
Chapter One

Introduction

This book represents a modern treatment of classical control theory of continuous-
and discrete-time linear systems. Classical control theory originated in the fifties
and attained maturity in the sixties and seventies. During that time control theory
and its applications were among the most challenging and interesting scientific
and engineering areas. The success of the space program and the aircraft industry
was heavily based on the power of classical control theory.

The rapid scientific development between 1960 and 1990 brought a tremen-
dous number of new scientific results. Just within electrical engineering, we
have witnessed the real explosion of the computer industry in the middle of the
eighties, and the rapid development of signal processing, parallel computing,
neural networks, and wireless communication theory and practice at the begin-
ning of the nineties. In the years to come many scientific areas will evolve
around vastly enhanced computers with the ability to solve by virtually brute
force very complex problems, and many new scientific areas will open in that
direction. The already established “information superhighway” is maybe just
a synonym for the numerous possibilities for “informational breakthrough” in
almost all scientific and engineering areas with the use of modern computers.
Neural networks—dynamic systems able to process information through large
number of inputs and outputs—will become specialized “dynamic” computers
for solving specialized problems.

Where is the place of classical (and modern) control theory in contemporary
scientific, industrial, and educational life? First of all, classical control theory
values have to be preserved, properly placed, and incorporated into modern scien-
tific knowledge of the nineties. Control theory will not get as much attention and
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recognition as it used to enjoy in the past. However, control theory is concerned
with dynamic systems, and dynamics is present, and will be increasingly present,
in almost all scientific and engineering disciplines. Even computers connected
into networks can be studied as dynamic systems. Communication networks have
long been recognized as dynamic systems, but their models are too complex to
be studied without the use of powerful computers. Traffic highways of the fu-
ture are already the subject of broad scale research as dynamic systems and an
intensive search for the best optimal control of networks of highways is under-
way. Robotics, aerospace, chemical, and automotive industries are producing
every day new and challenging models of dynamic systems which have to be
optimized and controlled. Thus, there is plenty of room for further development
of control theory applications, both behind or together with the “informational
power” of modern computers.

Controltheory must preserve its old values and incorporate them into modern
scientific trends, which will be based on the already developed fast and reliable
packages for scientific numerical computations, symbolic computations, and
computer graphics. One of them, MATLAB, is already gaining broad recognition
from the scientific community and academia. It represents an expert system
for many control/system oriented problems and it is widely used in industry
and academia either to solve new problems or to demonstrate the present state
of scientific knowledge in control theory and its applications. The MATLAB
package will be extensively used throughout of this book to solve many control
theory problems and allow deeper understanding and analysis of problems that
would not otherwise be solvable using only pen and paper.

Most contemporary control textbooks originated in the sixties or have kept
the structure of the textbooks written in the sixties with a lot of emphasis
on frequency domain techniques and a strong distinction between continuous-
and discrete-time domains. At the present time, all undergraduate students in
electrical engineering are exposed to discrete-time systems in their junior year
while studying linear systems and signals and digital signal processing courses
so that parallel treatment of continuous- and discrete-time systems saves time
and space. The time domain techniques for system/control analysis and design
are computationally more powerful than the frequency domain techniques. The
time domain techniques are heavily based on differential/difference equations and
linear algebra, which are very well developed areas of applied mathematics, for
which efficient numerical methods and computer packages exist. In addition, the
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state space time domain method, to be presented in Chapter 3, is much more
convenient for describing and studying higher-order systems than the frequency
domain method. Modern scientific problems to be addressed in the future will
very often be of high dimensions.

In this book, the reader will find parallel treatment of continuous- and
discrete-time systems withemphasison continuous-time control systems and on
time domain techniques (state space method)for analysis and design of linear
control systems. However, all fundamental concepts known from the frequency
domain approach will be presented in the book. Our goal is to present the
essence, the fundamental concepts, of classic control theory—something that
will be valuable and applicable for modern dynamic control systems.

The reader will find that some control concepts and techniques for discrete-
time control systems are not fully explained in this book. The main reason
for this omission is that those “untreated topics” can be simply obtained by
extending the presented concepts and techniques given in detail for continuous-
time control systems. Readers particularly interested in discrete-time control
systems are referred to the specialized books on that topic (e.g. Ogata, 1987;
Franklin et al., 1990; Kuo, 1992; Phillips and Nagle, 1995). Instructors who
are not enthusiastic about the simultaneous presentation of both continuous- and
discrete-time control systems can completely omit the “discrete-time parts” of
this book and give only continuous-time treatment of control systems. This book
contains an introduction to discrete-time systems that naturally follows from their
continuous-time counterparts, which historically are first considered, and which
physically represent models of real-world systems.

Having in mind that this textbook will be used at a time when control theory
is not at its peak, and is merging with other scientific fields dealing with dynamic
systems, we have divided this book into two independent parts. In Chapters 2–5
we presentfundamental control theory methods and concepts: transfer function
method, state space method, system controllability and observability concepts,
and system stability. In the next four chapters, we mostly deal withapplications
so that techniques useful fordesignof control systems are considered. In Chapter
10, an overview of modern control areas is given. A description of the topics
considered in the introductory chapter of this book is given in the next paragraph.

Chapter Objectives

In the first chapter of this book, we introduce continuous- and discrete-time
invariant linear control systems, and indicate the difference between open-loop
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and closed-loop (feedback) control. The two main techniques in control system
analysis and design, i.e. state space and transfer function methods, are briefly
discussed. Modeling of dynamic systems and linearization of nonlinear control
systems are presented in detail. A few real-world control systems are given
in order to demonstrate the system modeling and linearization. Several other
models of real-world dynamic control systems will be considered in the following
chapters of this book. In the concluding sections, we outline the book’s structure
and organization, and indicate the use of MATLAB and its CONTROL and
SIMULINK toolboxes as teaching tools in computer control system analysis and
design.

1.1 Continuous and Discrete Control Systems

Real-world systems are either static or dynamic. Static systems are represented
by algebraic equations, and since not too many real physical systems are static
they are of no interest to control engineers. Dynamic systems are described either
by differential/difference equations (also known assystems with concentratedor
lumped parameters) or by partial differential equations (known assystems with
distributed parameters). Distributed parameter control systems are very hard
to study from the control theory point of view since their analysis is based
on very advanced mathematics, and hence will not be considered in this book.
At some schools distributed parameter control systems are taught as advanced
graduate courses. Thus, we will pay attention to concentrated parameter control
systems, i.e. dynamic systems described by differential/difference equations. It
is important to point out that many real physical systems belong to the category
of concentrated parameter control systems and a large number of them will be
encountered in this book.

