Sample Exam 1: Solutions

#1a) The homogeneous solution is obtained from

dy, (t .
y('j‘t()+2yh(t)=0 —~ y,(t)=Ce?

The particular solution satisfies

dy, (t)

+2y,)=3 = y, ()=«

Plugging this solution into the differential equation implies « =1.5 so that y t)=15
The system response is given by
yt)=y,(t)+y,(t)=Ce™ +15
Its initial condition produces
y(0)=4=y,(0)+y,(0)=C+15 = C=25 = y,(t)=25e"
Hence, the system response is
yt) =y, @) +y, () =25 +15
The system zero-state response satisfies

%uym(t):a V. (0)=0, 120

The solution of this differential equation is sought in the form
Yas (t) = y?s (t) + yzps (t)
The particular component of the zero-state response is given by
dy: (1)
dt
The homogenous component of the system zero-state response is given by y?s =
condition produces
Y, (0)=0=y"(0)+y2(0)=p+15 = p=-15 = yi(t)=-15e* = vy, (t)=15-15"2
The zero-input response satisfies
dyzi (t)
t

+2yP (1) =3 = yR(t)=a=15

2 The zero initial

d—+2yZi(t)=0 Vi (0)=4 = 3/zi(t)=749_2t

Using the zero-input response initial condition we get y, (0)=4=y = vy, (t)=4e™
Note that

Vi) + Vo (1) =15+ 2.5 = y(t) =y, (t) + Y, (1)
#1b) The linearity principle requires that the initial conditions are set to zero. In that case

Y, (t) =%(1.5 —1.5e " )u(t) +%(1.5 ~1.5e 2 u(t - 2) =%(1— e ?)u(t) + %(1— e 2 yu(t-2)

#2a)
(i) e '5(t-2)=e05(t-2)

+o0
() [(t+20(-085)dt=(t+2),, =25
(i)  The delta impulse signal is located at t =2, outside of the integration limits, and the integral is equal to 0.

(iv) The delta impulse signal is located exactly at the upper integration bound (need a factor of 0.5)



5
I e >t cos(t —5)5(t —5)dt = %e‘a coS(t ~5);,_5 = %e‘ZS
5

#2b) The signal is given by

-, t<-2
-t+1, -2<t<-1
X(t) = + <t<
2, -1<t<?2
1, t>2
The generalized derivative is
-1, t<-2
o(t+1), t=-2
b -1, -2<t<-1
ﬂ: undefined, t=-1
Dt
0, -1<t<?2
-o(t+1), t=2
0, t>2
#3a) Notethat T =2, 0y =27 /T =rx
TI2
== j £ (©) sin(napt)dt = = jlsln(nwot)dt+ j 2$|n(na)0t)dt_——(1 cos(n;z))——(cos(n;r) 1)
7T/2
=—(1—(—1)”),
2Nz
1 T/2
an=? If(t)cos(na)ot)dt— chos(na)ot)dt+—chos(nw0t)dt——(S|n(n7r))+—(sm(n;r)) 0, n=123,..
-T/2
2 T/2
8= J'f(t)dt_—(jdujzdt) 3
-T/2
The Fourier series are given by
3 - . S
x(t):7°+n2:1:bn sm(na)ot)_ 2:1: sm(27znt)
#3b)
1 .
H(jo) = IH(Jw)Iarg{H(Jw)} |H(jo)| = . arg{H (jo)}=—tan (o)
V1+ w?
. . . J1-(-1 . . a, 3
X (10) =052, ~ o) =080, =~ "D~ (ja]arglX, (o)), =123 Xo=0=3

T
. - =1
arg{X , (jnwg)} =17 "N=L30

j —»_JE_. _(_1\" _ 3
0. n=024, |Xn(la’)|—4nﬂ(l (-D"), n=123., |X,



The system output is periodic with the same period as the input signal and represented by the Fourier series with
Y(inwy) =H(jnwy,) X, (ine,)

. . . 1-(-1)" 27
Vo (inwp)| = H (ine )| X, (iney)| = s =12, oy="—=x Yy=[HO)|X,|==
+n27[2 inrz T
: -2 n=135
arg{Y (inwo} =arg{H (jnwo}+arg{X,(inwp}=-tan " (nz) +arg{X ,(jnz}=4 o' ~ 777
0, n=024,..

