1.1 Continuous and Discrete Signals and Systems

A continuoussignal is a mathematicafunction of anindependenvariablet € R,
whereR representsa setof real numbers. It is requiredthat signalsare uniquely
definedin t exceptfor a finite number of points. For example,the function
f(t) = +/t doesnot qualify for a signal evenfor ¢ > 0 sincethe squareroot
of t hastwo valuesfor any non negativet. A continuoussignalis representedn
Figurel.l. Very often, especiallyin the studyof dynamicsystemsthe independent

variablet representsime. In suchcasesf(t) is a time function.

f(t)

[~

A —

Figure 1.1: A continuous signal
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Note that signalsare real mathematicafunctions, but sometransformsappliedon
signalscan producecomplexsignalsthat haveboth real and imaginary parts. For
examplejn analysisof alternatingcurrentelectricalcircuitswe usephasorsyotating
vectorsin the complexplane,I(jw) = |I(gw)|£I(jw), wherew representshe
angularfrequencyof rotation, £ I (yw) denotephaseand|I (yw)| is theamplitude
of the alternatingcurrent. The complexplane representations usefulto simplify
circuit analysis,however,the above ddiined complex signal representsn fact a
real sinusoidalsignal, oscillatingwith the correspondingamplitude,frequency,and
phaserepresentedly |I(jw)|sin (wt + £I(3w)). Complexsignalrepresentation
of real signalswill be encounteredn this textbookin many applicationexamples.
In addition,in severalchapterson signaltransformgFourier,Laplace,Z-transform)

we will presentcomplexdomainequivalentsof real signals.
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A discretesignal is a uniquely definedmathematicafunction (single-valuedfunc-
tion) of anindependenvariablek € Z, where Z denotesa setof integers.Such
a signalis representedn Figure 1.2. In orderto clearly distinguishbetweencon-
tinuousand discretesignals,we will usein this book parenthesefor argumentsof
continuoussignalsandsquarebracketdor argumentsof discretesignals,asdemon-
stratedin Figuresl.land1.2. If k representsliscretetime (countedin the number

of secondsminutes,hours,days,... ) theng[k] definesa discrete-timesignal.

° *
I ® I
I I I
| | |
-3 -2 -

Figure 1.2: A discrete signal
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Sampling

Continuousanddiscretesignalscanberelatedthroughthe samplingoperationin the

sensdhatadiscretesignalcanbe obtainedoy performingsamplingon a continuous-

time signalwith the uniform samplingperiod T as presentedn Figure 1.3. Since

T is a given quantity,we will use f(kT') £ f[k] in orderto simplify notation.
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Figure 1.3: Sampling of a continuous signal

More aboutsamplingwill be saidin Chapter9.
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Continuous-anddiscrete-timelinear, timeinvariant, dynamicsystemsredescribed,
respectively,by linear differential and differenceequationswith constantcoefi-

cients Mathematicalmodelsof suchsystemsthat have one input and one output

are defined by

d™y(t) d"'y(t) dy(t)

W + ap—1 Jgn—1 + et aq It + aoy(t) — f(t)
and

ylk + n] + an_1y[k + n — 1] + - -+ + ary[k + 1] + aoy[k] = f[K]

where n is the order of the system,y(t) is the systemoutput and f(¢) is the
externalforcing function representinghe systemnput In this textbook,we study
only timeinvariant continuousanddiscretelinear systemdor which the coefficients

a;,t = 0,1,...,n — 1, are constants
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Linear time varying systemswhose coeficients vary in time are difficult for
analysis,and they are studiedin a graduatecourseon linear systems.

