  P(to,t0) =1 (10.4)

(2) ®(t,t5) is nonsingularwhich follows from
d7L(t,t0) = ®(to,1) (10.5)
(3) @(t,to) satisfies
®(12,10) = ®(t2,11)P(11,%0) (10.6)

Due to the fact that the systemmatrix, A(t), is a function of time, it is not
possiblejn generalto findtheanalyticalexpessiorfor thesystenstatetransition
matrix so thatthe stateresponseequation(10.2) canbe solvedonly numerically.

Since the coeficient matrices A(t), B(t), C(¢),D(¢) are time functions,
three essentialsystemconceptspresentedn Chapters4 and 5—stability, con-
trollability, and observability—haveo be reddined for the caseof time-varying
systems.

The stability of time-varying systemscannotbe definedin terms of the
systemeigenvaluesasfor time-invariantsystems.Furthermore severalstability
definitions have to be introducedfor time-varying systems,such as bounded-
input bounded-outpustability, stability of the system’sequilibrium points,global
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stability, uniform stability, and so on (Chen,1984). The stability in the senseof
Lyapunov,appliedto the systemequilibrium points,x.(¢), definedby

A()x.(t) = 0 (10.7)

indicatesthat the correspondingequilibrium points are stableif the systemstate
transition matrix is bounded,that is

|®(t,t0)|| < const < 00, Vi >ty (10.8)

Since the systemtransition matrix has no analytical expression,it is hard, in
general,to testthe stability condition (10.8).

Similarly, the controllability and observabilityof time-varyingsystemsare
tested differently to the correspondingones of time-invariant systems. It is
necessaryo usethe notionsof controllability and observability Grammiansof
time-varying systems respectively,definedby

Wc(t07t1) = /Q(tovT)B(T)BT(T)(D(tovT)dT (109)

and
t

W, (to, 11) = / 7 (7, 1)CT (r)C(7)B(r to)dr (10.10)
to
Thecontrollability andobservabilitytestsaredefinedin termsof theseGrammians
and the state transition matrix. Since the system state transition matrix is
not known in its analytical form, we concludethat it is very hard to test the
controllability and observabilityof time-varying systems.The readerinterested
in this topic is referredto Chen(1984),Klamka (1991),and Rugh (1993).

Correspondingesultscanbe presentedor discrete-timetime-varying linear
systemsdefined by

x(k+ 1) = A(k)x(k) + B(k)u(k), x(ko)= %,
y(k) = Ck)x(k) + D(k)uk)

The statetransitionmatrix for the system(10.11)is given by

(10.11)

®(k, ko) = A(k)A(k — 1)+ A(ko + 1)A(ko) (10.12)
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It is interestingto point out that, unlike the continuous-timeresult, the discrete-
time transition matrix of time-varying systemsis in general singular. It is
nonsingulaif andonly if thematrix A(z) is nonsingulafor Vi = kg, kg+1,..., k.
Similarly to the stability study of continuous-timetime-varyingsystemsjn
the discrete-timedomain one hasto considerseveralstability definitions. The
eigenvaluesare no longer indicators of systemstability. The stability of the
system equilibrium points can be testedin terms of the boundsimposedon
the systemstatetransition matrix. The systemcontrollability and observability
conditionsaregivenin termsof thediscrete-timecontrollability andobservability
Grammians. The interestedreadercan find more about discrete-time,time-
invariant and time-varyinglinear systemsin Ogata(1987).

10.2 Stochastic Linear Control Systems

Stochastidinear control systemscan be definedin severalframeworks,suchas
jump linear systems,Markov chains, systemsdriven by white noise,to name
a few. From the control theory point of view, linear control systemsdriven
by white noise are the most interesting. Such systemsare describedby the
following equations

x(t) = Ax(t) + Bu(t) + Gw(t), FE{x(t0)} =%,

(10.13)
¥(t) = Ox(1) + V(1)

wherew(t¢) and v(t) are white noise stochasticprocesseswhich representhe
systemnoise(disturbanceandthe measurementoise(inaccuracyof sensorsor
their inability to measurethe statevariablesperfectly). White noise stochastic
processesre mathematicafictions that representeal stochasticprocesseshat
have a large frequencybandwidth. They are good approximatemathematical
modelsfor manyrealphysicalprocessesuchaswind, white light, thermalnoise,
unevennes®sf roads,and so on. The spectrumof white noiseis constantat all
frequencies The correspondingonstanis calledthe white noiseintensity. Since
the spectrunof a signalis the Fouriertransformof its covariancethe covariance
matricesof the system(plant) white noise and measurementvhite noise are
given by

E{wt)w' (1)} = Wé(t - 1), E{v(t)v (1)} =Vé(t-r) (10.14)
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It is alsoassumedhatthe meanvaluesof thesewhite noiseprocessesire equal
to zero, that is

E{w(t)} =0, E{v(t)} =0 (10.15)

eventhoughthis assumptionis not crucial.

