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Chapter 4 studies two-dimensional multivalued diDeren-
tial automata. The main result of this chapter is an analog
of the PoincarAe–Bendixon Theorem for hybrid systems. It
provides conditions for a hybrid system in the plane to have
a non-chaotic, eventually periodic behavior. As an appli-
cation, the authors give a detailed analysis of two speci:c
switched ?ow systems.
Chapters 5 and 6 deal with hybrid dynamical systems with

constant derivatives. This class of systems is related to the
one considered in Chapter 2, although the exact relation-
ship unfortunately does not seem to be explained anywhere.
Chapter 5 develops general criteria for existence and stabil-
ity of limit cycles in such systems. Chapter 6 illustrates the
theory by studying several speci:c classes of switched ?ow
systems.
The investigation of switched ?ow systems is contin-

ued in Chapters 7 and 8. Chapter 7 considers single server
switched ?ow networks and provides conditions for exis-
tence of a single globally attracting limit cycle. Chapter 8
is concerned with multiple server switched ?ow networks
with time-varying arrival rates. The problem addressed here
is design of feedback policies which provide desirable reg-
ular behavior in such systems. A simple algebraic necessary
and suLcient condition for such a feedback policy to exist
is obtained.
Finally, Chapter 9 describes seven open problems. These

problems range from the theoretical one of extending the
theory of this book to diDerential automata with nonlinear
right-hand side to the problem of proving a speci:c con-
jecture for switched server systems with more than three
buDers.
The book presents original results due to the authors, with

complete proofs provided. The reviewer found the book well
organized andmethodically written. A particular nice feature
of the book is that footnotes are included in the statements of
the main results to help the reader quickly :nd the relevant
de:nitions.
The application domains discussed extensively in the

book are queueing networks and manufacturing systems.
This book is an essential reading for anyone interested in
applying hybrid system methods to these :elds. The the-
ory described in the book is likely to be useful for other
application areas, such as power systems.

The reviewer also recommends this book to all students
and researchers who want to follow a careful development of
a general de:nition of a hybrid system, supplemented with
helpful and realistic examples. On the other hand, due to its
limited scope, this is not the right book for someone who is
looking for an overview of techniques and problems in the
general area of hybrid systems and control. For example, one
of many important and interesting topics not covered in the
book is stability of equilibria for hybrid systems. The book is
also probably not suitable as a textbook, except perhaps for
an advanced course with a somewhat narrow focus. To get
a broader perspective, the reader will need to consult other
sources, such as the book by van der Schaft and Schumacher
(2000).
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Singular perturbations arise in systems whose dynam-
ics have suLciently separate slow and fast parts. They also
are seen due to weak coupling of subsystems, and may be

induced under feedback when applying high-gain control,
or “cheap” optimal control. Since the late 1960s, exten-
sive research on singularly perturbed control systems, and
parallel eDorts on singularly perturbed ordinary diDerential
equations, has yielded a rich and powerful body of results.
The book under review (GajiAc & Lim, 2001) is a com-
pact monograph reporting recent developments in the op-
timal control of linear, time-invariant, singularly perturbed
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systems. The emphasis is on situations in which low-order
approximations are inadequate. The authors develop recur-
sive methods to solve with high accuracy exactly decou-
pled pure-slow and pure-fast optimal regulation and :ltering
problems. They implement a number of useful variations on
their approach, including continuous- and discrete-time sys-
tems, H2 and H∞ optimization, and a class of decentralized
control problems. To :x ideas, small examples are sprinkled
throughout. A resourceful reader, armed with a basic knowl-
edge of singular perturbations and a capable matrix manip-
ulation software package, should be designing controllers in
a matter of days.
Although a brief history of the :eld is provided, along

with a useful list of references, this is not the place to be-
gin a study of singular perturbations. Before settling down
with this book, the novice would do well to get a broader
introduction from, for example, the excellent collection
of fundamental papers in Kokotovic and Khalil (1986),
the text by Kokotovic, Khalil, and O’Reilly (1986), or
the introductory articles contained in Kokotovic, Bensous-
san, and Blankenship (1986a). In particular, the book by
Kokotovic, Khalil and O’Reilly (1986) is accessible and
comprehensive, contains numerous exercises and examples,
and has recently been reprinted by SIAM in the Classics in
Applied Mathematical series. In addition to providing more
detailed introductory material, these also discuss a much
wider variety of topics, including time-varying, nonlin-
ear, and large-scale systems. The :rst author of GajiAc and
Lim (2001) has co-authored an earlier monograph (GajiAc
& Shen, 1993), that includes some subjects omitted from
the present volume, such as output feedback, applications
to diDerential games and bilinear systems, and extensive
coverage of weakly coupled systems.
The title (GajiAc & Lim, 2001) is from a series whose