Initial Conditions

In addition to the externalforcing function the systemis also driven by its
internal forces coming from the systeminitial conditions (accumulatedsystem
enegy at the given initial time). It is well known from elementarydifferential
equationgthat in orderto be ableto find the solution of a differential equationof

ordern, the setof n initial conditionsmust be specifiedas

dy(to) dn_l’y(to)
dt 7 din—1

y(tO)a

where tg denotesthe initial time.
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In the discrete-timedomain, for a differenceequationof order n, the set of
n initial conditions must be specified. For the differenceequation, the initial

conditionsare given by

ylkol, ylko + 1], ..., ylko + n — 1]

It is interestingto point out that in the discrete-timedomainthe initial conditions
carry informationaboutthe evolutionof the systenoutputin time, from someinitial
time kg to kg + n — 1. Thosevaluesarethe systemoutputpastvalues,andthey
haveto be usedto determinethe systemoutputcurrentvalue,thatis, y[ko + n]. In
contrast,for continuous-timesystemsll initial conditionsare definedat the initial

time to.
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System Response

The maingoalin the analysisof dynamicsystemss to find the systemresponse
(systemoutput) due to external (systeminputs) and internal (systeminitial con-
ditions) forces. It is known from elementarytheory of differential equationsthat
the solution of a linear differential equationhastwo additive componentsthe ho-
mogenousnd particular solutions The homogenousolutionis contributedby the
initial conditionsand the particular solution comesfrom the forcing function. In
engineering,the homogenoussolution is also called the systemnatural responsg

andthe particularsolutionis calledthe systenforcedresponse Hence,we have

y(t) = yn(t) + yp(?)

ylk] = ynlk] + yp[k]
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Homogeneousnd particular solutionsof differential equationscorrespondfe-
spectively(notidentically,in generalseeExamplel.l),to the so-calledzero-input

and zero-stateresponse®f dynamicsystems.

Definition 1.1: The continuous-time(discrete-time)linear system response
solely contributedby the systeminitial conditionsis called the systemzeio-input

(forcing functionis setto zeo) response It is denotedby y.;.

Definition 1.2: The continuous-time(discrete-time)linear system response
solely contributedby the systemforcing function is called the systemzeio-state

responsdsysteminitial conditionsare setto zeo). It is denotedby y.5.
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In view of Definitions1.1and1.2,it alsofollows thatthelinearsystemresponse
hastwo components:one componentcontributedby the systeminitial conditions,
Y-i, andanothercomponentontributedby the systemforcing function (input), y. s,

thatis, the following holdsfor continuous-timdinear systems

y(t) — yzi(t) + yzs(t)

and for discrete-timelinear systemswe have

ylk] = yi[k] + y-s[k]

Sometimesin thelinearsystemliterature,the zero-stateesponseas superficially
called the systemsteadystateresponsgand the zero-inputresponseas called the
systemtransientresponse More precisely,the transientresponseaepresentsthe

systemresponsedn the time interval immediatelyafter the initial time, say from
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tp = 0 to tq, contributedby boththe systemnput andthe systemnitial conditions
The systensteadystateresponsetandsfor the systenresponsén thelong run after
somet > t;. This distinction betweenthe transientand steadystateresponses
Is demonstratedn Figure 1.4. The componentof the systemtransientresponse,
contributedby the systeminitial conditions,in mostcasesdecaysquickly to zero.
Hence,after a certaintime interval, the systemresponseas mostlikely determined
by the forcing function only. Note that the steadystateis not necessarilyconstant

in time, as demonstratedn Examplel.2.

y(t)

y(0) M

BRAY

ySS(t)

0 ty t

Figure 1.4: Transient and steady state responses
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Example 1.2: Considerthe samesystemasin Examplel.1 with the sameinitial

conditions,but take the forcing function as f(t) = sin (%), thatis

dy(t) | dy(t) . dy(0)
e 47 + 3y(t) =sin(t), t >0, y(0) =1, s 1
The solutionis derivedin the textbook as
9 21 1 2
)= —et— e 3+ —_sin(t) — — t), t>0
y(t) 4e 206 4 m sin (t) m cos (1), >

It is easyto seethatthe systemresponsexponentiafunctionsdecayto zeropretty

rapidly so that the systemsteadystateresponsds determinedby
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The plots of y(t) and yss(t) aregivenin Figure 1.5.