The problem of finding the optimal control for (10.13) suchthat a given
performancecriterion is optimized will be studiedin Section10.3. Here we
consideronly an input-free system,u(¢) = 0, subjectedto (i.e. corruptedby)
white noise

x(t) = Ax(t) + Gw(t), E{x(to)} =%, (10.16)

and presentresultsfor the meanand varianceof the statespacevariables. In
orderto obtain a valid result,i.e. in orderthat the meanand variancedescribe
completelythe stochasticnature of the system,we haveto assumethat white
noisestochastiprocesseareGaussianlt is well knownthatGaussiarstochastic
processesre completelydescribedoy their meanand variance(Kwakernaakand
Sivan, 1972).

Applying the expectedvalue (mean)operatorto equation(10.16),we get

E{x(t)} = AE{x(1)} + GE{w(t)}, F{x(t)} =%, (10.17)

Denotingthe expectedvalue E{x(¢)} = m(t), andusingthe fact that the mean
value of white noiseis zero, we get

m(t) = Am(t), m(t) = E{x(to)} = % (10.18)

which implies that the meanof the statevariablesof a linear stochasticsystem
driven by white noiseis representedby a pure deterministicinput-free system,
the solution of which hasthe known simple form

m(t) = E{x(t)} = eA(t_tU)m(tO) = eA(t_tc')fo (10.19)

In orderto be ableto find the expressiorfor the varianceof statetrajectories
for the systemdefinedin (10.16), we also needto know a value for the initial
varianceof x(1p). Let us assumethat the initial varianceis Q(ty) = Q.. The
varianceis defined by

Var{x()} = B{[x(t) - m(®)][x(t) - m(t)]"} = Q(t) (10.20)
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It is not hardto show(Kwakernaakand Sivan,1972; SageandWhite, 1977)that
the variance of the state variablesof a continuous-timdinear systemdriven by
white noisesatisfiesthe famouscontinuous-timamatrix Lyapunovequation

Q(t) = QAT + AQ(1) + GWGT, Q(to) = Q. (10.21)

Notethatif the systemmatrix A is stable the systemreacheghe steadystateand
the correspondingstatevarianceis given by the algebraicLyapunovequationof
the form

0=QAT + AQ+ GWGT (10.22)

which is, in fact, the steadystatecounterparto (10.21).

Example 10.1: MATLAB andits function | yap canbe usedto solvethe
algebraicLyapunovequation(10.22). In this example,we find the varianceof
the state variablesof the F-8 aircraft, consideredin Section5.7, under wind
disturbances.The matrix A is givenin Section5.7. MatricesG and W are
given by Teneketzisand Sandell(1977)

G=[-463 1214 —1.214 -9.01)7, W =0.000315

Note that the wind can be quite accuratelymodeledas a white noise stochastic
processwith the intensity matrix W (Teneketzisand Sandell, 1977). The
MATLAB statement

&lyap(A GWG);
produceshe uniquesolution (sincethe matrix A is stable)for (10.22)as
0.4731  —0.0050 0.0106  0.0326
—0.0050 0.0001 —0.0002 —0.0009

0.0106  —0.0002  0.0009 0.0009
0.0326  —0.0009  0.0009 0.0068

Q=

<

Similarly, oneis able to obtain correspondingesultsfor discrete-timesys-
tems,i.e. the statetrajectoriesof a linear stochastiadiscrete-timesystemdriven
by Gaussianwhite noise

x(k+1) = Ax(k) + Gw(k), E{x(0)} =%,, Var{x(0)} =Q, (10.23)
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satisfy the following meanand varianceequations
m(k + 1) = Am(k), m(0)=m, = m(k)=A*m, (10.24)

Q(k +1) = AQ(k)AT + GWGT, Q(0)=Q, (10.25)

Equation(10.25)is known asthe discrete-timematrix differenceLyapunovequa-
tion. If the matrix A is stable,thenoneis ableto definethe steadystatesystem
variancen termsof thesolutionof thealgebraiadiscrete-timd_yapunovequation.
This equationis obtainedby settingQ(k + 1) = Q(k) = Q in (10.25),thatis

Q = AQAT + GwaGT (10.26)

The MATLAB functiondl yap canbe usedto solve(10.26). Theinterested
readercan find more aboutthe continuous-and discrete-timeLyapunovmatrix
equations,andtheir rolesin systemstability and control, in Gaji¢ and Qureshi
(1995).

10.3 Optimal Linear Control Systems

In ChaptersB and9 of this book we havedesigneddynamiccontrollerssuchthat
the closed-loopsystemsdisplay the desiredtransientresponseand steadystate
characteristicsThedesigntechniquepresentedh thosechapteriravesometimes
beenlimited to trial anderror methodswhile searchingor controllersthat meet
the bestgiven specfications. Furthermore we have seenthatin somecasesit
hasbeenimpossibleto satisfyall the desiredspecificationsdueto contradictory
requirementsand to find the correspondingontroller.