stated goal is to make newly developed tools of control en-
gineering accessible to the practitioner. In this respect the
present volume is not entirely successful. One might expect
a relaxed and expository tone; in contrast the book mainly
reads as a lightly edited series of journal papers. Certain sig-
nature phrases appear over and over (“the celebrated Chang
transformation”). The repetitive style provides the reader
with a frequent sense of dAejRa vu, even though very little of
the material is actually super?uous. On the positive side,
the various chapters are completely self-contained. To truly
aid the practicing control engineer some space might have
been given over to implementation issues. Presumably the
authors have developed a suite of software implementing
their algorithms. Matlab-like pseudo-code would have been
welcome. A CD-ROM with working routines, or a link to
a website where such routines could be downloaded, would
have been even better. On the other hand, the methods de-
scribed in GajiAc and Lim (2001) appear to be of true practi-
cal value. Many results on singularly perturbed systems are
asymptotic—holding in the limit as the perturbation param-
eter becomes small. Because the size of this parameter is
typically not something the control engineer can adjust, such

results may be of primarily theoretical interest. In contrast,
the approach of the authors is recursive, and the number of
iterations can be selected to produce a satisfactory result.
To convey the bene:ts of the methods of GajiAc and Lim

(2001), consider the problem of :nding the optimal state
feedback gains solving the in:nite horizon linear-quadratic
regulator (LQR) problem (Kwakernaak & Sivan, 1972)
for the following singularly perturbed linear, time-invariant
system:

ẋ1 = A11x1 + A12x2 + B1u; (1)

�ẋ2 = A21x1 + A22x2 + B2u; (2)

y = C1x1 + C2x2: (3)

Here � is the perturbation parameter and system (1)–(3)
is said to be in standard form if A22 is invertible. Such a
system might arise, for example, from a natural time-scale
separation between the “slow” states x1 and the “fast” states
x2. For convenience we refer to A; B, and C—the system
matrices corresponding to the state equation for x=[xT1 ; x

T
2 ]

T.
Let us now compare three representative options for solving
this problem:

(1) The structure of (1)–(3) may be ignored, and the full
regulator algebraic Riccati equation (ARE) solved
(Kwakernaak & Sivan, 1972). Considering (1) and (2)
as being in generalized state-space form, Eẋ=Ax+Bu,
the ill-conditioning of E = diag(Ins ; �Inf ) ensures the
ill-conditioning of the ARE (Arnold III & Laub,
1984), leading to numerical diLculties. Further, we
will have missed a chance to reduce the size and
complexity of our controller. This is a particularly
important consideration for large systems.

(2) The procedure given in Chow and Kokotovic
(1976) provides well-conditioned computation of a
reduced-order controller. First, a “pure-slow” subsys-
tem is obtained by setting �=0 in (2), and solving for
the resulting value of x2: A21 Zx1 + A22 Zx2 + B2 Zu = 0 ⇒
Zx2 =−A−1

22 (A21 Zx1 + B2 Zu). De:ne the pure-slow system
variables to be xs = Zx1, us = Zu, ys = Zy = C1 Zx1 + C2 Zx2,
and the pure-fast system variables to be xf = x2 − Zx2,
yf = y − ys, uf = u − us. Set A0 = A11 − A12A−1

22 A21,
B0 = B1 − A12A−1

22 B2, C0 = C1 − C2A−1
22 A21 and

D0 = −C2A−1
22 B2. Then the approximately decoupled

subsystems result:

ẋs = A0xs + B0us; �ẋf = A22xf + B2uf ;

ys = C0xs + D0us; yf = C22xf :