Consider, for example, dynamic systems represented by scalar differen-
tial/difference equations

_x(t) = fc(x(t)); x(t0) = x0 (1.1)

x(k +1) = fd(x(k)); x(k0) = x0 (1.2)

where t stands for continuous-time,k represents discrete-time, subscriptc in-
dicates continuous-time and subscriptd is used for discrete-time functions. By
solving these equations we learn about the system’s evolution in time (system
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response). If the system is under the influence of some external forces, or if
we intend to change the system response intentionally by adding some external
forces, then the corresponding system is represented by the so-called controlled
differential/difference equation, that is

_x(t) = fc(x(t); u(t)); x(t0) = x0 (1.3)

x(k + 1) = fd(x(k); u(k)); x(k0) = x0 (1.4)

whereu(t) andu(k) play the role of control variables. By changing the control
variable we hope that the system behavior can be changed in the desired direction,
in other words, we intend to use the control variable such that the system response
has the desired specifications. When we are able to achieve this goal, we are
actually controlling the system behavior.

The general control problem can be formulated as follows:find the control
variable such that the solution of a controlled differential/difference equation has
some prespecified characteristics.This is a quite general definition. In order to be
more specific, we have to precisely define the class of systems for which we are
be able to solve the general control problem. Note that the differential/difference
equations defined in (1.1)–(1.4) are nonlinear. In general, it is hard to deal with
nonlinear systems. Nonlinear control systems are studied at the graduate level.
In this undergraduate control course, we will study onlylinear time invariant
control systems.

Continuous- and discrete-timelinear time invariant dynamic systemsare de-
scribed, respectively, by linear differential and difference equations with constant
coefficients. Mathematical models of such systems having one input and one
output are given by

dny(t)

dtn
+ an�1

dn�1y(t)
dtn�1

+ � � �+ a1
dy(t)

dt
+ a0y(t) = u(t) (1.5)

and

y(k + n) + an�1y(k+ n� 1) + � � �+ a1y(k +1) + a0y(k) = u(k) (1.6)

wheren is the order of the system,y is thesystem outputandu is the external
forcing function representing thesystem input. In addition to theexternal forcing
function the system is also driven by itsinternal forcescoming from thesystem
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initial conditions. For continuous-time systems, the initial conditions are specified
by known values of the system output derivatives up to the order ofn � 1 at
the initial time t0, that is

y(t0);
dy(t0)

dt
; :::;

dn�1y(t0)
dtn�1

(1.7)

In the discrete-time domain the initial conditions are specified by

y(k0); y(k0+ 1); :::; y(k0 + n � 1) (1.8)

It is interesting to point out that in the discrete-time domain the initial conditions
carry information about the evolution of the system output in time fromk0 to
k0 + n � 1. In this book, we study only time invariant continuous and discrete
systems for which the coefficientsai; i = 0; 1; :::; n� 1, are constants. A block
diagram representation of such a system is given in Figure 1.1.

System
Input

u(t) y(t)

Output

Figure 1.1: Input–output block diagram of a system

In general, the input function can be differentiated by the system so that
the more general descriptions of time invariant continuous and discrete systems
are given by

dny(t)

dtn
+ an�1

dn�1y(t)
dtn�1

+ � � �+ a1
dy(t)

dt
+ a0y(t)

= bm
dmu(t)

dtm
+ bm�1

dm�1u(t)
dtm�1

+ � � �+ b1
du(t)

dt
+ b0u(t)

(1.9)
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and

y(k + n) + an�1y(k + n � 1) + � � �+ a1y(k+ 1) + a0y(k)

= bmu(k +m) + bm�1u(k+m� 1) + � � �+ b1u(k+ 1) + b0u(k)
(1.10)

where all coefficientsai; i = 1;2; :::; n; andbj ; j = 0; 1; :::;m; are constant.

The problem of obtaining differential (difference) equations that describe
dynamics of real physical systems is known asmathematical modeling. In
Sections 1.4 and 1.5 this problem will be addressed in detail and mathematical
models for several real physical systems will be derived.

Basic Linear Control Problem

In summary, we outline the basic problem of the linear control theory. The
problem of finding the system response for the given input functionu(t) or
u(k) is basically the straightforward problem of solving the corresponding linear
differential or difference equation, (1.9) or (1.10). This problem can be solved
by using standard knowledge from mathematical theory of linear differential
and/or difference equations. However,the linear control problem is much more
challenging, namely the input functionu(t) has to be found such that the linear
system response has the desired behavior. A simplified version of the above
basic linear control problem will be defined in Chapter 6 using the notion of
system feedback. The basic linear control problem can be studied either in the
time domain (state space approach) or in the frequency domain (transfer function
approach). These two approaches will be presented in Chapters 2 and 3.

1.2 Open-Loop and Closed-Loop Control Systems
It seems that if an input function can be found such that the corresponding system
has the desired response, then the control problem of interest is solved. This is
true, but is it all that we need? Assume thatu(t) is such a function, which
is apparently a function of time. Imagine that due to parameter variations or
due to aging of the system components the system model is a little bit different
than the original one or even worse that the coefficientsai; i = 0; 1; 2; :::; n� 1;

bj ; j = 0; 1; 2; :::;m; in equation (1.9) are not very precisely known. Then
the functionu(t), given as a precomputed time function, might not produce
a satisfactory solution (especially in the long run). One may try to solve the
problem again and get a new expression foru(t) at the expense of additional
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computation, which is fine if the system parameters are exactly known, but
this approach will not bring any improvement in the case when the system
coefficients, obtained either analytically or experimentally, are known only with
certain accuracy. Thisprecomputed time functionu(t) (or u(k) in the discrete-
time domain), which solves the control problem, is known as theopen-loop
control.

Imagine now that one is able, in an attempt to solve the basic linear control
problem, to obtain the desired input function as a function of the system desired
response, or even more precisely as a function of some essential system variables
that completely determine the system dynamics. These essential system variables
arecalled thestate space variables. It is very natural to assume that for a system
of ordern, a collection ofn such variables exist. Denote the state space variables
by x1(t); x2(t); :::; xn(t). Thesestate variables at any given time represent the
actual state of the system. Even if some parameters of the system are changing
in time or even if some coefficients in (1.9) are not precisely known, the state
variablesx1(t); x2(t); :::;xn(t) will reflect exactly the state of the system at any
given time. The question now is: can we get the required control variable (system
input) as a function of the state space variables? If the answer is yes, then the
existence of such au(x(t)) indicates the existence of the so-calledstate feedback
control. In some cases it is impossible to find the feedback control, but for
the linear time invariant systems studied in this book, linear feedback control
always exists. The linear feedback control is a linear function of the state space
variables, that is

u(x) = F1x1 + F2x2 + � � � + Fnxn = Fx

F = [F1; F2; :::; Fn]

x = [x1; x2; :::; xn]
T

(1.11)

where the coefficient matrixF is the feedback gainand the vectorx is known
as thestate space vector. It is sometimes desirable (and possible) to achieve
the goal by using instead of the state feedback controlu(x(t)), the so-called
output feedback controlgiven byu(y(t)) = u(y(x(t))), which in general does
not contain all state variables, but only a certain collection of them. In Section
3.1 we will learn how to relate the output and state space variables.
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Open-loop control, state feedback control, and output feedback control are
represented schematically in Figure 1.2.