Controller design can also be done through rigorous mathematicalopti-
mization techniques. One of these,which originatedin the sixties (Kalman,
1960)—calledmodernoptimal control theory in this book—is a time domain
technique.During the sixtiesand seventiesthe main contributorto modernopti-
mal controltheorywasMichael Athans,a professomat the Massachusettgistitute
of Technology(Athansand Falb, 1966). Another optimal control theory,known
asH ., is atrendof the eightiesandnineties. /1., optimal controltheorystarted
with thework of Zames(1981). It combinedboththe time andfrequencydomain
optimizationtechniquego give a unified answerwhich is optimal from boththe
time domainand frequencydomainpoints of view (Francis,1987). Similarly to
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H,, optimal control theory, the so-called /7, optimal control theory optimizes
systemsin both time and frequencydomains(Doyle et al., 1989, 1992; Saberi
etal., 1995) andis the trend of the nineties. Since H, optimal control theory
is mathematicallyquite involved, in this sectionwe will presentresultsonly for
the modernoptimal linear control theory dueto Kalman. It is worth mentioning
thatvery recentlya new philosophyhasbeenintroducedfor systemoptimization
basedon linear matrix inequalities(Boyd et al., 1994).

In the contextof the modernoptimallinear controltheory,we presentesults
for the deterministicoptimal linear regulatorproblem,the optimal Kalmanfilter,
and the optimal stochasticlinear regulator. Only the main results are given
without derivations.This is donefor both continuous-anddiscrete-timedomains
with emphasison the infinite time optimization (steadystate)and continuous-
time problems. In someplaces,we also presentthe correspondindinite time
optimizationresults. In addition, severalexamplesare providedto showhow to
useMATLAB to solvethe correspondingptimallinear control theory problems.

10.3.10ptimal Deterministic Regulator Problem

In modernoptimal control theory of linear deterministicdynamic systemsrep-
resentedin continuous-timeby

x(t) = A()x(t) + B(t)u(t), =x(to) =%, (10.27)
we use linear statefeedback,that is
u(t) = =F(t)x(t) (10.28)

and optimize the value for the feedbackgain, F(¢), such that the following
performancecriterion is minimized

ty
1
J = m(il)l 5/ [xT(t)Rix(t) + u? ()Rou(t)]dt p, Ry >0, Ry >0
u(t
to

(10.29)
This choicefor the performanceriterionis quitelogical. It requiresminimization
of the “squaré of input, which means,in general, minimization of the input
enegy requiredto control a given system,and minimization of the “square” of

the statevariables.Sincethe statevariables—inthe casewhena linear systemis
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obtainedthroughlinearizationof a nonlinearsystem—represerteviationsfrom
the nominal systemtrajectories,control engineersare interestedin minimizing
the “square” of this difference,i.e. the “square” of x(¢). In the casewhen
the linear mathematicamodel (10.27) representghe “pure” linear system,the
minimization of (10.29) can be interpretedas the goal of bringing the system
as closeas possibleto the origin (x(¢) = 0) while optimizing the enegy. This
regulationto zerocan easilybe maodified (by shifting the origin) to regulatestate
variablesto any constantvalues.

It is shownin Kalman (1960)that the linear feedbackiaw (10.28) produces
the global minimum of the performancecriterion (10.29). The solutionto this
optimization problem, obtainedby using one of two mathematicaltechniques
for dynamicoptimization—dynamigrogramming(Bellman,1957) and calculus
of variations—isgiven in termsof the solution of the famousRiccati equation
(Bittanti et al., 1991; Lancasterand Rodman,1995). It canbe shown(Kalman,
1960; Kirk, 1970; Sageand White, 1977)that the requiredoptimal solution for
the feedbackgain is given by

F,.:(t) = —R;'BI(t)P(1) (10.30)

whereP(¢) is the positive semiddinite solutionof the matrix differential Riccati
equation

—P(t) = AT()P(t) + P()A(t) + R1 — P(t)B()R; BT (1)P(t), P(t;) =0

(10.31)
In the caseof time invariantsystemsandfor aninfinite time optimizationperiod,
i.e. for t; — oo, the differential Riccati equationbecomesan algebraicone

0=A"P + PA + R, - PBR;!B7P (10.32)

If the original systemis both controllableandobservablgor only stabilizableand
detectable}he unique positive definite (semiddinite) solution of (10.32) exists,
suchthat the closed-loopsystem

x(t) = (A = BR;'BTP)x(t), x(to) = %, (10.33)
is asymptoticallystable. In addition, the optimal (minimal) value of the perfor-
mancecriterion is given by (Kirk, 1970; Kwakernaakand Sivan, 1972; Sage
and White, 1977)

1
—xI'Px, (10.34)