1.2 T T

system response

-0.4 L !
0 5 10 15
time in seconds

Figure 1.5: System complete response (solid line) and

its steady state response (dashed line) for Example 1.2

It can be seenfrom the abovefigure that the transientendsroughly att; = 6,

henceafter that time the systemis in its steadystate.
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Linear dynamic systemsprocessinput signalsin orderto produceoutput sig-
nals. The processingule is givenin the form of differential/diferenceequations.
SometimesJinear dynamic systemsare called linear signal processors.A block
diagramrepresentatiof a linear system,processingne input and producingone

output, is given in Figure 1.6.

f :
———=] Linear System %y
Input Output

Figure 1.6: Input—output block diagram of a system
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In generalthe systemnput signalcanbe differentiatedby the systenso thatthe

more generaldescriptionof time invariantlinear continuous-timesystemss

d"y(t) d"~ty(t) dy(t)
g + an_l—dtn—l +---+a 1t
_ . dmf(@) d™ L f(t) df (t)
= bm dm +bm—1w+ -4 by —‘|‘b0f(t)

This systemdifferentiationof input signalsleadsto someinterestingsystemprop-
erties (to be discussedn Chapters3 and4). The correspondinggeneralform of

time invariant linear discrete-timesystemsis
ylk+n] + an—1y[k + n — 1] 4+ - - - + ar1y[k + 1] + aoy[k]

= by flk +m] + by—1f[k +m — 1] + --- + b1 f[k + 1] + by f[K]

Thecoeficientsa;,2 = 0,1, 2,...,n—1, andb;, 3 = 0, 1, ..., m, areconstants.

Note that for real physicalsystemsn > m.
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Dueto the presencef the derivativesof theinput signalon theright-handsideof
the generalsystenequation,impulseghatinstantlychangesysteminitial conditions
are generatedat the initial time Theseimpulsesare called the impulse delta
functions(signals). The impulsedeltasignalandits role in the derivativeoperation
will be studiedin detail in Chapter2. We will learnin this textbooka method
for solving the considereddifferential equationsbasedon the Laplacetransform.
The Laplacetransformwill be presentedn Chapter4. Anothermethodfor solving
the generalsystemdifferential equationrequiresusing y(t) = yn(t) + yp(t)
with the particular solutionbeingobtainedthroughthe convolutionoperation The
convolutionoperationwill be introducedin Chapter2 andusedin Chapters3 and
4 for analysisof linear time invariant systems. The convolution operationwill
be studiedin detail in Chapter6 andits usein linear systemtheory will be fully

demonstratedn Sections7.1 and 8.2.
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The problemof finding the systenresponseor the giveninput signal f(t) or
f[k] is the central problemin the analysisof linear systems. It is basically the
problemof solvingthe correspondindineardifferentialor differenceequation.This
problemcanbe solvedeitherby using knowledgefrom the mathematicatheory of
linear differentialand/ordifferenceequationsor the engineeringrequencydomain
approach—-basedon the conceptof the systemtransferfunction, which leadsto
the conclusionthat linear systemscan be studiedeitherin the time domain(to be
generalizedn Chapter8 to the statespaceapproach)or in the frequencydomain
(transferfunction approach).Chapters3—5 of this textbookwill be dedicatedo the
frequencydomaintechniquesand Chapter—-8 will studytime domaintechniques

for the analysisof continuous-anddiscrete-timdinear time-invariantsystems.
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The systemconsideredso far and symbolically representedn Figure 1.6, has
only oneinput f andoneoutputy. Suchsystemsareknown assingle-inputsingle-
outputsystems In general,systemsmay have severalinputs and severaloutputs,
sayr inputs f1, f2, ..., fr, andp outputs,yy, ys, ..., yp. Thesesystemsareknown
as multi-input multi-outputsystems They are also called multivariable systems A

block diagramfor a multi-input multi-outputsystemis representea Figure1.7.