System
u(x(t))

System
u(y(x(t))) y(x(t))

System
u(t)

(b)

(c)

(a)
y(t)

Figure 1.2: Open-loop (a), state feedback (b), and output feedback (c) controls

The system represented in Figure 1.1 and given in formulas (1.5)–(1.10)
has only one inputu and one outputy. Such systems are known assingle-
input single-output systems. In general, systems have several inputs and several
outputs, sayr inputs andp outputs. In that case, we have

u = [u1; u2; :::; ur]
T ; y = [y1; y2; :::;yp]

T (1.12)

and the matrixF is of dimensionr�n. These systems are known asmulti-input
multi-output systems. They are also calledmultivariable control systems. A block
diagram for a multi-input multi-output system is represented in Figure 1.3.

Feedback control is almost always desirable as a solution to the general
control problem, and only in rare cases and in the cases when it is impossible to
find the feedback control has one to stick with open-loop control. Throughout of
book we will see and discuss many advantages of feedback control.The main
role of feedback is to stabilize the system under consideration. The feedback
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also reduces the effect of uncertainties in the system model. In addition, it
efficiently handles system parameter changes and external disturbances attacking
the system, by simply reducing the system output sensitivity to all of these
undesired phenomena. Most of these good feedback features will be analytically
justified in the follow-up chapters.

System

u1

u2

ur

y1

y2

yp

Figure 1.3: Block diagram of a multi-input multi-output system

However,one has to be careful when applying feedback since it changes the
structure of the original system. Consider the system described by equation (1.3)
under the state feedback control, that is

_x(t) = fc(x(t); u(x(t))) = Fc(x(t)); x(t0) = x0 (1.13)

Thus,after the feedback is applied, a new dynamic system is obtained, in other
words, for different values ofu(x(t)) we will get different expressions for the
right-hand side of (1.13) so that equation (1.13) will represent different dynamic
systems.

1.3 State Space and Transfer Functions

In analysis and design of linear time invariant systems two major approaches
are available: the time domain state space approach and the frequency domain
transfer function approach. Both approaches will be considered in detail in
Chapters2 and 3. Electrical engineering students are partially familiar with
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these methods and the corresponding terminology from undergraduate courses
on linear systems and digital signal processing.

In this section only the main definitions are stated. This is necessary to
maintain the continuum of presentation and to get mathematical models of some
real physical systems in state space form. In addition, by being familiar with the
notion of the state space, we will be able to present the linearization of nonlinear
systems in the most general form.

In the previous section it is indicated that for annth order system there
are n essential state variables, the so-called state space variables, which form
the corresponding state space vectorx. For linear time invariant systems, the
vector of state space variables satisfies the linear time invariant vector differential
(difference) equation known as the state space form. The state space equations
of linear systems are defined by

_x(t) =Ax(t) +Bu(t); x(0) = x0

y(t) = Cx(t) +Du(t)
(1.14)

and
x(k +1) = Ax(k) +Bu(k); x(0) = x0

y(k) = Cx(k) +Du(k)
(1.15)

In view of the discussion in the previous section, the introduced constant matrices
have the dimensionsAn�n;Bn�r;Cp�n;Dp�r. Of course, the given matrices
for continuous and discrete systems have different entries. In formulas (1.14) and
(1.15) the same notation is kept for both continuous and discrete systems for the
sake of simplicity. In the case when a discrete-time system is obtained by sam-
pling a continuous-time system, we will emphasize the corresponding difference
by adding a subscriptd for the discrete-time quantities, e.g.Ad;Bd;Cd;Dd.

The system transfer functionfor a single-input single-output time invariant
continuous system is defined asthe ratio of the Laplace transform of the system
output over the Laplace transform of the system input assuming that all initial con-
ditions are zero. This definition implies that the transfer function corresponding
to (1.9) is

G(s) =
bms

m + bm�1sm�1 + � � �+ b1s+ b0
sn + an�1sn�1 + � � �+ a1s+ a0

(1.16)

Polynomial exponents in transfer functions of real physical systems always satisfy
n �m. In the discrete-time domain, theZ-transform takes the role of the Laplace
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transform so that the discrete-time transform function is given by

G(z) =
bmzm + bm�1zm�1 + � � �+ b1z + b0
zn + an�1zn�1 + � � �+ a1z + a0

(1.17)

For multi-input multi-output systems withr inputs andp outputs, transfer func-
tions are matrices of orderp � r whose entries are the corresponding transfer
functions from theith system input to thejth system output,i = 1; 2; :::; r;
j = 1; 2; :::; p; that is

G(s) =

266664
G11(s) G12(s) . . . . . . G1r(s)

G21(s) . . . . . . . . . . . .

. . . . . . Gji(s) . . . . . .

. . . . . . . . . . . . . . .

Gp1(s) . . . . . . . . . Gpr(s)

377775
p�r

(1.18)

Recall from basic circuits courses that while findingGji(s) = Yj(s)=Ui(s) all
other system inputs except forUi(s) must be set to zero. Similarly, the discrete-
time transfer function of a multi-input multi-output, time invariant, system is
given by

G(z) =

266664
G11(z) G12(z) . . . . . . G1r(z)

G21(z) . . . . . . . . . . . .

. . . . . . Gji(z) . . . . . .

. . . . . . . . . . . . . . .

Gp1(z) . . . . . . . . . Gpr(z)

377775
p�r

(1.19)

More will be said about the transfer function of multi-input multi-output systems
in Chapter 2.

Since each entry in the matrix transfer functions given in (1.18) and (1.19) is a
ratio of two polynomials with complex numbers, it is obvious that for higher-order
systems the required calculations in the frequency domain are mathematically
very involved so that the state space system representation is simpler than the
corresponding frequency domain representation. In addition, since the state space
method is based on linear algebra, for which numerous efficient mathematical
methods have already been developed, the state space method is also more
convenient from the computational point of view than the frequency domain
method. However, the importance of the frequency domain representation lies in
the simplicity of presenting some basic concepts, and hence it very often gives
a better understanding of the actual physical phenomena occurring within the
system.
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1.4 Mathematical Modeling of Real Physical Systems

Mathematical modeling of real-world physical systems is based on the application
of known physical laws to the given systems, which leads to mathematical
equations describing the behavior of systems under consideration. The equations
obtained are either algebraic, ordinary differential or partial differential. Systems
described by algebraic equations are of no interest for this course since they
represent static phenomena. Dynamic systems mathematically described by
partial differential equations are known as systems with distributed parameters.
The study of distributed parameter systems is beyond the scope of this book.
Thus, we will consider only systems described by ordinary differential equations.
Thesesystems are also known as systems with lumped (concentrated) parameters.
Even the lumped parameter systems are, in general, too difficult from the point of
view of solving the general control problem described in Section 1.1, so that we
have to limit our attention to lumped parameter systems described by linear time
invariant differential equations. Fortunately, many control systems do have this
form. Even more, control systems described by nonlinear differential equations
can very often be linearized in the neighborhood of their nominal (operating)
trajectories and controls assuming that these quantities are known, which is very
often the case, so that nonlinear systems can be studied as linear ones. The
linearization procedure will be independently considered in Section 1.6.