Jopt = szn = 9o
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Example 10.2: Considerthe linear deterministic regulator for the F-8
aircraft whose matricesA and B are given in Section5.7. The matricesin
the performancecriterion togetherwith the systeminitial condition are taken
from Teneketzisand Sandell (1977)

Ry = diag{0.01 0 3260 3260}, Ry = 3260

X, =[100 0 0.2 0]F

The linear deterministicregulatorproblemis alsoknown asthe linear-quadratic
optimal control problemsincethe systemis linear andthe performancecriterion
is quadratic. The MATLAB function| qr andthe correspondingnstruction

[F,P,ev]=lgr(A B Rl R2);
producevaluesfor optimal gain F, solution of the algebraicRiccati equationP,
and closed-loopeigenvalues.Thesequantitiesare obtainedas

F =[-0.004 0.5557 —0.2521 0.0590]

0.0000  —-0.0016 —-0.0003 -0.0003
—0.0016 1.6934  0.1499 0.2199
—0.0003  0.1499 0.8211  -0.0713
—0.0003 0.2199 -0.0713 0.1361

P=10%

A2 = —0.9631 £ 73.0061, X34 = —0.0373 £ 70.0837

The optimal value for the performancecriterion can be found from (10.34),
which produces/,,; = 743.9707.

<

For linear discrete-time control systems,a correspondingoptimal control
theoryresultcanbe obtained.Let the discrete-timeperformancecriterion for an
infinite time optimizationproblemof atime-invariant discrete-timeljinearsystem

x(k + 1) = Ax(k) + Bu(k), x(0)=x, (10.35)

be defined by

J =

N =

i [x"(k)Rix(k) + u” (k)Rzu(k)], R1 >0, Rz >0 (10.36)
k=0
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then the optimal control is given by

u(k) = —(Rz + BTPB) 'BTPAx(k) = —F,x(k) (10.37)
where P satidies the discrete-timealgebraicRiccati equation

P = ATPA+R, - ATPB(B’PB +R,) 'BPA (10.38)

It canbe shownthat the standardcontrollability—observabilityconditionsimply
the existenceof a uniquestabilizing solutionof (10.38)suchthatthe closed-loop
system

x(k+1)=(A - BF,,:)x(k) (10.39)

is asymptoticallystable. The optimal performancecriterion in this caseis also
given by (10.34) (Kwakernaakand Sivan, 1972; Sageand White, 1977; Ogata,
1987).

10.3.20ptimal Kalman Filter

Considera stochasticcontinuous-timesystemdisturbedby white Gaussiamoise
with the correspondingneasurementalso corruptedby white Gaussiamoise,
that is

x(t) = Ax(t) + Gw(t), FE{x(t9)} =%,, Var{x(t)}=Q,

y(t) = Cx(t) + v(t) (10.40)

Sincethe systemis disturbedby white noise,the statespacevariablesare also
stochastiquantitiegprocesses)Undertheassumptionthatboththe systemnoise
andmeasurememtoiseareGaussiarstochastiprocesseghensotoo arethestate
variables. Thus, the statevariablesare stochasticallycompletelydeterminedby
their meanand variancevalues.

Sincethe systemmeasurementare corruptedoy white noise,exactinforma-
tion aboutstatevariablesis not available. The Kalmanfiltering problemcanbe
formulatedasfollows: find a dynamicalsystemthat producesasits outputthe
bestestimatesx(¢), of the statevariablesx(t). The term “the bestestimates”
meansthoseestimatedor which the varianceof the estimationerror

e(t) = x(t) — () (10.41)
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is minimized. This problemwasoriginally solvedin a paperby KalmanandBucy
(1961). However,in the literatureit is mostly known simply as the Kalman
filtering problem.

The Kalman filter is a stochasticcounterpartto the deterministicobserver
consideredn Section5.6. It is a dynamicalsystembuilt by control engineers
anddriven by the outputs(measurements)f the original system.In addition, it
hasthe sameorder as the original physical system.

The optimal Kalmanfilter is given by (Kwakernaakand Sivan,1972)
x(1) = AX(t) + Kopi(t)(y(1) = CX(1)) (10.42)
where the optimal filter gain satidies
K,,:(t) = Q(t)cTv! (10.43)

The matrix Q(t) representshe minimal value for the varianceof the estimation
errore(t) = x(t) — x(t¢), andis given by the solution to the filter differential
Riccati equation

Q(t)=AQ(1) + QAT + GWGT-Q(1)CTV'CQ(t), Q(t) = Q.
(10.44)
Assumingthat the filter reachessteadystate, the differential Riccati equation
becomesthe algebraicone, that is

AQ+ QAT +gwaT-QcTvcQ=0 (10.45)

so that the optimal Kalman filter gain K,,; as given by (10.43)and (10.45)is
constantat steadystate.

Note that in the casewhen an input is presentin the stateequation,asin
(10.13), the Kalman filter hasto be driven by the sameinput as the original
system,that is

%(1) = AX(1) + Bu(t) + Kop()(y(1) - CX(1))  (10.46)

The expressiorfor the optimalfilter gain staysthe same,andis givenby (10.43).

