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where

Q
�
=

FPh(t1) FPh(t2) � � � FPh(t
)

GPh(t1) GPh(t2) � � � GPh(t
)

FG1Ph(t1) FG1Ph(t2) � � � FG1Ph(t
)

FG2Ph(t1) FG2Ph(t2) � � � FG2Ph(t
)
...

...
...

...
FGqPh(t1) FGqPh(t2) � � � FGqPh(t
)

:

With the proper choice of the inputu(t); Q can be guaranteed to be
nonsingular. Then

[A B N1 N2 � � � Nq]

= fF � [x0 0 � � � 0]g

� [h(t1) h(t2) � � � h(t
)]Q
�1
:

(37)

Now, the unknown parametersA;B;N1; . . . ; Nq are determined.

V. NUMERICAL EXAMPLES

Example 1: Consider the bilinear system of the form (1), where

A =
�2 1

1 �2
; B = 0; N =

1 0

0 1

u(t) = exp(�t); and x(0) =
1

0
: (38)

If we solve (38) forx(t) directly, the analytic solution forx(t) can be
shown to be

x(t)

=
1

2
�

exp(�t� exp(�t) + 1) + exp(�3t� exp(�t) + 1)

exp(�t� exp(�t) + 1)� exp(�3t� exp(�t) + 1)
:

(39)

The comparison between the Haar solution and the analytic solution
for t 2 [0; 8) is shown in Fig. 1, which confirms that high accuracy has
been obtained from the Haar approach with the integration time step
0.0625.

Example 2: Consider a second-order bilinear system

_x(t) = Ax(t) +Bu(t) +N1x(t)u1(t) +N2x(t)u2(t); (40)

The response data due to the inputu1(t) = exp(�t) andu2(t) =
cos(t) are shown in Table II.

Now, assume the parametersA; B; N1, andN2 are unknown. By
(37) we have 42. By comparing (41) to (42), shown at the bottom of
the previous page, we see that the estimation process is very effective
and the result is satisfactory. In this example,m = 16 is used. If a
larger value ofm is chosen, a better estimation is expected.

VI. CONCLUSION

Some fundamental properties on Haar wavelets such as (18), (23),
and (26) have been derived and some effective algorithms have been
applied to solve the rather difficult bilinear problems successfully. The
main contributions should be ascribed to the nice local orthogonal Haar
wavelets. The application region beyond bilinear systems can be widely
enlarged to include time-varying, nonlinear, stochastic optimum con-
trols, etc. We are fully confident of the future development for the HT
method, since the sound base has been established.
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Reduced-Order Optimal Filtering for Systems with
Slow and Fast Modes

Myo-Taeg Lim and Zoran Gajic

Abstract—In this paper we present a method that allows complete
time-scale separation and parallelism of the optimal filtering
problem for linear systems with slow and fast modes (singularly perturbed
linear systems). The algebraic Riccati equation of singularly perturbed

filtering problem is decoupled into two completely independent re-
duced-order pure-slow and pure-fast algebraic Riccati equations. The
corresponding filter is decoupled into independent reduced-order,
well-defined pure-slow and pure-fast filters driven by system measure-
ments. The proposed exact closed-loop decomposition technique produces
many savings in both on-line and off-line computations and allows parallel
processing of information with different sampling rates for slow and fast
signals.

Index Terms—Filters, optimization, reduced-order systems, singu-
larly perturbed systems.

I. INTRODUCTION

During the last 15 years theH1 optimization became one of the
most interesting and challenging areas of optimal control and filtering.
TheH1 filter has recently become popular in signal processing (see
[1]and [2] and references therein). The main advantage of theH1 op-
timization is that such controllers and filters are robust with respect to
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internal and external disturbances. The additional advantage of theH1

filter over the standard Kalman filter is that the former does not require
knowledge of the system and measurement noise intensity matrices:
data hardly exactly known.