—h

%
%

Linear System

¢ . . Y

Figure 1.7: Block diagram of a multi-input multi-output system

The problem of obtaining differential (difference)equationsthat describedy-
namicsof real physicalsystemss known asmathematicamodeling In Sectionl.3

mathematicaimodelsfor severalreal physicalsystemswill be derived.

The slides contain the copyrighted material from Linear Dynamic Systems and Signals, Prentice Hall, 2003. Prepared by Professor Zoran Gajic 1—18



1.2 System Linearity and Time Invariance

In Sectionl.1, the conceptof systemlinearity is tacitly introducedby statingthat
linear dynamic systemsare describedby linear differential/diferenceequations.
We have also statedthat the conceptof time invarianceis relatedto differen-
tial/differenceequationswith constantcoeficients. In this sectionwe discussthe
conceptsof systemlinearity andtime invariancein more details.

1.2.1 System Linearity

The conceptof systemlinearity is presentedor continuous-timesystems.Similar
derivationsand explanationsare valid for presentatiorof the linearity conceptof
discrete-timdineardynamicsystems.Beforewe deriveandstatethe linearity prop-
erty of continuous-timdinear dynamicsystemswe needthe following definition.

Definition 1.3: Thesystenatrestis the systenthathasnoinitial internalenepy,

thatis, all its initial conditionsare equalto zero.
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It follows from Definition 1.3 that for a systemat rest,the initial conditionsare

setto zero, that is

dy(to) — 0 dn_l’y(to) — 0
dt R /e

y(tO) = 0,

Systemsat restare also called systemswith zeroinitial conditions.

The linearity propertyof continuous-timdinear dynamicsystemss the conse-

guenceof the linearity property of mathematicatlerivatives,thatis

d’ d’ d?

— t — t = — t t ) = ]_ 2 s

Wi ®) + —=(12(D) = (i) + 0(t), i=1,2,
Considerthe generalnth order continuous-timelinear differential equationthat
describesthe behaviorof an nth order linear dynamic system. Assumethat the
systemis at rest andthatit is driven eitherby f;(t) or f2(t), which respectively

producethe systemoutputsy; (t) and y2(t), thatis
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dnyl(t) dn_l’yl(t) dyl(t)

T T ani—— =+t ai— =+ aoy (1)
= bm% + bm—ldn;wlnf_ll(t) +:.--+0b f;( ) + bof1(1)
and
) 0
= bmdm%fn(t) + bm_1dn;:nf_21(t) + o4 b fz( ) + bo f2(1)

Assumenow that the samesystemat restis driven by a linear combination
afi(t) + Bf2(t) wherea and 3 are known constants. Multiplying the first
equationby a and multiplying the secondequationby 3 and adding the two

differential equationswe obtain the following differential equation
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d"(ay1 + By2) d"!(ay; + By2)

7 + an—1 Jgn—1 + -+ + ao(ayr + By2)

bmdm(afl + Bf2) + bm_ldm_l(afl + Bf2)
dt™ dtm—1

+ -+ bo(afi + Bf2)

It is easyto concludethat the output of the systemat rest (the solution of the
correspondingifferential equation)due to a linear combinationof systeminputs
a f1(t) + Bf2(t) is equalto the correspondindinear combinationof the systemof
outputs thatis ayi (t) 4+ By2(t). Thisis basicallythelinearity principle. Notethat
thelinearity principleis valid undertheassumptiorthatthe systeminitial conditions
are zero (systemat rest). The linearity principle is, in fact, the superposition

principle, the well known principle of elementarycircuit theory.
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Thelinearity principlecanbeputin aformal mathematicaframeworkasfollows.
If we introducethe symbolicnotation,the solutionsof the considerecequationsan

be recordedas

yi(t) = L{f1()}, v2(t) = L{Sf2(2)}

where L standsfor a linear integral type operator. In order to get a solution of
an nth order differential equation,the correspondingdifferential equationhasto
be integratedn-times. That is why, linear dynamic systemscan be modelledas
integrators. Note that the considereddifferential equationscan be multiplied by
someconstantssay a and 3 producing

ayi(t) = L{afi(t)} = aL{f1(¢)}
By2(t) = L{Bf2(1)} = BL{f2(1)}
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Adding theseequationsleadsto the conclusionthat

ay1(t) + By2(t) = L(afi(t)) + L(BSf2(1))