Example 10.3: Considerthe F-8 aircraft example. Its matricesA, B, and
C aregiven in Section5.7, and matricesG and W in Example10.1. From
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the paperby Teneketzisand Sandell(1977) we havethe value for the intensity
matrix of the measuremenhoise

0.000686 0
V‘[ 0 40]

The optimalfilter gain at steadystatecanbe obtainedby usingthe MATLAB
function| ge, which standgor the linear-quadrati@stimator(filter) design. This
nameis justified by the fact that we considera linear systemand intend to
minimize the variance(“squaré) of the estimationerror. Thus, by using

[K. Qev]=Ige(A G CWV);

we get steadystatevaluesfor optimal Kalmanfilter gain K, minimal (optimal)

error varianceQ, and closed-loopfilter eigenvalues.For the F-8 aircraft, these
are given by

_|21.6433  —0.6020 0.6021 4.5056 T

K= 0.0081  —0.0001 0.0001 0.0004
0.3229 —0.0024  0.0053 0.0148
Q= —-0.0024 0.0001 —0.0001 -—-0.0004

0.0053 —0.0001 0.0004 0.0004
0.0148  —0.0004  0.0004 0.0031

Ap = —3.7491, Ay = —2.6410, X34 = —0.0104 % j0.0760

o

Note that the closed-loopfilter in Example 10.3 is asymptoticallystable,
wherethe closed-loopstructureis obtainedby rearranging(10.42)or (10.46)as

X(t) = (A — K, C)X(t) + Bu(t) + Kopry (1) (10.47)

It canbe seenfrom this structurethat the optimal closed-loopKalman filter is
driven by both the systemmeasurementand control. A block diagramfor this
system-filterconfigurationis given in Figure 10.1.

Similarly to the continuous-timeKalman filter, it is possibleto develop
correspondingesultsfor the discrete-timeKalmanfilter. The interestedreader
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canfind the correspondingesultsin severalbooks(e.g. Kwakernaakand Sivan,
1972; Ogata, 1987).

System

Kalman
filter

10.1: System-filter configuration

10.3.30ptimal StochasticRegulator Problem

In the optimal control problem of linear stochasticsystems,representedn
continuoustime by (10.13), the following stochasticperformancecriterion is
defined

ty
1
J =9 lim t—/ [xT(t)Rix(t) + uT ()Rou(t)|dt p, Ry >0, Ry >0
F—0o0 f

0
(10.48)

The goalis to find the optimal valuefor u(¢) suchthatthe performanceaneasure
(10.48)is minimized along the trajectoriesof dynamicalsystem(10.13).

The solutionto the aboveproblemis greatly simplified by the applicationof
the so-calledseparationprinciple. The separationprinciple says: performfirst
the optimal estimation,i.e. constructthe Kalmanfilter, and thendo the optimal
regulation i.e. find the optimal regulatoras outlinedin Subsectionl0.3.1with
x(t) replacedby x(t). For more details aboutthe separatiorprinciple and its
completeproof seeKwakernaakand Sivan (1972). By the separatiorprinciple
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the optimal control for the aboveproblemis given by
uopt(t) = _Fopti(t) (10.49)

whereF,,; is obtainedfrom (10.30)and (10.32),andx() is obtainedfrom the
Kalmanfilter (10.46). The optimal performancecriterion at steadystatecan be
obtainedby usingeitherone of the following two expressiongKwakernaakand
Sivan, 1972)

Jopt = trace{ PKVK” + QR } = trace{PGWGT + QFTR,F} (10.50)

Example 10.4: Consideragainthe F-8 aircraftexample.The matricesF .,
and P are obtainedin Example10.2 and the matricesK,,; and Q are known
from Example10.3. Using any of the formulasgiven in (10.50),we obtainthe
optimal value for the performancecriterion as J,,: = 25.0425. The optimal
control is given by (10.49) with the optimal estimatesk(¢) obtainedfrom the
Kalman filter (10.46).

<

The solutionto the discrete-timeoptimal stochastiadegulatoris alsoobtained
by usingthe separatiorprinciple,i.e. by combiningtheresultsof optimalfiltering
and optimal regulation. For details, the readeris referredto Kwakernaakand
Sivan (1972) and Ogata(1987).

