332: 345 EXAM I Solutions - Fall 2004

\#1) $\mathbf{5}$ pts. (A simpler version of HW Problem 1.10)
We use the time invariance principle and first find the solution to

$$
\frac{d y(t)}{d t}+y(t)=\sin (t), \quad y(0)=0, \quad t \geq 0
$$

At the end we will shift the solution obtained by 3 time units. The homogeneous solution is obtained from

$$
\frac{d y_{h}(t)}{d t}+y_{h}(t)=0 \Rightarrow y_{h}(t)=C e^{-t}
$$

The particular solution satisfies

$$
\frac{d y_{p}(t)}{d t}+y_{p}(t)=\sin (t) \Rightarrow y_{p}(t)=\alpha \sin (t)+\beta \cos (t)
$$

Plugging this solution into the differential equation implies $\alpha=0.5$ and $\beta=-0.5$ so that the particular solution is given by

$$
y_{p}(t)=0.5 \sin (t)-0.5 \cos (t)
$$

The system response is given by

$$
y(t)=y_{h}(t)+y_{p}(t)=C e^{-t}+0.5 \sin (t)-0.5 \cos (t)
$$

Its initial condition produces

$$
y(0)=0=y_{h}(0)+y_{p}(0)=C-0.5 \Rightarrow C=0.5 \Rightarrow y_{h}(t)=0.5 e^{-t}
$$

Hence, the system response due to $\sin (t)$ is

$$
y(t)=y_{h}(t)+y_{p}(t)=0.5 e^{-t}+0.5 \sin (t)-0.5 \cos (t)
$$

The system response due to $\sin (t-3)$, by the time invariance, is given by

$$
y(t)=y_{h}(t)+y_{p}(t)=\left(0.5 e^{-(t-3)}+0.5 \sin (t-3)-0.5 \cos (t-3)\right) u(t-3)
$$

The system zero-state response satisfies

$$
\frac{d y_{z s}(t)}{d t}+y_{z S}(t)=\sin (t-3), \quad y_{z S}(0)=0, \quad t \geq 0
$$

Using the previously obtained result, the zero-state response is given by

$$
y_{z s}(t)=\left(0.5 e^{-(t-3)}+0.5 \sin (t-3)-0.5 \cos (t-3)\right) u(t-3)
$$

The zero-input response satisfies

$$
\frac{d y_{z i}(t)}{d t}+y_{z i}(t)=0, \quad y_{z i}(0)=0, \quad t \geq 0
$$

The zero-input response is given by

$$
y_{z i}(t)=C e^{-t}=0 \quad t \geq 0
$$

The system response in terms of its zero-state and zero-input components, is given by

$$
y(t)=y_{z S}(t)+y_{z i}(t)=\left(0.5 e^{-(t-3)}+0.5 \sin (t-3)-0.5 \cos (t-3)\right) u(t-3)
$$

The steady state response is practically obtained for large values of time, that is

$$
y_{S S}(t)=y(t), \quad \text { for } \quad t \quad \text { large } \Rightarrow y_{s S}(t) \approx 0.5 \sin (t-3)-0.5 \cos (t-3)
$$

According to the textbook definition of the transient response, we have

$$
y_{t r}(t)=y(t), \quad \text { for } \quad t \quad \text { small }
$$

Using the electrical circuit definition of the transient response we have
$\bar{y}_{s S}(t)=0.5(\sin (t-3)-0.5 \cos (t-3)) u(t-3), \quad \Rightarrow \quad \bar{y}_{t r}(t)=y(t)-\bar{y}_{s S}(t)=0.5 e^{-(t-3)} u(t-3)$
\#2a) $\mathbf{5}$ pts (Similar to WH Problems 2.20 to 2.22)
(i) $\mathbf{1 p t}$

$$
(t-1)^{2} \delta(t-1)=(1-1) \delta(t-1)=0 \delta(t-1)=0
$$

(ii) $\mathbf{1 p t}$

$$
\int_{-\infty}^{+\infty} \cos (\pi t) \delta^{(3)}(t-1) d t=(-1)^{3} \frac{d^{3}}{d t^{3}}\{\cos (\pi)\}_{\mid t=1}=(-1)^{3} \pi^{3} \sin (\pi)=0
$$

(iii) 1pt The delta impulse signal is located at $t=2 / 3$ (within integration limits), hence

$$
\int_{-\infty}^{2} \sin (\pi t) \delta(3 t-2) d t=\frac{1}{3}\{\sin (\pi t)\}_{\mid t=2 / 3}=\frac{1}{3} \sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{6}
$$

(iv) 1pt The delta impulse signal is located exactly at the upper integration bound (need a factor of 0.5)

$$
\left.\int_{-\infty}^{3} e^{-5 t} \sin (3 t) \delta(t-3) d t=\frac{1}{2} e^{-5 t} \sin (3 t) \right\rvert\, t=3=\frac{1}{2} e^{-15} \sin (9)
$$