The decoupling is only approximate because the
pure-slow dynamics as de:ned hold exactly only for
�=0. Note that a factor of 1=� scales all components on
the right-hand side of the pure-fast subsystem; thus the
potential conditioning problems are resolved. Regula-
tor AREs are solved independently for the two subsys-
tems to obtain slow and fast feedback gains, Ks and Kf .
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The composite control, u = Ksxs + Kf xf = K1x1 +
K2x2,is an O(�2) approximation to the true optimal
value (Chow & Kokotovic, 1976). This is a valuable
result. Two smaller computations are preferred to a
single large one, and the resulting compensator com-
plexity is reduced. The AREs are well conditioned,
and may be solved by standard software. However, the
near optimality of the solution (and in fact, even stabil-
ity) is guaranteed only asymptotically, for “suLciently
small” �. If this accuracy is insuLcient for a particu-
lar �, the designer must seek to re:ne the calculation,
as � is prescribed. Unfortunately it is not clear how to
proceed further using this approach.

(3) A method for precisely such re:nement is found in
GajiAc and Lim (2001, Chapter 2). The authors make
extensive use of a transformation due to Chang (1972)
that exactly decouples the slow and fast subsystems.
Rather than apply the Chang transformation to (1)
and (2) directly, the authors :rst construct the Hamil-
tonian form of the optimal closed-loop system, with
new slow states consisting of x1 and the slow costates,
and new fast states consisting of x2 augmented by the
fast costates. Their results are motivated and enabled
by the observation that the Hamiltonian system main-
tains its Hamiltonian structure under the exact decou-
pling transformation. Manipulation of the decoupled
pure-slow and pure-fast Hamiltonian systems results
again in two AREs, which may be solved for the
pure-slow and pure-fast state feedback gains. These
diDer from those obtained in Chow and Kokotovic
(1976) in two important ways. The :rst is that the cor-
responding composite control is exactly the optimal
control. The second is that the decoupled regulator
AREs are nonsymmetric.
The authors detail two ways of solving the decoupled,
nonsymmetric regulator AREs. The :rst is by New-
ton’s method, in which one iteratively solves a series
of recursive Sylvester equations, starting with a rea-
sonable initial guess (the authors suggest the low-order
approximation of Chow and Kokotovic (1976) for this
purpose) until the desired accuracy is achieved. Nu-
merical computation of the Chang transformation to
comparable accuracy is also required. The authors sup-
ply an algorithm based on Newton’s method by which
this may be accomplished. The second means of solv-
ing the nonsymmetric AREs, described in GajiAc and
Lim (2001, Chapter 7), involves the computation of
the eigenvectors of a matrix formed from the matrix
coeLcients of the ARE. (The Chang transformation
can also be computed in a similar way.) The authors
recommend this method when � is relatively large, but
it is vulnerable to ill conditioning if � is small. They
go so far as to consider its application when � = 1,
and the system is regular. This seems like a stretch,
since many of the key results applied in the book
would not generally apply in this circumstance (for

example, the existence of a solution to the equations
de:ning the Chang transformation is guaranteed only
under the assumption that � is suLciently small). We
see that a major contribution of GajiAc and Lim (2001)
is a means by which a decoupled design may be sal-
vaged if, for example, the results of Method 2 are
unsatisfactory.

In addition to the results on regulation described above,
Chapter 2 presents a dual development for computing a de-
coupled Kalman :ltering, and a decoupled formulation of
the :nite-horizon open-loop optimal control problem. The
authors combine the in:nite-horizon state regulator with
the Kalman :lter to obtain a very elegant, almost entirely
decoupled, solution to the linear-quadratic Gaussian opti-
mal control problem. An earlier version, presented in GajiAc
and Shen (1993), required both the pure-fast and pure-slow
state estimates in the innovation process. The version now
presented contains the pure-slow state estimates only in
the innovation process for the pure-slow Kalman :lter, and
likewise the pure-fast state estimates only in the innovation
process for the pure-fast Kalman :lter. Thus the only re-
maining interaction between the slow and fast compensators
occurs in the control u, which contains both slow and fast
components and is fed forward through the state estimators.
It is diLcult to see how this remaining coupling can be
avoided. Chapter 3 treats discrete-time systems. The optimal
:nite- and in:nite-horizon regulator problems are solved,
and the discrete Kalman :lter constructed. Interestingly, the
nonsymmetric decoupled pure-slow and pure-fast Ric-
cati equations that result are of the type associated with
continuous-time systems, rather than of the discrete-time
type associated with optimal control of the full system.
Once again an initial guess is found by solving symmetric
AREs for the fast subsystem (of discrete type) and slow
subsystem (of continuous type). Iterative re:nement is
again by solution of Sylvester equations.
Chapter 4 presents optimal control and :ltering results