In the following the modeling procedure is demonstrated on a simple RLC
electrical network given in Figure 1.4. Assume that the initial values for the

eoei

L R1

R2 C

i1

i2 i3

Figure 1.4: An RLC network
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inductor current and capacitor voltage are zero. Applying the basic circuit laws
(Thomas and Rosa, 1994) for voltages and currents, we get

ei(t) = L
di1(t)

dt
+R1i1(t) + e0(t) (1.20)

e0(t) = R2i2(t) =
1

C

tZ
0

i3(�)d� ) i3 = C
de0(t)

dt
(1.21)

i1(t) = i2(t) + i3(t) (1.22)

Using (1.21) in (1.22) produces

i1(t) =
1

R2
e0(t) +C

de0(t)

dt
(1.23)

Taking the derivative of (1.23) and combining (1.20) and (1.23), we obtain the
desired second-order differential equation, which relates the input and output of
the system, and represents a mathematical model of the circuit given in Figure 1.4

d2e0(t)

dt2
+

�
L+R1R2C

R2LC

�
de0(t)

dt
+

�
R1 +R2

R2LC

�
e0(t) =

1

LC
ei(t) (1.24)

Note that in this mathematical modelei(t) represents the system input ande0(t)
is the system output. However, any of the currents and any of the voltages can
play the roles of either input or output variables.

Introducing the following change of variables

x1(t) = eo ) dx1(t)

dt
=

deo(t)

dt
= x2(t)

x2(t) =
deo(t)

dt

u(t) = ei(t)

y(t) = eo(t) ) y(t) = x1(t)

(1.25)

and combining it with (1.24) we get

dx2(t)

dt
+

�
L+R1R2C

R2LC

�
x2(t) +

�
R1 +R2

R2LC

�
x1(t) =

1

LC
u(t) (1.26)
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The first equation in (1.25) and equation (1.26) can be put into matrix form as

�
_x1
_x2

�
=

�
0 1

�R1+R2

R2LC
�L+R1R2C

R2LC

��
x1
x2

�
+

�
0
1
LC

�
u (1.27)

The last equation from (1.25), in matrix form, is written as

y(t) = [1 0 ]

�
x1
x2

�
(1.28)

Equations (1.27) and (1.28) represent the state space form for the system whose
mathematical model is given by (1.24). The corresponding state space matrices
for this system are given by

A =

�
0 1

�R1+R2

R2LC
�L+R1R2C

R2LC

�
; B =

�
0
1
LC

�
; C = [1 0 ]; D = 0 (1.29)

The state space form of a system is not unique. Using another change of variables,
we can get, for the same system, another state space form, which is demonstrated
in Problem 1.1.

The transfer function of this single-input single-output system is easily
obtained by taking the Laplace transform of (1.24), which leads to

G(s) =
Lfe0(t)g
Lfei(t)g =

1
LC

s2 + L+R1R2C
R2LC

s+ R1+R2

R2LC

(1.30)

Note that a systematic approach for getting the state space form from
differential (difference) equations will be given in detail in Chapter 3. In this
chapter we present only the simplest cases. These cases are dictated by system
physical structures described by a set of first- and second-order differential
(difference) equations, which can be put in a straightforward way into matrix
form, which in fact represents the desired state space form.

Another example, which demonstrates how to get a mathematical model for
a real physical system, is taken from mechanical engineering.



16 INTRODUCTION

k k

B2 B1

F2 F1

2 1

m2 m1

y2 y1

Figure 1.5: A translational mechanical system

A translational mechanical system is represented in Figure 1.5. The following
two equations of motion for this system can be written by using the basic laws
of dynamics (Greenwood, 1988)

F1 =m1
d2y1
dt2

+B1

�
dy1
dt
� dy2

dt

�
+ k1(y1 � y2) (1.31)

and

F2 = m2
d2y2
dt2

+B2
dy2
dt

+ k2y2 �B1

�
dy1
dt
� dy2

dt

�
� k1(y1 � y2) (1.32)

It can be seen that this system has two inputs,F1 andF2, and two outputs,y1
andy2. The rearranged form of equations (1.31) and (1.32) is given by

m1
d2y1
dt2

+B1
dy1
dt

+ k1y1 �B1
dy2
dt
� k1y2 = F1 (1.33)

and

�B1
dy1
dt
� k1y1 +m2

d2y2
dt2

+ (B1+B2)
dy2
dt

+ (k1 + k2)y2 = F2 (1.34)

From equations (1.33) and (1.34) the state space form can be obtained easily by
choosing the following state space variables

x1 = y1; x2 =
dy1
dt

; x3 = y2; x4 =
dy2
dt

u1 = F1; u2 = F2

(1.35)
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The state space form of this two-input two-output system is given by2664
_x1
_x2
_x3
_x4

3775 =

2664
0 1 0 0

� k1
m1

�B1

m1

k1
m1

B1

m1

0 0 0 1
k1
m2

B1

m2
�k1+k2

m2
�B1+B2

m2

3775
2664
x1
x2
x3
x4

3775 +

2664
0 0
1
m1

0

0 0

0 1
m2

3775�u1u2
�

(1.36)
and �

y1
y2

�
=

�
1 0 0 0

0 0 1 0

�2664
x1
x2
x3
x4

3775 (1.37)

It is interesting to find the transfer function for this multi-input multi-output
system. Taking the Laplace transforms of (1.33) and (1.34), and assuming that all
initial conditions are equal to zero, we get the scalar transfer functions from each
input to each output. This is obtained by keeping the input under consideration
different from zero and setting the other one to zero, that is

G11(s) =

�
Y1(s)

U1(s)

�
jU2(s)=0

=
m2s

2 + (B1 +B2)s+ (k1 + k2)

a4s4 + a3s3 + a2s2 + a1s+ a0

G12(s) =

�
Y1(s)

U2(s)

�
jU1(s)=0

=
B1s+ k1

a4s4 + a3s3 + a2s2 + a1s+ a0

G21(s) =

�
Y2(s)

U1(s)

�
jU2(s)=0

=
B1s+ k1

a4s4 + a3s3 + a2s2 + a1s+ a0

G22(s) =

�
Y2(s)

U2(s)

�
jU1(s)=0

=
m1s

2 +B1s+ k1
a4s4 + a3s3 + a2s2 + a1s+ a0

(1.38)

where
a4 = m1m2

a3 = B1(m1 +m2) +m1B2

a2 = B1B2+ k1(m1 +m2) + k2m1

a1 = k1B2 + k2B1

a0 = k1k2
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so that the system transfer function is given by

G(s) =

�
G11(s) G12(s)

G21(s) G22(s)

�
(1.39)

Sometimes due to the complexity of dynamic systems it is not possible to
establish mathematical relations describing the dynamical behavior of the systems
under consideration. In those cases one has to use experimentation in order to
get data that can be used in establishing some mathematical relations caused
(induced) by system dynamics. The experimental way of getting system models
is the subject of the area of control systems known assystem identification. More
about system identification can be found in Chapter 10. A classic textbook on
system identification is given in the list of references (Ljung, 1987).