(v) 1pt The delta impulse signal is outside of integration limits (at $t=-5$), hence

$$
\int_{-3}^{4} f(t) \delta^{(1)}(t+5) d t=\int_{-3}^{4} 0 d t=0
$$

\#2b) $\mathbf{5}$ pts (The rectangular and unit step signals are similar to those from HW Problem 2.26. Plotting graphs of combined signals is similar to HW Problems 2.6, 2.8, 2.30)

$$
\begin{aligned}
& p_{4}(2 t-5)=\left\{\begin{array}{cc}
1, \quad-2 \leq 2 t-5 \leq 2 \\
0, & \text { otherwise }
\end{array}=\left\{\begin{array}{cc}
1, & 1.5 \leq t \leq 3.5 \\
0, & \text { otherwise }
\end{array}=p_{2}(t-2.5)\right.\right. \\
& u(-4 t+2)=\left\{\begin{array}{cc}
1, & -4 t+2 \geq 0 \\
0, & \text { otherwise }
\end{array}=\left\{\begin{array}{cc}
1, & t<0.5 \\
0, & \text { otherwise }
\end{array}=u(-t+0.5)\right.\right.
\end{aligned} \text { 1pt } \quad \text { 1pt } \quad . ~ \$
$$

1 pt is awarded for each of the above two signals assuming that their graphs are also correctly plotted.
The correct graph of the signal $r(t-3)$ is worth $\mathbf{0 . 5} \mathbf{~ p t}$. The combined graph of all three signals is worth $\mathbf{0 . 5 p t}$.
The generalized derivative can be found either directly (HW Problem 2.29) or using the graph (Problem 2.30). The result is identical for both approaches. The direct method

$$
\frac{D x(t)}{D t}=\frac{D}{D t}\left(2 p_{2}(t-2.5)-u(-t+0.5)+r(t-3)\right)=2 \delta(t-1.5)-2 \delta(t-3.5)-(-\delta(t-0.5)+u(t-3) \quad \mathbf{2} \mathbf{p t s}
$$

\#3a) 5pts (The Fourier Series for the sawtooth signal are derived in Example 3.2 of the textbook) This is an odd signal so that $a_{n}=0, n=0,1,2, \ldots$. The coefficient b_{n} is obtained from (using the formula for integration given on the exam sheet)

$$
b_{n}=\frac{2}{T} \int_{-T / 2}^{T / 2} \frac{2 E}{T} t \sin \left(n \omega_{0} t\right) d t=2 \int_{-1 / 2}^{1 / 2} 2 t \sin (2 \pi n t) d t=8 \int_{0}^{1 / 2} t \sin (2 \pi n t) d t=\frac{2(-1)^{n+1}}{n \pi}
$$

The Fourier series are given by

$$
x(t)=\sum_{n=1}^{\infty} b_{n} \sin \left(n \omega_{0} t\right)=\sum_{n=1}^{\infty} \frac{2(-1)^{n+1}}{n \pi} \sin (2 \pi n t)
$$

\#3b) 5 pts (Similar to HW problems 3.37, 3.38, 3.42)

$$
\begin{align*}
H(j \omega)= & \frac{j \omega}{1+j \omega}=|H(j \omega)| \arg \{H(j \omega)\}, \quad|H(j \omega)| \frac{\omega}{\sqrt{1+\omega^{2}}}, \quad \arg \{H(j \omega)\}=\frac{\pi}{2}-\tan ^{-1}(\omega) \\
& X_{n}(j \omega)=0.5\left(a_{n}-j b_{n}\right)=-j 0.5 b_{n}=j \frac{(-1)^{n}}{n \pi}=\left|X_{n}(j \omega)\right| \arg \left\{X_{n}(j \omega)\right\} \\
& \arg \left\{X_{n}(j \omega)\right\}=(-1)^{n} \frac{\pi}{2}, \quad\left|X_{n}(j \omega)\right|=\frac{1}{n \pi}
\end{align*}
$$

The system output is periodic with the same period as the input signal and represented by the Fourier series with $Y\left(j n \omega_{0}\right)=H\left(j n \omega_{0}\right) X_{n}\left(j n \omega_{0}\right)$

$$
\begin{gathered}
\quad\left|Y_{n}\left(j n \omega_{0}\right)\right|=\left|H\left(j n \omega_{0}\right) \| X_{n}\left(j n \omega_{0}\right)\right|=\frac{n \omega_{0}}{\sqrt{1+n^{2} \omega_{0}^{2}}} \frac{1}{n \pi}, \quad n=1,2, \ldots, \quad \omega_{0}=\frac{2 \pi}{T}=2 \pi \\
\arg \left\{Y\left(j n \omega_{0}\right\}=\arg \left\{H\left(j n \omega_{0}\right\}+\arg \left\{X_{n}\left(j n \omega_{0}\right\}=\frac{\pi}{2}-\tan ^{-1}(\omega)+(-1)^{n} \frac{\pi}{2}\right.\right.\right.
\end{gathered}
$$

