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Preface

Thisbook is intended for engineers, mathematicians, physicists, and com-
puter scientists interested in control theory and its applications. The book
studies a special class of linear and bilinear control systems known as
weakly coupled systems. These systems, characterized by the presence of
weak coupling among subsystems, describe dynamics of many real phys-
ical systems such as chemical plants, power systems, aircraft, satellites,
machines, cars, computer/communication networks.

Weakly coupled control systems have become an extensive research
area since the end of the 1960s when the origina papers of Professor
Kokotovic and his coworkers and graduate students were published. A
relatively large number of journal papers on weakly coupled control
systems were published during the 1970s, 1980s, and 1990s. The
approaches taken during the 1970s and 1980s were based on expansion
methods (power series, asymptotic expansions, Taylor series). These
approaches were in most cases accurate only with an O (€?) accuracy,
where ¢ is a small weak coupling parameter. Generating higher order
expansions for those methods has been analytically cumbersome and
numerically inefficient, especially for higher dimensional control systems.
Even more, it has been demonstrated in the control literature that for some
applications the O (62) accuracy either isnot satisfactory or even in some
cases has not solved considered weakly coupled control problems.

The development of high accuracy efficient techniques for weakly
coupled control systems started at the end of the 1980s in the papers
by Professor Ggjic and his graduate students and coworkers. The cor-
responding approach was recursive in nature and based on fixed-point
iterations. At the beginning of the 1990s, the fixed-point recursive ap-
proach culminated in the so-called Hamiltonian approach for the exact
decomposition of weakly coupled, linear-quadratic, deterministic and sto-
chastic, optimal control and filtering problems. In the 2000s Professor
Kecman developed the generalized Hamiltionian approach based on the
eigenvector method. At the same time, Professor Mukaidani and his



coworkers discovered a new approach for studying various formulations
of optimal linear weakly coupled contral systems.

This book represents a comprehensive overview of the current state
of knowledge of both the recursive approach and the Hamiltonian ap-
proach to weakly coupled linear and bilinear optimal control systems.
The book devises unique powerful methods whose core results are re-
peated and slightly modified over and over again, while the methods
solve more and more challenging problems of linear and bilinear weakly
coupled optimal continuous- and discrete-time systems. It should be
pointed out that some related problems still remain unsolved, especially
corresponding problems in the discrete-time domain, and the optimiza-
tion problems over a finite horizon. Such problems are identified in the
book as open problems for future research.

The presentation is based on the research work of the authors and
their coworkers. The book presents a unified theme about the exact
decoupling of the corresponding optimal control problems and decoupling
of the nonlinear algebraic Riccati equation into independent, reduced-
order, subsystem-based algebraic Riccati equations.

Each chapter is organized to represent an independent entity so that
readers interested in a particular class of linear and bilinear weakly cou-
pled control systems can find complete information within the particul ar
chapter. The book demonstrates theoretical results on many practical
applications using examples from aerospace, chemical, electrical, and
automotive industries. To that end, we apply theoretical results obtained
to optimal control and filtering problems represented by real mathemati-
cal models of aircraft, power systems, chemical reactors, and so on.

The authors are thankful for support and contributions from their
colleagues, Professors S. Bingulac, H. Mukaidani, D. Petkovski, B.
Petrovi€, N. Prljaca, and X. Shen, and Drs. Z. Aganovi€, D. Arnautovic,
I. Borno, Y-J. Kim, M. Qureshi and V. Radisavljevit.

Zoran Gajit
Myo-Taeg Lim
Dobrila Skatari€¢
Wu-Chung Su
\Vojidav Kecman
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