The reader particularly interested in mathematical modelling of real physical
systems is referred to Wellstead (1979) and Kecman (1988).

1.5 Models of Some Control Systems
In this section we consider the modeling of two common physical control systems.
In that direction modeling of an inverted pendulum and a complex electrical
network is presented. Mathematical models of a DC motor will be derived in
Section 2.2.1. DC motors are integral parts of several control system schemes.
Mathematical models of many other interesting control systems can be found in
Wellstead (1979), Kecman (1988), and Dorf (1992).

Inverted Pendulum

The inverted pendulum is a familiar dynamic system used very often in
textbooks (Kwakernaak and Sivan, 1972; Kamen, 1990). Here, we follow
derivations of Kecman (1988) for an idealized pendulum of lengthl whose
mass,m1, is concentrated at its end. It is assumed that a cart of massm2

is subjected to an external forceF , which, as a control variable, has to keep the
pendulum upright. Cart displacement is denoted byx andpendulum displacement
is represented by angle� (seeFigure 1.6).

Using elementary knowledge from college physics (see for example Serway
1992), the equation of motion for translation in the direction ofx axis is obtained
by applying Newton’s law

m2
d2x(t)

dt2
+m1

d2(x+ l sin �)

dt2
= F (1.40)
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F

A

l

0
x

θ

xy

m1g

m2

l sin

m1gsinθ

lcosθ

θ

Figure 1.6: Inverted pendulum

The conservation of momentum equation with respect to rotation about point A
implies

m1l cos �
d2

dt2
(x + l sin �)�m1l sin �

d2

dt2
(l cos �) = m1gl sin � (1.41)

whereg = 9:8m=s2 is the gravitational constant. Bearing in mind that

d

dt
sin � = cos �

d�

dt
;

d

dt
cos � = � sin �

d�

dt

d2

dt2
sin � = � sin �

�
d�

dt

�2

+ cos �
d2�

dt2

d2

dt2
cos � = � cos �

�
d�

dt

�2

� sin �
d2�

dt2

(1.42)

we get a system of two second-order differential equations

(m1 +m2)
d2x

dt2
�m1l sin �

�
d�

dt

�2

+m1l cos �
d2�

dt2
= F

cos �
d2x

dt2
+ l

d2�

dt2
= g sin �

(1.43)
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Equations (1.43) represent the desired mathematical model of an inverted pen-
dulum.

Complex Electrical Network

Complex electrical networks are obtained by connecting basic electrical
elements: resistors, inductors, capacitors (passive elements) and voltage and
current sources (active elements). Of course, other electrical engineering elements
like diodes and transistors can be present, but since in this course we study only
the linear time invariant networks and since this textbook is intended for all
engineering students we will limit our attention to basic electrical elements. The
complexity of the network will be manifested by a large number of passive and
active elements and large number of loops. Such a network is represented in
Figure 1.7.

ei

L3L1 L2R1 R4

R2 R3 C2C1

i1 i2 i4i3

vC1
vC2

+ + +

Figure 1.7: Complex electrical network

In electrical networks composed of inductors and capacitorsthe total number
of inductors and capacitors indicates the order of the dynamic system. In this
particular example, we have three inductors and two capacitors, i.e. the order
of this dynamical system isn = 5. Having a dynamic system of ordern = 5

indicates that the required number of first-order differential equations to be set
is five. If one sets more thann differential equations, for a system of ordern,
some of them are redundant. Redundant equations have to be eliminated since
they do not carry any new information; they are just linear combinations of the
remainingequations. Using basic laws for currents and voltages, we can easily
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set up five first-order differential equations; for voltages around loops

ei �L1
di1
dt
�R1i1 � vc1 = 0

L2
di2
dt
� vc1 +R2(i2 � i3) = 0

L3
di3
dt

+R3(i3� i4)�R2(i2 � i3) = 0

(1.44)

and for currents

i1 � i2 �C1
dvc1
dt

= 0

i4 �C2
dvc2
dt

= 0

(1.45)

We have set up five equations for four currents and two voltages. Currenti4 can
be eliminated by using the following algebraic voltage balance equation, which
is valid for the last loop

R3(i3� i4) = R4i4 + vc2 (1.46)

from which the currenti4 can be expressed as

i4 =
R3

R3 +R4
i3 � 1

R3 +R4
vc2 (1.47)

Replacing currenti4 in (1.44) and (1.45) by the expression obtained in (1.47),
the following five first-order differential equations are obtained

di1
dt

= �R1

L1
i1 � 1

L1
vc1 +

1

L1
ei

di2
dt

= �R2

L2
i2 +

R2

L3
i3 +

1

L2
vc1

di3
dt

=
R2

L3
i2 � R2R3 +R2R4+R3R4

L3(R3+R4)
i3 � R3

L3(R3+R4)
vc2

dvc1
dt

=
1

C1
i1 � 1

C1
i2

dvc2
dt

=
R3

C2(R3 +R4)
i3 � 1

C2(R3+R4)
vc2

(1.48)
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The matrix form of this system of first-order differential equations represents the
system state space form. Takex1 = i1; x2 = i2; x3 = i3; x4 = vc1 ; x5 = vc2 ;

u = ei, then the state space form is given by

266664
_x1
_x2
_x3
_x4
_x5

377775 =

2666664
�R1

L1
0 0 � 1

L1
0

0 �R2

L2

R2

L2

1
L2

0

0 R2

L3
a33 0 � R3

L3(R3+R4)
1
C1

� 1
C1

0 0 0

0 0 R3

C2(R3+R4)
0 � 1

C2(R3+R4)

3777775
266664
x1
x2
x3
x4
x5

377775 +
266664

1
L1

0

0

0

0

377775u
(1.49)

wherea33 = �R2R3+R2R4+R3R4

L3(R3+R4)
.

Note that while modeling electrical networks, it is advisable to use the
currents through inductors and the voltages on capacitors for the state space
variables, which, in fact, is done in this example.

We would like to point out that in this chapter we have presented only
modeling and mathematical models for continuous-time real dynamic physical
systems. The reason for this is twofold: (1) there are no real-world discrete-
time physical dynamic systems; (2) discrete-time models obtained from social,
economic, hydrological, and meteorological sciences are usually of no interest to
control engineers. However, discrete-time models obtained by discretization of
continuous-time systems will be treated in detail in Chapter 3.