In this paper we study theH1 filter for linear systems with slow and
fast modes. The standard Kalman filter of singularly perturbed linear
systems has been studied in [3] and [4]. The difficulties encountered
with theH1 filter of singularly perturbed linear systems are that the
corresponding algebraic filter Riccati equation is ill conditioned and
contains an indefinite coefficient matrix multiplying the quadratic term,
which makes this equation much more difficult for studying than the
corresponding one of the standard singularly perturbed optimal Kalman
filtering problem.

In [5], the algebraic regulator Riccati equation of theH1 optimal
linear regulator problem is decoupled into the reduced-order pure-slow
and pure-fast algebraic regulator Riccati equations. In this paper, we
first extend the results of [5] to the decomposition of theH1 algebraic
filter Riccati equation so that the coefficients of theH1 pure-slow
and pure-fast filters can be obtained with very high accuracy (theoret-
ically with perfect accuracy), which is very important due to the fact
thatH1 filters can be fragile in the sense that very small perturbations
in the filter coefficients can destroy the filter's stability, [6]. In that di-
rection, we use duality between optimal linear filters and regulators,
which in this case requires some modifications as indicated throughout
the paper. In the second part of the paper, we show how to decompose
theH1 singularly perturbed filter into independent well-conditioned
H1 reduced-order filters. In addition, we explain why the transfor-
mation used in the decomposition of the algebraicH1 filter Riccati
equation does not decouple theH1 filters (which is the case in the
standard Kalman filtering of singularly perturbed linear systems, [4]).
The filters obtained are completely independent and can work in par-
allel. Each of them can process information with a different sampling
rate. The fast filter requires a small sampling period and the slow one
can process information with a relatively large sampling period.

II. PROBLEM FORMULATION

Consider the linear singularly perturbed system

_x1(t) = A1x1(t) +A2x2(t) +D1w(t)

� _x2(t) = A3x1(t) +A4x2(t) +D2w(t) (1)

with the corresponding measurements

y(t) = C1x1(t) + C2x2(t) + v(t) (2)

wherex1(t) 2 Rn andx2(t) 2 Rn are slow and fast state variables,
respectively,y(t) 2 Rp are system measurements,w(t) 2 Rr , and
v(t) 2 Rp are system and measurement disturbances.Ai; i = 1; 2; 3; 4
andCj ; Dj ; j = 1; 2 are constant matrices of appropriate dimensions.
� is a small positive singular perturbation parameter which indicates
system separation into slow and fast time scales.

In this paper we design a filter to estimate system statesx1(t) and
x2(t). The states to be estimated are given by a linear combination

z(t) = G1x1(t) +G2x2(t): (3)

The estimation problem is to obtain an estimateẑ(t) of z(t) 2 Rq

using the measurementsy(t) [2], [7], [8]. The measure of the infi-
nite horizon estimation problem is defined as a disturbance attenuation
function

J =

1

0
kz(t)� ẑ(t)k2R dt

1

0
kw(t)k2

W
+ kv(t)k2 dt

(4)

whereR � 0 andW > 0 are weighting matrices to be chosen by
designers. TheH1 filter is to ensure that the energy gain from the dis-
turbances to the estimation errorsz(t)� ẑ(t) is less than a prespecified
level 
2. That is,

sup
w;v

J < 

2 (5)

wheresup stands for supremum and
2 is a prescribed level of noise
attenuation. TheH1 filter of (1)–(2) is given by [2]

_̂x1(t) = A1x̂1(t) +A2x̂2(t) +K1�(t)

� _̂x2(t) = A3x̂1(t) +A4x̂2(t) +K2�(t)

�(t) = y(t)� C1x̂1(t)� C2x̂2(t) (6)

where the filter gainsK1 andK2 are obtained from

K1 = P1C
T
1 + P2C

T
2 ; K2 = �P

T
2 C

T
1 + P3C

T
2 (7)

with matricesP1; P2, andP3 representing the positive definite stabi-
lizing solution of the following algebraic Riccati equation [2], [7]:

AP + PA
T � P C

T
C �

1


2
G
T
RG P +DWD

T = 0 (8)

where

A =
A1 A2

1

�
A3

1

�
A4

D =
D1

1

�
D2

P =
P1 P2

P T
2

1

�
P3

C = [C1 C2] G = [G1 G2]: (9)

In the following, we will achieve the slow–fastH1 filter decompo-
sition in which both filters will be independent and directly driven by
the system measurements and thus we will eliminate the need for com-
munication of estimates.