10.4 Linear Time-Delay Systems

The dynamicsof linear systemscontainingtime-delaysis describedby delay-
differentialequationgDriver, 1977). The statespaceform of a time-delaylinear
control systemis given by

x(t) = Az(t) + Apa(t — T) + Bu(t) (10.51)

where T representghe time-delay. This form can be generalizedto include
statevariablesdelayedby 27, 37, ..., time-delayperiods. For the purposeof this
introductionto linear time-delaysystemst is sufficient to consideronly models
given by (10.51).
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Taking the Laplacetransformof (10.51) we get
sX(s) — AX(s) — ApX(s)e *T =x(07) + BU(s) (10.52)

which producesthe characteristicequationfor linear time-delaysystemsn the
form

det (sI — A — ADe*ST) =0
(10.53)
=s"+an_1 (e*ST)snfl + -ty (e*ST)s + ag (e*Ts) =0

Note that the coeficients a;,i = 0,1,2,...,n — 1, are functionsof e=*7, i.e.

of the complex frequency s, and thereforethe characteristicequationis not
in the polynomial form asin the caseof continuous-timetime-invariantlinear
systemswithout time-delay. Thisimpliesthatthe transferfunctionfor time-delay
linear systemds not a rational function. Note that the rationalfunctionscanbe
representedy a ratio of two polynomials.

An importantfeatureof the characteristicequation(10.53)is thatit hasin
general,infinitely manysolutions. Due to this fact the study of time-delaylinear
systemdss muchmore mathematicallyinvolved thanthe study of linear systems
without time-delay.

It is interestingto point out that the stability theory of time-delaysystems
comesto the conclusionthat asymptoticstability is guaranteedf andonly if all
roots of the characteristicequations(10.53) are strictly in the left half of the
complexplane,eventhoughthe numberof rootsmayin generabe infinite (Mori
and Kokame, 1989; Su et al., 1994). In practice,stability of time-delaylinear
time-invariantsystemsanbe examinedby usingthe Nyquist stability test(Kuo,
1991), as well as by employing Bode diagramsand finding the corresponding
phaseand gain stability magins.

Studyingthe controllability of time-delaylinear systemsis mathematically
very complex as demonstratedn the correspondingchapterin the book by
Klamka (1991) on systemcontrollability. Analysis, optimization, and appli-
cations of time-delayedsystemsare presentedn Malek-Zavareiand Jamshidi
(1987). For control problemsassociatedvith thesesystemshe readeris referred
to Marshall (1977).

Note that in some caseslinear time-delay control systemscan be related
to the sampleddatacontrol systems(Ackermann,1985), which are introduced
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in Chapter2, andto the discrete-timelinear control systemswhosestatespace
form is consideredn detailin Chapter3 andsomeof their propertiesarestudied
throughoutthis book. Approximationsof the time-delayelemente=7* for small
valuesof 7' are consideredn Section9.7.

10.5 System Identification and Adaptive Control

Systemidentificationis an experimentatechniqueusedto determinemathemat-
ical modelsof dynamicalsystems.Adaptive control is appliedfor systemsthat
changetheir mathematicamodelsor someparametersvith time. Sincesystem
identification is includedin every adaptivecontrol scheme,in this sectionwe
presensomeessentialesultsfor both systemidentificationandadaptivecontrol.

10.5.1 SystemIdentification

The identificationprocedurds basedon datacollectedby applyingknowninputs
to a systemand measuringthe correspondingoutputs. Using this method, a

family of pairs (y(¢;),u(t;)), ¢ = 1,2,3,... is obtained,where ¢; stand for

the time instantsat which the resultsare recorded(measured).In this section,
we will presentonly one identification technique,known as the least-squae

estimationmethod which is relevantto this book since it can be used to

identify the systemtransferfunction of time-invariantlinearsystems.Many other
identification techniquesapplicableeitherto deterministicor stochasticsystems
arepresentedn severalstandardoookson identification (seefor examplelLjung,

1987; Soderstromand Stoica,1989). For simplicity, in this sectionwe studythe

transferfunction identification problemof single-inputsingle-outputsystemsn

the discrete-timedomain.

Consideran nth-ordertime-invariant,discrete-timeJinear systemdescribed
by the correspondinglifferenceequationas presentedn Section3.3.1,thatis

yk+n)+a_1ylk+n—1)+ -+ agy(k)

(10.54)
=bpqu(k+n—1)4+byou(k+n—2)+ -+ bou(k)

It is assumedhat parameters

a = [an_l Ap_2 - ao], b = [bn—l bn_2 s bo] (1055)
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are not known and oughtto be determinedusing the least-squaradentification
technique.

Equation (10.54) can be rewritten as

ylk+n)=—-ap_1ylk+n—-1)— - —apy(k)
+bpqu(k+n—1)+boqu(k+n—2)+ -+ bou(k)
(10.56)
and put in the vector form
y(k+n)=f(k+n—1) [;’;] (10.57)
wherea andb aredefinedin (10.55),andf(k + n — 1) is given by
f(k4n—1)=[-ylhtn-1) - —y(k) wlk+n-1) - u(k)]
(10.58)

Assumethatfor the giveninput, we perform N measurementandthatthe actual
(measuredyystemoutputsare known, that is

ya(k + n)

Yok +n—1)

Y. (k,N) = (10.59)

Yo(k+n—N+1)

The problemnow is how to determine2n parametersn a and b suchthat the
actual systemoutputsY,,(k, N) are as closeas possibleto the mathematically
computedsystermoutputsthat are representedoy formula (10.57).