1.6 Linearization of Nonlinear Systems

We have mentioned before that in this book we study only time invariant linear
control systems and that the study of nonlinear control systems is rather difficult.
However, in some cases it is possible to linearize nonlinear control systems
and study them as linear ones. In this section we show how to perform
linearization of control systems described by nonlinear differential equations.
The procedure introduced is based on the Taylor series expansion and on the
knowledge of nominal (operating) system trajectories and nominal control inputs.
Readers particularly interested in the study of nonlinear systems are referred to
a comprehensive book by Khalil (1992).
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We will start with a simple scalar first-order nonlinear dynamic system
represented by

_x(t) = f(x(t); u(t)) (1.50)

Assume that under usual working circumstances this system operates along the
trajectoryxn(t) while it is driven by the control inputun(t). We callxn(t) and
un(t), respectively, thenominalsystem trajectoryand thenominal control input.
On the nominal trajectory the following differential equation is satisfied

_xn(t) = f(xn(t); un(t)) (1.51)

Now assume that the motion of the nonlinear system (1.50) is in the neighborhood
of the nominal system trajectory and that the distance from the nominal trajectory
is small, that is

x(t) = xn(t) + �x(t) (1.52)

where�x(t) represents a small quantity. It is natural to assume that the system
motion in close proximity to the nominal trajectory will be sustained by a control
input which is obtained by adding a small quantity to the nominal control input,
that is

u(t) = un(t) + �u(t) (1.53)

For the system motion in close proximity to the nominal trajectory, from equations
(1.50), (1.52), and (1.53), we have

_xn(t) + � _x(t) = f(xn(t) + �x(t); un(t) +�u(t)) (1.54)

Since�x(t) and�u(t) are small quantities, the right-hand side of (1.54) can
be expanded into a Taylor series about the nominal trajectory and control, which
produces

_xn(t) + � _x(t) = f(xn(t); un(t)) +
@f

@x
(xn; un)�x(t) +

@f

@u
(xn; un)�u(t)

+ higher�order terms
(1.55)
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Using (1.51) and canceling higher-order terms (which contain very small quan-
tities �x2;�u2;�x�u;�x3; :::), the following linear differential equation is
obtained

� _x(t) =
@f

@x
(xn; un)�x(t) +

@f

@u
(xn; un)�u(t) (1.56)

whose solution represents a valid approximation for�x(t). Note that thepartial
derivatives in the linearization procedure are evaluated at the nominal points.
Introducing the notation

a0(t) = �@f

@x
(xn; un); b0 =

@f

@u
(xn; un) (1.57)

the linear system (1.56) can be represented as

� _x(t) + a0(t)�x(t) = b0(t)�u(t) (1.58)

In general, the obtained linear system is time varying. Since in this course we
study only time invariant systems, we will consider only those examples for
which the linearization procedure produces time invariant systems. It remains to
find the initial condition for the linearized system, which can be obtained from
(1.52) as

�x(t0) = x(t0)� xn(t0) (1.59)

Similarly, we can linearize the second-order nonlinear dynamic system

�x = f(x; _x; u; _u) (1.60)

by assuming that

x(t) = xn(t) + �x(t); _x(t) = _xn(t) +� _x(t)

u(t) = un(t) + �u(t); _u(t) = _un(t) +� _u(t)
(1.61)

and expanding

�xn +��x = f(xn +�xn; _xn +� _x; un +�u; _un +� _u) (1.62)

into a Taylor series about nominal pointsxn; _xn; un; _un, which leads to

��x(t) + a1� _x(t) + a0�x(t) = b1� _u(t) + b0�u(t) (1.63)
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where the corresponding coefficients are evaluated at the nominal points as

a1 = �@f

@ _x
(xn; _xn; un; _un); a0 = �@f

@x
(xn; _xn; un; _un)

b1 =
@f

@ _u
(xn; _xn; un; _un); b0 =

@f

@u
(xn; _xn; un; _un)

(1.64)

The initial conditions for the second-order linearized system are easily obtained
from (1.61)

�x(t0) = x(t0)� xn(t0); � _x(t0) = _x(t0)� _xn(t0) (1.65)

Example 1.1: The mathematical model of a stick-balancing problem is given
in Sontag (1990) by

�� = sin � � u cos � = f(�; u)

whereu is the horizontal force of a finger and� represents the stick’s angular
displacement from the vertical. This second-order dynamic system is linearized
at the nominal points (_�n(t) = �n(t) = 0; un(t) = 0) by using formulas (1.64),
which produces

a1 = �@f

@ _�
= 0; a0 = �

�
@f

@�

�
jn
= �(cos � + u sin �)j �n(t)=0

un(t)=0

= �1

b1 =
@f

@ _u
= 0; b0 =

�
@f

@u

�
jn
= �(cos �)j

�n(t)=0
= �1

The linearized equation is given by

��(t)� �(t) = �u(t)

Note that��(t) = �(t);�u(t) = u(t) since�n(t) = 0; un(t) = 0. It is important
to point out that the same linearized model could have been obtained by setting
sin �(t) � �(t); cos �(t) � 1, which is valid for small values of�(t).

�

Of course, we can extend the presented linearization procedure to ann-order
nonlinear dynamic system with one input and one output in a straightforward
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way. However, for multi-input multi-output systems this procedure becomes
cumbersome. Using the state space model, the linearization procedure for the
multi-input multi-output case is quite simple.

Consider now the general nonlinear dynamic control system in matrix form
represented by

d

dt
x(t) = F(x(t);u(t)) (1.66)

wherex(t), u(t), andF are, respectively, then-dimensional state space vector,
ther-dimensional control vector, and then-dimensional vector function. Assume
that the nominal (operating) system trajectoryxn(t) is known and that the nominal
control that keeps the system on the nominal trajectory is given byun(t). Using
the same logic as for the scalar case, we can assume that the actual system
dynamics in the immediate proximity of the system nominal trajectories can be
approximated by the first terms of the Taylor series. That is, starting with

x(t) = xn(t) + �x(t); u(t) = un(t) + �u(t) (1.67)

and
d

dt
xn(t) = F(xn(t);un(t)) (1.68)

we expand equation (1.66) as follows

d

dt
xn +

d

dt
�x = F(xn +�x;un +�u)

= F(xn;un) +
�
@F
@x

�
jxn(t)

un(t)

�x+

�
@F
@u

�
jxn(t)

un(t)

�u + higher�order terms

(1.69)
Higher-order terms contain at least quadratic quantities of�x and�u. Since
�x and �u are small their squares are even smaller, and hence the higher-
order terms can be neglected. Using (1.67) and neglecting higher-order terms,
an approximation is obtained

d

dt
�x(t) =

�
@F
@x

�
jxn(t)

un(t)

�x(t) +

�
@F
@u

�
jxn(t)

un(t)

�u(t) (1.70)
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Partial derivatives in (1.70) represent the Jacobian matrices given by

�
@F
@x

�
jxn(t)

un(t)

= An�n =

266664
@F1

@x1
@F1

@x2
. . . . . . @F1

@xn
@F2

@x1
. . . . . . . . . @F2

@xn

. . . . . . @Fi

@xj
. . . . . .

. . . . . . . . . . . . . . .
@Fn

@x1
@Fn

@x2
. . . . . . @Fn

@xn

377775
jxn(t)

un(t)

(1.71a)

�
@F
@u

�
jxn(t)

un(t)

= Bn�r =

266664
@F1

@u1
@F1

@u2
. . . . . . @F1

@ur
@F2

@u1
. . . . . . . . . @F2

@ur

. . . . . . @Fi

@uj
. . . . . .