for a type of multimodeling structure (Kokotovic, Bensous-
san, & Blankenship, 1986a) in which a slow subsystem
is strongly coupled to two, weakly coupled, fast sub-
systems. Here the decomposition is into one pure-slow,
and two pure-fast subsystems. The perturbation parame-
ters associated with the two pure-fast subsystems may be
diDerent.
Chapter 5 extends the results of Chapter 2 to basic
H∞ suboptimal control and :ltering. The regulator prob-
lem considered is to :nd the observer-based controller
K(s) such that the in:nity norm of the closed-loop trans-
fer function from disturbance to regulated outputs is less
than some speci:ed value, �. As the authors describe, in a
well-written introductory section, the solution of this prob-
lem is known to be given by the solution to two AREs,
one specifying the state feedback gains, the other used to
construct the observer gains. These AREs are in turn associ-
ated with Hamiltonian systems describing state and costate
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dynamics. Once the Hamiltonian matrices have been con-
structed, the procedure exactly follows Chapter 2. The ob-
server that appears in the optimal controller is not a Kalman
:lter. An H∞ analog to the Kalman :lter may be de:ned,
and the resulting :lter gains are known to be described by the
solution to an ARE. Again the singularly perturbed case is
solved by constructing the resulting Hamiltonian matrix, ap-
plying the decoupling Chang transformation, and iteratively
solving the resulting pure-slow and pure-fast nonsymmetric
AREs.
Chapter 6 addresses situations in which the time scale

separation is not inherent in the system, but is induced under
feedback due to high gain control, optimal regulation with
low control weighting, or optimal estimation with small
measurement noise. As in Chapter 2, results include :nite-
and in:nite-horizon performance optimization of linear,
time-invariant dynamics. A :ltering problem is also solved,
applicable to problems with small sensor noise. Although
the high-gain and cheap control problems diDer slightly in
formulation, with the perturbation parameter entering the
former through the B matrix and the latter through the con-
trol u, the resulting full system AREs corresponding to the
optimal control are identical. Hence they are treated in a
uni:ed fashion. Similarly, the small noise problem is dual
to the cheap control problem, and is also handled in this
framework. To this point the results closely parallel Chapter
2. Chapter 6 closes by examining a sampled-data system,
in which the role of the perturbation parameter is played
by the sampling time. The sampling time also appears in
the performance criterion, where its square multiplies the
control cost. Thus, this is a class of discrete-time cheap
control problems. First-order approximations to the solu-
tions are given by the solutions to symmetric AREs for the
pure-slow (continuous type) and pure-fast (discrete type)
subsystems. The authors recommend Newton’s method for
subsequent re:nement, but do not supply the recursion
relations.
As mentioned earlier, Chapter 7 describes an alternative

technique for :nding the nonsymmetric ARE solutions and
the Chang transformation based on eigenvector computa-
tions. This approach may be numerically ill conditioned for
small �.
Finally, Chapter 8 discusses a number of interesting

topics, and suggests ways in which the techniques of the
preceding chapters may be extended. Topics include non-
standard systems, in which the matrix A22 is singular;
:nite-horizon problems, in which the Riccati equations
are diDerential instead of algebraic; and slow–fast integral
manifold decomposition, which provides a nonlinear ver-
sion of the Chang decomposition, and which also applies to
the linear time-varying case. Of these, the presentation of
nonstandard systems is reasonably complete; the remaining
discussions are mainly suggestive of directions that future
research may take.

Who should own this book? Undoubtedly, any serious
researcher in the area of optimal control of singularly
perturbed systems. The rest of us would bene:t from con-
sulting it while attempting to design such a controller.
However, implementing the authors’ algorithms requires
some potentially nontrivial software development. For LQR
or LQG design some of the older methods, as vividly de-
scribed by Kokotovic, Khalil and O’Reilly (1986), remain
of interest, unless demonstrated in a particular application
to be insuLciently accurate. However for higher-order
design, as well as for H∞ control of singularly per-
turbed systems, or any of the other applications detailed
above, this book would be an invaluable and indispensable
resource.
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