We can easily generateN equationsfrom (10.57) as

f(lk+n-1)
(Z(f—: i)1) f(k +n—-2) a a
Y(k,Ny=| Y = [b] = T(k,N) [b]
flk+n-N+1
ylk+n—-N+1) (f(k+n—N))
(10.60)
Define the estimation(identification) error as

E(k,N)=Y.(k,N) = Y(k,N) (10.61)
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The least-squaresstimation method requiresthat the choice of the unknown
parametera andb minimizesthe “squaré of the estimationerror, thatis

min J = E min [ET(k, N)E(k,N)} (10.62)
Using expressiongdor the vector derivatives(see Appendix C) and (10.60), we
can show that

a

min {7} = O Tk, N)U(k, V) [b

'

] — Uk, N)Y,(k,N) =0

(10.63)

which produceghe least-squareptimal estimategor the unknownparametersis
a -1

[b] = {07 (k, N)U(k,N)}” U7 (k,N)Y,(k,N) (10.64)

Note thatthe input signalhasto be chosersuchthatthe matrix inversiondefined
in (10.64) exists.

Sometimest is sufiicient to estimate(identify) only someparametersn a
systemor in a problemunderconsideratiorin orderto obtaina completeinsight
into its dynamicalbehavior. Very often the identification (estimation)process
is combinedwith known physicallaws which describesome,but not all, of the
systemvariablesand parameters.lIt is interestingto point out that MATLAB
containsa specialtoolbox for systemidentification.

10.5.2 Adaptive Control

Adaptive control schemesn closed-loopconfigurationgepresentonlinearcon-
trol systemsvenin thosecasesvhenthe systemaunderconsideratiorarelinear.
Due to this fact, it is not easyto study adaptivecontrol systemsanalytically.
However,dueto their practicalimportance adaptivecontrollersare widely used
nowadaysdn industry sincethey producesatisfactoryresultsdespitethe fact that
many theoreticalquestionsremain unsolved.

Two major configurationsin adaptivecontrol theory and practiceare self-
tuning regulatorsand model-efeenceadaptiveschemes Theseconfigurations
arerepresenteéh Figures10.2and10.3. For self-tuningregulatorsijt is assumed
that the systemparametersare constant,but unknown. On the other hand, for
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the model-referencadaptiveschemeijt is assumedhat the systemparameters
changeover time.

Calculations P :
of regulator |« zjlt(amte_ e l¢
parameters »__estimation
u04>
_| Regulator u > System Fy
10.2: Self-tuning regulator
Ye
> Model
v
Adjustment
»| mechanism [~
Y
> u
Uc _| Regulator > System >y

10.3: Model-reference adaptive control scheme

It canbe seenfrom Figure10.2thatfor self-tuningregulatorghe “separation
principle’ is used,i.e. the problemis divided into independentstimationand
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regulationtasks. In the regulationproblem, the estimatesare usedas the true
valuesof the unknown parameters. The commandsignal u. must be chosen
such that unknown systemparameterscan be estimated. The stability of the
closed-loopsystemsandthe convegenceof the proposedschemedor self-tuning
regulatorsare very challengingand interestingresearchareas(Wellstead and
Zarrop, 1991).

In the model-referencadaptiveschemea desiredresponsds specifiedby
usingthe correspondingnathematicamodel (seeFigure 10.3). The error signal
generatedas a differencebetweendesiredand actual outputsis usedto adjust
systemparametershat changeover time. It is assumedhat systemparameters
changemuch slower than systemstatevariables.

Theadjustedparameterareusedto designa controller,afeedbackegulator.
There are severalways to adjust parameters;one commonly used methodis
known asthe MIT rule (Astrom and Wittermark, 1989). As in the caseof self-
tuningregulatorsmodel-referencadaptiveschemestill havemanytheoretically
unresolvedstability and convegencequestions,eventhough they do perform
very well in practice.

For detailedstudy of self-tuning regulators,model-referenceadaptivesys-
tems,andotheradaptivecontrol schemesndtechniquespplicableto both deter-
ministic and stochasticsystemsthe readeris referredto Astrom and Wittenmark
(1989), Wellsteadand Zarrop (1991), Isermannet al. (1992), and Krstic et al.
(1995).

10.6 Nonlinear Control Systems

Nonlinearcontrol systemsare introducedin this book in Section1.6, wherewe
have presenteca methodfor their linearization. Mathematicalmodelsof time-
invariant nonlinearcontrol systemsare given by

x(t) = F(x(1),u(?),  x(to) = X
y(t) = G(x(1), u(t))

wherex(?) is a statevector,u(?) is aninput vector,y(t) is anoutputvector,and
JF and G are nonlinearmatrix functions. Thesecontrol systemsare in general
very difficult to study analytically. Most of the analytical results come from
the mathematicaltheory of classic nonlineardifferential equations,the theory

(10.65)
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of which hasbeendevelopingfor more than a hundredyears(Coddingtonand

Levinson,1955). In contrastto classicdifferentialequationsdueto the presence
of the input vector in (10.65) one is faced with the even more challenging
so-calledcontrolled differential equations. The mathematicaland engineering
theoriesof controllednonlineardifferentialequationsarethe moderntrendof the

eightiesand nineties (Sontag,1990).