It follows that the linearity principle can be mathematicallystatedas follows

L{afi(t) + Bf2(t)} = eL{f1(?)} + BL{f2(¢)}

Usingasimilar reasoningye canstatethelinearity principlefor anarbitrarynumber

of inputs, that is
L{aifi(t) + azfa(t) + - -+ anfn(t)}

= aiL{f1(t)} + col{f2(t)} + - - - + anL{fn ()}

wherea;,t = 1,2,..., IN, are constants.
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The linearity principle is demonstratedjraphicallyin Figure 1.8.

af, ()

t
———— = Linear System Ll()

Bf, (1) The Same BY,(t)
Linear Systeml -

af () + B, The Same | ay,(t) + BY,t)
Linear Systeml

1.8: Graphical representation of the linearity principle for a system at rest

It is straightforwardto verify, by usingsimilar agumentsthat the linear difference

equationalso obeysto the linearity principle, that is
L{aifi[k] + azf2[k] + - -+ + anfN[k]}

= a L{Aik]} + aoL{folk]} + - - + anL{fn[k]}

wherea;,t = 1,2,..., N, are constants.
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1.2.2Linear SystemTime Invariance

For a generalnth orderlinear dynamicsystem,representedy

d"y(t) d"y(t) d"*y(t) dy(t)
] ——— "’ neg——— ... AN t
e P Rry— + + aq o + aoy(t)
d™f(t) d™1f(t) df (¢)
= by’ 4 by~ L .. 4 b bo f(t
S F bmo T b= b (1)

the coeficientsa;,2 = 0,1,2,...,n—1, andb;,z = 0,1, 2, ..., m, areassumed
to be constantwhich indicatesthat the given systemis time invariant.

Here,we give anadditionalclarificationof the systemtime invariance.Consider
a systemat rest The systemtime invarianceis manifestedoy the constantshapen
time (waveform)of the systemoutputresponsealueto the giveninput. The output
responsef a systemat restis invariantregardles®f theinitial time of theinput. If
the systeminputis shiftedin time, the systemoutputresponselueto the sameinput

will be shiftedin time by the sameamountand, in addition, it will preservethe
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samewaveform. The correspondingyraphicalinterpretationof the time invariance

principle is shownin Figure 1.9.

b f11) b (1)
/ 0\ O Linear System —y(t)>
0 t 0 r
Jt-1) y(t-t,)
fit-t) The Same Y(t-t,)
{ ﬁ Linear System
ol t o ¢ P

Figure 1.9: Graphical representation of system time invariance

The sameargumentspresentedor the time invarianceof continuous-timdinear
dynamicsystemsdescribedoy differential equationshold for the time invariance
of discrete-timdinear dynamicsystemsdescribedby differenceequations.

The systemlinearity and time invarianceprincipleswill be usedin the follow
up chaptergo simplify the solutionto the main linear systemtheory problem,the

problemof finding the systemresponsadueto arbitrary input signals.
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1.3 Mathematical Modeling of Systems

An Electrical Circuit

Considera simple RLC electricalcircuit presentedn Figure 1.10.

i L Ry
o TTTTT—AAAA .
I2 i3
Q R2 C= &

Figure 1.10: An RLC network

Applying the basiccircuit laws for voltagesand currents,we obtain

di1 (t)
dt

ei(t) =L —|— Rlil(t) —|— eo(t)
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and
t

eo(t) = Rziz(t) = %/ig(‘l’)d‘l’ + ’Uc(O) = 13=0C

deo(t)
dt

i1(t) = ia(t) + i3(t)