The output signal is given by

Y(t) = Yo +2)_ [V, (inap)|cos(negt + arg{Y, (iney)})
n=1
#3c)

() ™= - gre = [ : ]=—j b

4+ 0P (4+0%)?
- -2t 1 L 1 !
(i) e uh(t)(_)m = e Uh(t)COS(t)H [2+ j(a)+1) 2+ j(o- 1)]

(iii) pz(t)HZSinc(gj = pz(st)ezsinc[ﬂjzxuw)
3 3z

J.p2(3r)dr<—>JiX(Ja))+7z§(a))X(O)——(—Slnc[3 )+7r5(a)) )

—0

(iv) uh(t)<—>_i+7r6(a)) = uh(t—2)<—>e‘12”(_i+7r5(a)))
Jo jo

#3d)

0.5 (ej2w+e—j2a:)e—j5w :ﬂe_js‘” +£e‘j7“’

1+ jo 1+ jo 1+ jo

! cos(2w)e 1% =
(i) 1“’
o3 (e Dy, (t-3)+e "u, (t-7))

(if)  Using duality we have
p, (1) ersinc(ﬂj = 27 —p, (o) = rsmc(t ](—)274),( @) =27, (@)
2 T 2
rsinc(t—TJ © 2P, (—a))‘T:6 = pglw) eisinc(ﬁj = psl0-2)e isinc[gje j2t
2r |r=6 V4 V4 V4 V4

Another way to solve the same problem uses the definition of the inverse Fourier transform

§ 1= i 1S T, st gty % s
FHps0-2}=-| pe(w—z)e'”‘dw=ije'”‘dm—zjﬂt(eJS‘—e M= € e

j2t )
— & sin(3n) = isinc(gje 2t
at V4 V4



Sample Exam 2: Solutions

#1) We use the time invariance principle and first find the solution to

di’f) Ly(t) =sin(t), y(0)=0, t>0
At the end we will shift the solution obtained by 3 time units. The homogeneous solution is obtained from
dy, (1) _
(;t +y,()=0 = y,()=Ce”
The particular solution satisfies
dy, (t) : .
" +y, () =sint) = vy, (t)=asin(t)+ Bcos(t)

Plugging this solution into the differential equation implies & = 0.5and £ = —0.5so0 that the particular solution is
given by

Y, (t) =0.5sin(t) —0.5cos(t)
The system response is given by

y(t) =y, (t) +y, (t) = Ce™ +0.5sin(t) — 0.5cos(t)
Its initial condition produces

y(0)=0=y,(0)+y,(0)=C-05 = C=05 = y,(t)=05e"
Hence, the system response due to sin(t) is

y(t) =y, (t)+y,(t)=0.5e™" +0.5sin(t) — 0.5 cos(t)
The system response due to sin(t —3) , by the time invariance, is given by

y(t) =y, (®)+y, (t) =(0.5e"""¥ +0.5sin(t - 3) - 0.5 cos(t — 3))u(t - 3)

The system zero-state response satisfies

%+ V. @®=sint-3), y,(0)=0, t>0

Using the previously obtained result, the zero-state response is given by
Y, () = (0.5e " +0.5sin(t —3) —0.5cos(t - 3))u(t —3)
The zero-input response satisfies

2l y,0=0 v,0=0 20

The zero-input response is given by

y,(t)=Ce™" =0 t>0
The system response in terms of its zero-state and zero-input components, is given by

y(t) =y, )+, (t) = (0.5 +0.5sin(t —3) — 0.5 cos(t — 3))u(t — 3)
The steady state response is practically obtained for large values of time, that is

Y ({t)=y(), for t large = y.(t)~0.5sin(t—3)—-0.5cos(t-3)
According to the textbook definition of the transient response, we have

yir ) =y(t), for t small



Using the electrical circuit definition of the transient response we have
Vo (1) = 0.5(sin(t—3)—0.5cos(t—3))u(t—3), = V, (t)=y(t) -V (t)=05e""ut-3)