Many interestingphenomenanot encounteredn linear systemsappearin
nonlinearsystems.e.g. hysteresisjimit cycles, subharmonicscillations,finite
escapetime, self-excitation,multiple isolated equilibria, and chaos. For more
detailsaboutthesenonlinearphenomenaeeSiljak (1969) and Khalil (1992).

It is very hardto give a brief presentatiorof any resultand/orany concept
of nonlinearcontrol theory sincealmostall of them take quite complexforms.
Familiar notionssuchassystemstability andcontrollability for nonlinearsystems
haveto be describedby usingseveraldefinitions(Klamka, 1991; Khalil, 1992).

One of the most interestingresults of nonlinear theory is the so-called
stability conceptin the senseof Lyapunov This conceptdealswith the stability
of systemequilibrium points. The equilibrium points of nonlinearsystemsare
defined by

0 = F(xc(t),u(t)) = x(t) (10.66)

Roughly speaking,an equilibrium point is stablein the senseof Lyapunovif

a small perturbationin the systeminitial condition doesnot causethe system
trajectoryto leavea boundedneighborhoof the systemequilibrium point. The
Lyapunovstability canbe formulatedfor time invariantnonlinearsystemg10.65)
asfollows (SlotineandLi, 1991; Khalil, 1992; Vidyasagar.1993).

Theorem 10.1 The equilibrium point x, = 0 of a time invariant nonlinear
systemis stablein the senseof Lyapunovif there existsa continuouslydifferen-
tiable scalar function V' (x) suchthat along the systentrajectoriesthe following
is satisfied

V(x)>0, V(0)=0

v ovd (10-67
. X
= — = — <
V)= = axar =0
Thus, the problemof examiningsystemstability in the senseof Lyapunov
requiresfinding a scalarfunction known asthe Lyapunovfunction V' (x). Again,
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this is a very hardtaskin generalandoneis ableto find the Lyapunovfunction
V(x) for only a few real physicalnonlinearcontrol systems.

In this book we havepresentedn Sectionl.6 the procedurdor linearization
of nonlinearcontrol systems.Another classicmethod,known as the describing
functionmethod hasprovedvery popularfor analyzingnonlinearcontrolsystems
(Slotineand Li, 1991; Khalil, 1992; Vidyasagar,1993).

10.7 Comments

In additionto the classe®f control systemsextensivelystudiedin this book,and
thoseintroducedn Chapterl0, manyothertheoreticalandpracticalcontrol areas
have emepged during the last thirty years. For example,decentralizedcontrol
(Siljak, 1991), learningsystems(Narendra,1986), algebraicmethodsfor multi-
variable control systemg(Callier and Desoer,1982; Maciejowski, 1989), robust
control (Morari and Zafiriou, 1989; Chiangand Safonov,1992; Grimble, 1994;
Greenand Limebeer,1995), control of robots (Vukobratové and Stokic, 1982;
Spongand Vidyasagar,1989; Sponget al., 1993), differential games(Isaacs,
1965; Basarand Olsder,1982; Basarand Bernhard,1991), neuralnetwork con-
trol (GuptaandRao,1994),variablestructurecontrol (ltkis, 1976; Utkin, 1992),
hierarchicaland multilevel systemg(MesarovE et al., 1970), control of systems
with slow andfast modes(singularperturbations)Kokotovi¢ and Khalil, 1986;
Kokotovi€ et al., 1986; Gajic and Shen,1993), predictive control (Soeterboek,
1992),distributedparametercontrol, large-scalesystemgSiljak, 1978; Gajic and
Shen, 1993), fuzzy control systems(Kandel and Langholz, 1994; Yen et al.,
1995), discreteevent systems(Ho, 1991; Ho and Cao, 1991), intelligent vehi-
clesand highway control systemsjntelligent control systemsGuptaand Sinha,
1995;de Silva, 1995),controlin manufacturingZhouandDiCesare,1993),con-
trol of flexible structurespower systemscontrol (Andersonand Fouad,1984),
control of aircraft (McLean, 1991), linear algebraand numericalanalysiscon-
trol algorithms(Laub, 1985; Bittanti etal., 1991; Petkovet al., 1991; Bingulac
and Vanlandingham1993; Patelet al., 1994), and computer-controlledgystems
(Astrom and Wittenmark, 1990).

Finally, it shouldbe emphasizedhat control theoryandits applicationsare
studiedwithin all engineeringdisciplines,andaswell asin appliedmathematics
(Kalmanetal., 1969; Sontag,1990) and computerscience.
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