It follows from the aboveequationsthat

deo(t)
dt

. 1
Zl(t) = R—zeo(t) —|— C
Fromtheseequationsve obtainthedesiredsecond-ordedifferentialequationwhich

relatesthe input and outputof the system,andrepresenta mathematicamodel of

the circuit given in Figure 1.10
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dzeo(t) (L + Rlec) deo(t) n (Rl + R,

) (t) = ——ei(t)
e = —e€,;
dt2 R,LC dt R,LC ) ° LC "

In orderto be ableto solvethis differentialequationfor eg(t), theinitial conditions
eo(0) and deo(0)/dt must be known (determined). For electrical circuits, the
initial conditionsare usually specifiedin termsof capacitorvoltagesand inductor
currents. Hence,in this example,eo(0) and de(0)/dt shouldbe expressedn
termsof v (0) and¢;1(0). Note thatin this mathematicamodele;(t) represents
the systeminput andeg(t) is the systemoutput. However,any of the currentsand

any of the voltagescan play the roles of eitherinput or outputvariables.
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A Mechanical System

A translationalmechanicakystemis representedan Figure1.11.

k, ke
4\/\/\_
m kK my F
T ay
L L
B> B1
—Y, —Y

Figure 1.11: A translational mechanical system

Using the basiclaws of dynamics,we obtain

d2yy (1) LB (dyl(t) B dy2(t)
dt? dt dt

F1=m1

) Tk (wa(t) — ya(®)
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and

dzyz(t) B dyz(t)
dit? 2 dt

—k1(y1(t) — y2(1))

F2=m2

dyl(t) _ dyz(t))

k t) — B
+ kay2(t) 1( o ™

This systemhastwo inputs F; and F», andtwo outputs y;(¢t) andy2(t). These

equationscan be rewritten as

d*y1(t) dy1(t) dya(t)
B k t) — B —k t) = F
m— 1~ + k1y1(t) 1= 1y2(t) 1
an dys (t) a2y (t) dys (1)
Y1 Y2 Y2
— — k t B B
1= 1y1(t) + ma 2 + (B1 + B2) ™

(k1 + k2)y2(t) = F

Techniquedor obtainingexperimentallymathematicalmodelsof dynamicsys-

temsare studiedwithin the scientific areacalled systemdentification
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Amortization ProcessModel

If we purchasea house,or a car, and take a loan of d dollars with a fixed
interestrate of R percentperyear (r = R/12 per month),thenthe loan is paid
backthroughthe processknownin economicsasamortization.Using simplelogic,
it is not hardto concludethatthe outstandingprincipal, y[k], at k 4+ 1 discretetime

instant(month)is given by the following recursiveformula (differenceequation)

ylk + 1] = y[k] + ry[k] — flk + 1] = (1 + r)y[k] — flk + 1]

where f[k + 1] is the paymentmadein (k 4 1)st discrete-timeinstant(month).

Let us assumethat the monthly loan paymentis constantsay f[k] = p. The
guestionthat we wish to answeris: whatis the monthly loan paymentneededo

pay back the entire loan of d dollars within N months?
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The answerto this questioncan be easily obtain by iterating this difference
equationand finding the correspondingsolution formula. Since y[0] = d and

fl1] = f[2] = - - - = f[N] = p areknown, we havefor k = 1 andk = 2
yl1] = (1 + r)yl0] — F11] = (1 + r)d — p
y(2) = (1 + ryll] — F[2] = (1 + {1+ r)d— p} — p
=(14+r)d—(Q+r)p—0p
Continuingthis procedurefor k = 3, ..., N, we canrecognizethe patternand get
yBl=(1+r)’d—(1+r)’p—(1+r)p—p
y[N]=(1+nr)Vd—(1+r)"'p—---—(14+7)’p—(14+r)p—p

N-—-1
=(1+r)Nd—p ) (1+r)