The output signal is given by

$$
y(t)=\sum_{n=1}^{\infty}\left|Y_{n}\left(j n \omega_{0}\right)\right| \cos \left(n \omega_{0} t+\arg \left\{Y_{n}\left(j n \omega_{0}\right)\right\}\right)
$$

\#3c) 5 pts. ((i) is taken from HW 3.8e, (ii) from 3.8d, and (iii) from HW 3.10.)
(i) $F\left\{\sin (2 \pi t)\left[u_{h}(t-2)-u_{h}(t-1)\right]\right\}=-F\left\{\sin (2 \pi t) p_{1}(t-1.5)\right\}=-\frac{j}{2}\left\{F_{p}(j \omega+2 \pi)-F_{p}(j \omega-2 \pi)\right\}$ $F_{p}(j \omega)=F\left\{p_{1}(t-1.5)\right\}=e^{-j 1.5 \omega} F\left\{p_{1}(t)\right\}=e^{-j 1.5 \omega} \sin c\left(\frac{\omega}{2 \pi}\right)$

2pts
(ii) $F\left\{t^{2} e^{-3 t} u_{h}(t)\right\}=j^{2} \frac{d^{2}}{d \omega^{2}}\left\{F\left\{e^{-3 t} u_{h}(t)\right\}=-\frac{d^{2}}{d \omega^{2}}\left(\frac{1}{3+j \omega}\right)=\frac{2}{(3+j \omega)^{3}}\right.$
(iii) $\quad p_{\tau}(t) \leftrightarrow \tau \operatorname{sinc}\left(\frac{\omega \tau}{2 \pi}\right) \Rightarrow \tau \operatorname{sinc}\left(\frac{t \tau}{2 \pi}\right) \leftrightarrow 2 \pi p_{\tau}(-\omega) \Rightarrow \operatorname{sinc}\left(\frac{t \tau}{2 \pi}\right) \leftrightarrow \frac{2 \pi}{\tau} p_{\tau}(\omega)$

$$
\Rightarrow \quad \operatorname{sinc}(t) \leftrightarrow p_{\tau}\left(\frac{\tau \omega}{2 \pi}\right)=p_{2 \pi}(\omega)=p_{1}(f) \Rightarrow \operatorname{sinc}(3 t-4) \leftrightarrow \frac{e^{-j \frac{4}{3} \omega}}{3} p_{2 \pi}\left(\frac{\tau \omega}{3}\right)
$$

\#3d) $\mathbf{3}$ pts. (Similar to HW Problem 3.24)

$$
\begin{aligned}
& \operatorname{sinc}\left(\frac{t \tau}{2 \pi}\right) \leftrightarrow \frac{2 \pi}{\tau} p_{\tau}(\omega) \Rightarrow p_{\tau}(\omega) \leftrightarrow \frac{\tau}{2 \pi} \operatorname{sinc}\left(\frac{t \tau}{2 \pi}\right) \Rightarrow p_{2}(\omega) \leftrightarrow \frac{1}{\pi} \operatorname{sinc}\left(\frac{t}{\pi}\right) \\
& p_{4}(\omega) \leftrightarrow \frac{2}{\pi} \operatorname{sinc}\left(\frac{2 t}{\pi}\right)
\end{aligned}
$$

$X(j \omega)=2 p_{4}(\omega)-p_{2}(\omega-1) \leftrightarrow \frac{4}{\pi} \operatorname{sinc}\left(\frac{2 t}{\pi}\right)-e^{j t} \frac{1}{\pi} \operatorname{sinc}\left(\frac{t}{\pi}\right)$
\#3e) 2 pts. (Similar to HW Problems 3.39, 341)
$y(t)=5|H(j 10)| \cos \left(10 t+\frac{\pi}{3}+\arg \{H(j 10)\}\right.$
$H(j \omega)=\frac{j \omega}{1+j \omega} \Rightarrow|H(j 10)|=\frac{10}{\sqrt{1+10^{2}}}, \quad \arg \{H(j 10)\}=\frac{\pi}{2}-\tan ^{-1}(10)$

Exams Statistics

Average 13.1 pts (35pts); Max = 32 pts; Min = 0.5 pts.
13 students scored 25 pts and above
28 students scored 20 points and above
48 students scored below 10 points
13 students scored less than 6 points (ADVISED TO DROP THE CLASS)
New grading scale $A \geq 87, \quad B^{+} \geq 79, \quad B \geq 72, \quad C^{+} \geq 64, \quad C \geq 57, \quad D \geq 47$

OFFICE HOURS WHEN YOU CAN SEE AND PICKUP YOUR EXAM I
Wednesday, Nov. 3, 2:30-4:40pm, Nov. 18, Th3, Nov. 22, M3, Nov. 23, 2004.
Please check Exam I Solutions before coming to ELE 222 to get the exam. Once you take the exam from my office you will not be allowed to come back and complain about grading.