. . . . . . . . . . . . . . .
@Fn

@u1
@Fn

@u2
. . . . . . @Fn

@ur

377775
jxn(t)

un(t)

(1.71b)

Note that the Jacobian matrices have to be evaluated at the nominal points, i.e.
at xn(t) andun(t). With this notation, the linearized system (1.70) has the form

d

dt
�x(t) = A�x(t) +B�u(t); �x(t0) = x(t0)� xn(t0) (1.72)

The output of a nonlinear system, in general, satisfies a nonlinear algebraic
equation, that is

y(t) = G(x(t);u(t)) (1.73)

This equation can be also linearized by expanding its right-hand side into a Taylor
series about nominal pointsxn(t) andun(t). This leads to

yn +�y = G(xn;un) +
�
@G
@x

�
jxn(t)

un(t)

�x+

�
@G
@u

�
jxn(t)

un(t)

�u

+ higher�order terms

(1.74)

Note thatyn cancels termG(xn;un). By neglecting higher-order terms in (1.74),
the linearized part of the output equation is given by

�y(t) = C�x(t) +D�u(t) (1.75)
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where the Jacobian matricesC andD satisfy

Cp�n =

�
@G
@x

�
jxn(t)

un(t)

=

266664
@G1

@x1
@G1

@x2
. . . . . . @G1

@xn
@G2

@x1
. . . . . . . . . @G2

@xn

. . . . . . @Gi
@xj

. . . . . .

. . . . . . . . . . . . . . .
@Gp
@x1

@Gp
@x2

. . . . . . @Gp
@xn

377775
jxn(t)

un(t)

(1.76a)

Dp�r =

�
@G
@u

�
jxn(t)

un(t)

=

266664
@G1

@u1
@G1

@u2
. . . . . . @G1

@ur
@G2

@u1
. . . . . . . . . @G2

@ur

. . . . . . @Gi
@uj

. . . . . .

. . . . . . . . . . . . . . .
@Gp
@u1

@Gp
@u2

. . . . . . @Gp
@ur

377775
jxn(t)

un(t)

(1.76b)

Example 1.2: Let a nonlinear system be represented by
dx1
dt

= x1 sin x2 + x2u

dx2
dt

= x1e
�x2 + u2

y = 2x1x2 + x22

Assume that the values for the system nominal trajectories and control are known
and given byx1n; x2n; andun. The linearized state space equation of the above
nonlinear system is obtained as�

� _x1(t)

� _x2(t)

�
=

�
sinx2n x1n cosx2n + un
e�x2n �x1ne

�x2n

��
�x1(t)

�x2(t)

�
+

�
x2n
2un

�
�u(t)

�y(t) = [2x2n 2x1n +2x2n ]

�
�x1(t)

�x2(t)

�
+ 0�u(t)

Having obtained the solution of this linearized system under the given control
input�u(t), the corresponding approximation of the nonlinear system trajectories
is

xn(t) + �x(t) =

�
x1n(t)

x2n(t)

�
+

�
�x1(t)

�x2(t)

�
�
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Example 1.3: Consider the mathematical model of a single-link robotic
manipulator with a flexible joint (Spong and Vidyasagar, 1989)

I ��1 +mgl sin �1 + k(�1 � �2) = 0

J ��2 � k(�1 � �2) = u

where �1; �2 are angular positions,I; J are moments of inertia,m and l are,
respectively, the link’s mass and length, andk is the link’s spring constant.
Introducing the change of variables as

x1 = �1; x2 = _�1; x3 = �2; x4 = _�2

the manipulator’s state space nonlinear model equivalent to (1.66) is given by

_x1 = x2

_x2 = �mgl

I
sinx1 � k

I
(x1 � x3)

_x3 = x4

_x4 =
k

J
(x1 � x3) +

1

J
u

Take the nominal points as(x1n; x2n; x3n; x4n; un), then the matricesA andB
defined in (1.71) are given by

A =

2664
0 1 0 0

�k+mgl cos x1n
I 0 k

I 0

0 0 0 1
k
J 0 � k

J 0

3775; B =

2664
0

0

0
1
J

3775
In Spong (1995) the following numerical values are used for system parameters:
mgl = 5; I = J = 1; k = 0:08.

Assuming that the output variable is equal to the link’s angular position,
that is

y = x1

the matricesC andD, defined in (1.76), are given by

C = [1 0 0 0 ]; D = 0

�
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In the next example, we give state space matrices for two linearized models
of an F-15 aircraft obtained by linearizing nonlinear equations for two sets of
operating points.

Example 1.4: F-15 Aircraft

The longitudinal dynamics of an F-15 aircraft can be represented by a
fourth-order mathematical model. For two operating conditions (subsonic and
supersonic) two linear mathematical models have been derived (Brumbaugh,
1994; Schomiget al., 1995). The corresponding state space models are given by2664

_x1
_x2
_x3
_x4

3775 =

2664
�0:00819 �25:70839 0 �32:17095
�0:00019 �1:27626 1:0000 0

0:00069 1:02176 �2:40523 0

0 0 1:0000 0

3775
2664
x1
x2
x3
x4

3775

+

2664
�6:80939
�0:14968
�14:06111

0

3775u; y = x

for subsonic flight conditions, and2664
_x1
_x2
_x3
_x4

3775 =

2664
�0:01172 �95:91071 0 �32:11294
�0:00011 �1:87942 1:0000 0

0:00056 �3:61627 �3:44478 0

0 0 1:0000 0

3775
2664
x1
x2
x3
x4

3775

+

2664
�25:40405
�0:22042
�53:42460

0

3775u; y = x

for supersonic flight conditions.

Model derivations are beyond the scope of this book. The state space
variables represent:x1(t)—velocity in feet per second,x2(t)—angle of attack
in radians,x3(t)—pitch rate in radians per second, andx4(t)—pitch attitude in
radians. The control inputu(t) represents the elevator control in radians.

�
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Linearization of an Inverted Pendulum

Sometimesis not necessary to go through the entire linearization procedure.
It is possible to simplify and linearize mathematical equations describing a given
dynamic system by using simple mathematics. This will be demonstrated on an
example of the inverted pendulum considered in Section 1.5. A linearized model
of the inverted pendulum can be obtained from equations (1.43) by assuming that
in the normal operating position (pendulum in an upright position) the pendulum
displacement� is very small so that the following approximations are valid
sin �(t) � �(t); cos �(t) � 1; �(t)(d�(t)=dt)2 � 0; 8t. Then, from (1.43), the
linearized model of the inverted pendulum is obtained as

(m1 +m2)
d2x

dt2
+m1l

d2�

dt2
= F

d2x

dt2
+ l

d2�

dt2
= g�

(1.77)

This model can easily be put in the state space form equivalent to (1.14) by
introducing the following change of variables

x1 = x ) _x1 = x2

x2 =
dx

dt
= _x

x3 = � ) _x3 = x4

x4 =
d�

dt
u = F

(1.78)

With this change of variables equations (1.77) imply

_x2 = �m1g

m2
x3 +

1

m2
u

_x4 =
(m1 +m2)g

m2l
x3 � 1

m2l
u

(1.79)

From (1.78) and (1.79) the state space form of the inverted pendulum is given by2664
_x1
_x2
_x3
_x4

3775 =

2664
0 1 0 0

0 0 �m1g
m2

0

0 0 0 1

0 0 (m1+m2)g
m2l

0

3775
2664
x1
x2
x3
x4

3775 +

2664
0
1
m2

0

� 1
m2l

3775u (1.80)
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The output equation can be chosen such that it gives information about the cart’s
horizontal displacementx1 and the link’s angular positionx3. In that case a
possible choice for the output equation is

y = [1 0 1 0 ]x (1.81)

The same state variables will appear directly on the output if the following output
equations are used

y =

�
1 0 0 0

0 0 1 0

�
x (1.82)

y =

�
0 0 1 0

1 0 0 0

�
x (1.83)

The main difference between (1.81) and (1.82)–(1.83) is that in output equations
(1.82) and (1.83) we have two channels, each of which independently produces
information about the particular state variable.