1=0
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The formula obtainedrepresentdhe solution of the differenceequation. The

formula canbe evenfurther simplified using the known summationformula

Applying this formula, we obtain

1+r)N —1

(1+r)_1 =(1—|—r)Nd—p

y[N]=(1+r)Vd—p

(1+r)N -1
r

We concludethatthe loanis paid backwheny[N] = 0, whichimpliesthe formula

for the requiredmonthly paymentas

o=@1+rVd—p

(14+r)N -1 Lo r(1 4+ 7)Y P
r _(1—|-r)N—1
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Heart Beat Dynamics

Dynamicsof a heartbeat(diastoleis a relaxedstateand systoleis a contracted
state of a heart) can be approximatelydescribedby the following set of linear

differential equations

2 1 1

z1(t) = ——w1(t) — —x2(t) — —w3(1)
€ € €
C'Bz(t) = —2521(1}) — 2522(1})

z3(t) = —a2(t)
wherex(t) is the lengthof musclefibre, x2(t) representshe tensionin the fiber
causedby blood pressureand x3(t) representslynamicsof an electrochemical
procesghatgovernsthe heartbeat,ande is a small positive parameter.The system

is driven by theinitial conditionthat characterizethe heart’'sdiastolicstate,whose

normalizedvalue,in this model,is equalto (z1(0), z2(0), z3(0)) = (1, —1,0).
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Eye Movement (Oculomotor Dynamics)

Dynamicsof eye movement(muscles,eye, and orbit) can be modeledby the

second-ordesystemrepresentedy

dy(t) (L +L) dy(t) 1 (t)zéf(t)

dt2 T T2 dt Tszy

whererT; = 13 ms andm = 224 ms arerespectivelythe minor and major eye
time constants.y(t) is the eye positionin degreesand f(t) is the eye stimulus
forcein degreegreferenceeyeposition,targetposition). Severabthermathematical
modelsfor eye movementexist in the biomedicalengineerinditerature,including

a more complexmodel of ordersix to be presentedn Chapter8, Problem8.46.
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BOEING Air craft

The linearizedequationggoverningthe motion of a BOEING's aircraft are

d(:zi ) = —0.318a(t) + 56.7q(t) + 0.232£.(t)
d‘;(t ) o, 0139a(t) — 0.426q(t) + 0.0203 f.(t)

6(t) _ 56.7q(t)

wherea(t) in theaircraftangleof attack,q(t) is the pitch rate,andé(t) represents
the aircraft pitch angle. The driving force f.(t) standsfor the elevatordeflection
angle. Differentiating the above system of three first-order linear differential
equations,it can be replacedby one third-order linear differential equationthat

gives direct dependencef 8(t) on f.(t), thatis

d*6(t) d*6(t) dé(t) dfe(t)
dt? dt

23 + 0.739 + 0. 921d— = 1.151

+ 0.1774f.(t)
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1.4 System Classification

Real-world systemsare either static or dynamic. Static systemsare represented
by algebraicequations.for examplealgebraicequationsdescribingelectrical cir-
cuits with resistorsand constantvoltage sources,or algebraicequationsin statics
indicating that at the equilibrium the sumsof all forcesare equalto zero.
Dynamic systemsare, in general, describedeither by differential/diffelence
equations(also known as systems with concentrated or lumped parameters) or by
partial differential equations(known as systems with distributed parameters). For
example electricpowertransmissionines, wave propagationpehaviorof antennas,
propagationof light throughoptical fiber, and heatconductionrepresentdynamic
systemsdescribedby partial differential equations.For example,one dimensional

electromagnetiovave propagationis describedoy the partial differentialequation
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O*E(t, ) + cz(’92E(t,ar;) _ o
ot? dx2

E(t,x) is electricfiled, t representsime, x is the spacialcoordinateand c is the
constantthat characterizeshe medium. Systemswith distributed parametersare
alsoknown asinfinite dimensionabystemsin contrastto systemswith concentrated
parameterghat are known as finite dimensionalsystemgthey are representedy
differential/diferenceequationsof finite orders,n < oo).