III. D ECOMPOSITION OF THEH1 FILTER ALGEBRAIC RICCATI

EQUATION

Consider the optimal closed-loop filter (6) driven by the system mea-
surements

_̂x1(t) = (A1 �K1C1)x̂1(t) + (A2 �K1C2)x̂2(t) +K1y(t)

� _̂x2(t) = (A3 �K2C1)x̂1(t) + (A4 �K2C2)x̂2(t) +K2y(t)

(10)

with the optimal filter gainsK1 andK2 defined in (7)–(9). By duality
between the optimal filter and regulator, theH1 filter algebraic Riccati
equation (8) can be solved by using the same decomposition method
(with some small modifications) as the one used for solving the cor-
respondingH1 regulator algebraic Riccati equation [5]. By invoking
the results from [4] and [5] and using duality between the optimalH1
linear-quadratic controllers and optimalH1 filters the following ma-
trices have to be formed:

T1 =
AT
1 � CT

1 C1 �
1



GT
1 RG1

�D1WDT
1 �A1

T2 =
AT
3 � CT

1 C2 �
1



GT
1 RG2

�D1WDT
2 �A2

T3 =
AT
2 � CT

2 C1 �
1



GT
2 RG1

�D2WDT
1 �A3

T4 =
AT
4 � CT

2 C2 �
1



GT
2 RG2

�D2WDT
2 �A4

: (11)



252 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 2, FEBRUARY 2000

It can be shown after some algebra that matrices(T1; T2; T3; T4)
comprise the system matrix of a standard singularly perturbed system,
namely

_x1
_p1
_x2
_p2

=
T1 T2
1
�T3

1
�T4

x1

p1

x2

p2

: (12)

Note that in contrast to the results of [5], where the state–costate vari-
ables have to be partitioned asxT = [xT1 xT2 ] andpT = [pT1 �pT2 ],
in the case of the dual filter variables we must use the following parti-
tionsxT = [xT1 �xT2 ] andpT = [pT1 pT2 ] (duality modification). Since
matricesT1; T2; T3; andT4 correspond to the system matrices of a sin-
gularly perturbed linear system, the slow–fast decomposition of (12)
can be achieved by using the Chang decoupling equations [9] of the
form

T4M � T3 � �M(T1 � T2M) = 0

�N(T4 + �MT2) + T2 + �(T1 � T2M)N = 0: (13)

The unique solutions of algebraic equations (13) exist by the implicit
function theorem, for� sufficiently small, under the assumption that the
matrixT4 is nonsingular. The solutions of the above equations can be
easily obtained in terms of linear algebraic equations by using either the
Newton method or the fixed point iterations with the initial conditions
given byM (0) = M + O(�) = T�1

4 T3 andN (0) = N + O(�) =
T2T

�1
4 . Using the results of [10] and duality betweenH1 optimal

linear-quadratic regulators andH1 optimal filters, it follows that the
matrixT4 is nonsingular under the following assumption.