Finally, we would like to point out that the SIMULINK package is very
convenient for simulation of nonlinear systems. It can also be used to obtain
linearized models of nonlinear systems around given operating points (nominal
system trajectories and controls).

1.7 MATLAB Computer Analysis and Design

MATLAB is a very advanced and reliable computer package, which can be used
for computer-aided control system analysis and design. In addition to handling
standard linear algebra problems, it has several specialized control theory and
application toolboxes. One of them, the CONTROL toolbox, will be extensively
used in this book. At some places in the book we also refer to the SIMULINK
package, which is very convenient for simulation (finding system responses due to
given inputs) of linear and nonlinear systems. MATLAB is user friendly. It takes
only a few hours to master all of its functions. MATLAB will help students obtain
a deeper understanding of the main control theory concepts and techniques, and
to study higher-order real physical control systems, which would be impossible
using only pencil and paper. Many MATLAB problems, laboratory experiments,
and case studies will be encountered in this book. More about MATLAB and its
CONTROL toolbox can be found in Appendix D.
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1.8 Book Organization

This book has two parts: Part I, titledMethods and Concepts, Chapters 2–5,
and Part II, titledAnalysis and Design, Chapters 6–9. In the first part of the
book, in Chapters 2 and 3, two main techniques of control theory—the transfer
function approach and the state space method—are discussed in detail. In Chapter
4 we consider the concepts of system controllability and observability, and in
Chapter 5 the stability concept of time-invariant continuous and discrete systems
is presented.

In this introductory chapter we have defined the general control problem.
The main control system characteristics and control objectives will be presented
in the second part of this book starting with Chapter 6. In Chapter 6, the control
system specifications relating to a system’s transient behavior and steady state
properties will be considered. Since the emphasis in this book is on the time
domain controller design (based on the root locus technique), the corresponding
technique is presented in detail in Chapter 7. Design of controllers that solve
specific control problems will be presented in Chapters 8 and 9. In Chapter 10 we
give an overview of modern control theory, which can serve as an introduction
for further studies of control theory and its applications. The presentation of
Chapter 10 to undergraduate students can either be completely omitted or even
expanded at schools that have strong programs in control systems.
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1.10 Problems

1.1 Find the state space form for the electrical circuit whose mathematical model
is given in (1.20)–(1.22) by taking for the state space variables the input
current and output voltage, i.e. by choosingx1 = i1; x2 = eo. In addition,
take y = x2 and u = ei.
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1.2 Find a mathematical model for the inverted pendulum, assuming that its
mass is concentrated at the center of gravity, and linearize the obtained
nonlinear system at_�n(t) = �n(t) = _xn(t) = xn(t) = 0 (Kwakernaak and
Sivan, 1972; Lewis, 1992). Compare the linear model obtained with model
(1.80) derived under the assumption that the pendulum mass is concentrated
at its end.

1.3 Verify the expressions given in (1.38) for the transfer function of a two-input
two-output translational mechanical system.

1.4 Find the mathematical model, transfer function, and state space form of the
electrical network given in Figure 1.8.

vi

uC2

uC1

iL1

L1
R2

R1

R4R3 vo

C2

C1

+
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+

+

Figure 1.8: An electrical network

1.5 Linearize a scalar system represented by the first-order differential equation

dx(t)

dt
= x(t)u(t)e�u(t); x(0) = 0:9

at a nominal point given by(xn(t); un(t)) = (1; 0).

1.6 Consider a nonlinear continuous-time system given by

d2x(t)

dt2
= �2dx(t)

dt
cos u(t)�(1 + u(t))x(t)+1; x(0) = 1:1;

dx(0)

dt
= 0:1

Derive its linearized equation with respect to a nominal point defined
by (xn(t); un(t)) = (1; 0). Find the linearized system response due to
�u(t) = e�2t.
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1.7 For a nonlinear system

d2x(t)

dt2
+2

dx(t)

dt
u(t)+(1� u(t))x(t) = u2(t)+1; x(0) = 0;

dx(0)

dt
= 1

find the nominal system response on the nominal system trajectory defined
by un(t) = 1, subject toxn(0) = 0 and dxn(0)=dt = 1:1. Find the
linearized state space equation and its initial conditions.

1.8 The mathematical model of a simple pendulum is given by (see for example
Kamen, 1990)

I
d2�

dt2
+mgl sin � = lu(t); �(t0) = �0; _�(t0) = !0

whereI is the moment of inertia,l;m are pendulum length and mass, re-
spectively, andu(t) is an external tangential force. Assume that�n(t) = 0;

un(t) = 0; �n(t0) = 0; _�n(t0) = 0; and�0; !0 are small. Find the linearized
equation for this pendulum by using formulas (1.64). Determine the initial
conditions.

1.9 Linearize the given system at a nominal point(x1n; x2n; x3n) = (0; 1; 1)

_x1 = x1x2 � sinx1

_x2 = 1� 3x2e
�x1

_x3 = x1x2x3

1.10 Linearize a nonlinear control system represented by

_x1 = u lnx1 + x2e
�u

_x2 = x1 sinu� sinx2

y = sinx1

Assumethatx1n; x2n; andun are known. Find the transfer function of the
linearized model obtained.

1.11 Linearize the Volterra predator–prey mathematical model

_x1 = �x1 + x1x2

_x2 = x2 � x1x2

at a nominal point given by(x1n; x2n) = (0; 0).
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1.12 A linearized model of a single-link manipulator with a flexible joint is given
by (Spong and Vidyasagar, 1989)

Jl��l +Bl
_�l + k(�l � �m) = 0

Jm��m +Bm
_�m � k(�l � �m) = u(t)

where Jl; Jm are moments of inertia,Bl; Bm are damping factors,k is
the spring constant,u(t) is the input torque, and�m(t); �l(t) are angular
positions. Write the state space form for this manipulator by taking the
following change of variables:x1 = �l; x2 = _�l; x3 = �m; x4 = _�m.

Remark: Note that the SIMULINK package can be used for linearization of
nonlinear systems. Students may check most of the linearization problems given
in this section by using thelinmod function of SIMULINK.