#2a)
0) (t-1)26(t-1)=(1-1)5(t-1)=05(t-1) =0
(i) Tcos(ﬂt)S(s) (t-1)dt = (-1)° ;—Z{cos(m)}t_l =(-1)%7z°%sin(z) =0

(iii)  The delta impulse signal is located at t=2/3 (within integration limits), hence
V3
6

° 1. 1.2
jw Sin()3(3t - 2)dt = _{sin()}., 5 = gsm(?ﬂ) -

(iv)  The delta impulse signal is located exactly at the upper integration bound (need a factor of 0.5)
3

J'e—5t sin(3t)5(t - 3)dt = % e~ sin(3t) 5 = % e~ 5in(9)

(v) The delta impulse signal is outside of integration limits (at t =-5), hence

jf(t)5<1>(t+5)dt= jom:o

-3 -3
#2b)
(2t-5)= 1, -2<2t-5<2 [l 15<t<35 (t—2.5)
P4 | 0, otherwise |0, otherwise P2 '
1, -4t+2>0 1, t<05
u(-4t+2) = ] = . =u(-t+0.5)
0, otherwise 0, otherwise

The direct method for finding the generalized derivative

Dé—(tt) _ %(2 0, (t— 2.5) ~U(—t +0.5) + (t -3)) = 25(t —1.5) — 25(t — 3.5)  (~5(t —0.5) + u(t - 3)

#3a) This is an odd signal so that a, =0, n=0,1,2,.... The coefficient b, is obtained from (using the
formula for integration given on the exam sheet)

5 TI2 oF 1/2 1/2 2(_1)n+1
b, == j = tsin(nwgt)dt = 2 jztsin(zﬂnt)dtzs j tsin(2znt)dt =
T -T/2 T -1/2 0 nz

The Fourier series are given by

0= b, sincrog) = > 20 singorm)

n=1

#3b)

H(jow) =%=|H(iw)|arg{H(Jw)}, H(jo) =

(4]

arg{H (jo)} = Z - tan (o)
l+o 2



X, (i) =0.5(a, — jby) =050, = j T2 =[x, (j) argX, (jo)}

nz
. n 7T . 1
arg{X, (jo)}=(-1) > IXn(Jw)I=E
The system output is periodic with the same period as the input signal and represented by the Fourier
serieswith Y (jnw,) =H(jnwy) X, (inw,)

Vo (ine)] = [H (ineop)| X o (ineop)| = —e L 2 N=12.., y=2F =21, Y4=0

J1+n2ed 0T ianie? ’ T

arg{v(jnwo}=arg{H(jnwo}+arg{xn(jnwo}=%—tan*l(znm(—l)“ §=§(1+(—1>”)
The output signal is given by

y(t) =2 Yo (inep)| cos(nagt +arg{Y, (inw,)})

n=1

#3c)
(1) F{sin(2at)[u, (t-2)—u, (t-1)]}=-F{sin(2xt) p, (t-1.5)}= —%{Fp (jo+27)-F,(jo—27)}

Fo(jo) = F{p,(t-1.5)} =e > F{p, ()} =& > sin C(%)

(i) Fit?eu, (0= 2y {Ffe ™, (0} = ( 1 J j

do? do? (3+jo) @3+ o)

(iii) p,(t)ersinc(?—;j = rsinc(;—;jeﬂnp,(—a)) = sinc(;—;j<—>7 P, (@)

4
—i%e

3
= sinc(t)ep,[@j = P (@)= py(f) = sinc(3t—4)<—>e—pzn(@J
2r 3 3
#3d)
. tr 27 T . (1tr 1. (t
smc(—je—p,(w) = p,(a))<—>—smc(—j = pz(a))<—>—smc(—j
2z T 2z 2z Vs V4

2 . (2t
p, (@) < —smc[—j
T T

X(jo)=2p,(®) - p,(@-1) eisinc[gj —elt lsinc[lj
T

T T T

#3e)
y(t) = 5/H (jL0)| cos(10t + % + arg{H (jL0)}

H(jw) =1+j% = |H(j10)= arg{H (j10)}=%— tan(10)

10
J1+10?