Dynamic systemswith lumped parameterscan be either linear or nonlinear.
Linear dynamic systems are describedby linear differential/diferenceequations
andthey obeyto the linearity principle. Nonlinear dynamic systems are described
by nonlineardifferential/diferenceequations.For example,a simple pendulumis

describedby the nonlineardifferential equation
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’o(t) g . B
o —|—;sm(9(t))_0

6(t) is the pendulumangle,g = 9.8 m/s? is the gravitationalconstantand m is

the pendulummass,andsin (6(t)) is a nonlinearfunction.

We can also distinguishbetweentime invariant systemgsystemswith constant
coeficients) obeying to the time invariance principle and time-varying systems
whose parameterchangein time. For example,the linear time varying model
of the Erbium-dopedoptical fiber amplifier is given by

dN(t) 1
dt + Tl(t)

N(t) = bp(®)Py + 3 bi(t) P

=1

N (t) representdeviation from the nominal value of the averagelevel of the

normalizednumberof Erbium atomsin the upperexcitedstate,r;(t) is the time
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varying time constant,P, and Ps; are respectivelylaserpump and optical signal

power deviationsfrom their nominalvalues,and b, (t) andb;(t) are coeficients.

Somesystemparametersand variablescan changeaccordingto randomlaws.
For example the generategpowerof a solarcell, househumidity andtemperature.
Sometimessysteminputs are randomsignals. For example,aircraft underwind
disturbancesgelectric current under electron thermal noise. Systemsthat have
random parametersand/or processrandom signals are called stochastic systems.
Stochasticsystemscanbe eitherlinear or nonlinear,time invariantor time-varying,
continuousor discrete. In contrastto stochasticsystems,we have deterministic

systems whoseparametersand input signalsare deterministicquantities.

Real world physical systemsare known as nonanticipatory systems or causal
systems. Let the input f(¢;) be appliedto a systemat time ¢;. The real physical

systemcan only to producethe systemoutput at time equalto ¢;, thatis y(%;).
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The real physical systemcannot,at time ¢;, produceinformation abouty(t) for
t > t1. Thatis, the systemis unableto predictthe future input valuesandproduce
the future systemresponsey(t), basedon the information that the systemhas
at time t1. The systemcausalitycan also be defined with the statementhat the
systeminput f(t2) hasno impacton the systemoutputy(¢1) for 2 > t;. In
contrastto nonanticipatory(causal)systems,we have anticipatory or noncausal
systems. Anticipatory systemsare encounteredn digital signal processing—they

are artificial systems.

Dynamic systemsare also systems with memory. Namely, the systemoutput
at time t; dependsnot only on the systeminput at time ¢;, but also on all
previousvaluesof the systeminput. Let y(t) = ¢(f(t)) be the solution of

the correspondinglifferential equationrepresentinga dynamicsystem.
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The fact that the dynamic systempossessememory can be formally recordedas
y(t1) = o(f(t)), to < t < t;. In contraststatic systemshave no memory. If
the relationshipy(t) = ¢(f(t)) camefrom a static system,thenwe would have
y(t1) = ¢(f(t1)). Thatis, for staticsystemsthe outputat time ¢; dependonly
on the input at the given time instantt;. Static systemsare known as memoryless
systems or instantaneous systems. For example,an electric resistoris a static
systemsinceits voltage (systemoutput) is an instantaneou$unction of its current
(systeminput) sothaty(t) = v(t) = Ri(t) = Rf(t) for anyt.

Analog systems dealwith continuous-timesignalsthat cantake a continuumof
valueswith respecto the signalmagnitude.Digital systems procesdigital signals
whose magnitudescan take only a finite numberof values. In digital systems,
signalsare discretizedwith respectto both time and magnitude(signal sampling

and quantization.
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