Assumption 1:The triple(A4; C2; D2) is controllable observable.
The Chang decoupling transformation corresponding to (12) and

(13) is given by [9]

T =
I � �NM ��N

M I
: (14)

From the results of [5], we have

P = 
3 +
4
Ps 0

0 Pf

1 + 
2

Ps 0

0 Pf

�1

(15)

where the pure-slow and pure-fast well-conditioned reduced-order al-
gebraicH1 filter Riccati equations are given by

Psa1 � a4Ps � a3 + Psa2Ps = 0

Pfb1 � b4Pf � b3 + Pfb2Pf = 0 (16)

with

a1 a2

a3 a4
= T1 � T2M;

b1 b2

b3 b4
= T4 + �MT2: (17)

The
i; i = 1; 2; 3; 4, matrices in (15) are


 =

1 
2


3 
4
= E

�1
1 T

�1
E2

= E
�1
1

I �N

�M I � �MN
E2: (18)

The permutation matrices dual to those from [5] (note thatE1 is dif-
ferent than the corresponding one from [5], which is another duality
modification) are given by

E1 =

In 0 0 0

0 0 In 0

0 1
� In 0 0

0 0 0 In

E2 =

In 0 0 0

0 0 In 0

0 In 0 0

0 0 0 In

: (19)

Since

a1 a2

a3 a4
= T1 � T2M = T1 � T2 M

(0) +O(�)

= T1 � T2T
�1
4 T3 +O(�)

Ts +O(�) =
AT
s � CT

s Cs �
1


GT
s RsGs

�DsWsD
T
s �As

+O(�) (20)

and

b1 b2

b3 b4
= T4 + �MT2 = T4 +O(�)

=
AT

4 � CT
2 C2 �

1


GT

2 RG2

�D2WDT
2 �A4

+O(�): (21)

it follows that by perturbing the coefficients of the algebraic Riccati
equations (16) we get the followingH1 symmetric algebraic filter Ric-
cati equations:

P
(0)
s A

T
s +AsP

(0)
s +DsWsD

T
s

� P
(0)
s C

T
s Cs �

1


2
G
T
s RsGs P

(0)
s = 0 (22)

P
(0)
f A

T
4 +A4P

(0)
f +D2WD

T
2

� P
(0)
f C

T
2 C2 �

1


2
G
T
2 RG2 P

(0)
f = 0: (23)

An important feature of (22) and (23), which distinguishes these
equations from the standard algebraic filter Riccati equation, is that
the quadratic terms have indefinite coefficient matrices. The algorithm
of [11], developed for solving theH1 algebraic Riccati equations
in terms of Lyapunov iterations, converges globally to the unique
positive definite stabilizing solution of (23) under Assumption 1. The
same algorithm finds the unique positive definite stabilizing solution
of (22) under the following assumption.

Assumption 2:The triple (As; Cs; DsWsDT
s ) is control-

lable–observable.
The matrixDsWsD

T
s can be obtained from (20) by compatibly par-

titioning the matrixTs. The matrixCs can be found analytically by
using the procedure of [12] as follows:

C
T
s = C

T
0 I + C2A

�1
4 D2WD

T
2 A
�T
4 C

T
2

�1=2

: (24)

Note that this expression requires invertibility of matrixA4, which is
the standard assumption in theory of singularly perturbed linear sys-
tems, [14].

Equations (22) and (23) can be also solved with the MATLAB
package by using the Schur method.

The existence of the unique solutions of (16) is guaranteed by the
implicit function theorem, [15], since theirO(�) perturbations are
uniquely obtained from (22) and (23).
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IV. DECOMPOSITION OF THEH1 FILTER

It is interesting to point out that for the singularly perturbed Kalman
filtering problem, the transformation that relates the old and new coor-
dinates given by [4]

� = (�1 +�2P ) (25)

where

� =
�1 �2

�3 �4
= ET

2

I � �NM ��N

M I
E1 (26)

is used to decouple both the algebraic filter Riccati equation and the
Kalman filter into independent pure-slow and pure-fast components
[4]. However, in the case of theH1 filtering the similarity transfor-
mation

�̂s(t)

�̂f(t)
= ��1

x̂1(t)

x̂2(t)
(27)

does not produce in the new coordinates the optimal pure-slow and
optimal pure-fast filters, that is

_̂�s(t)
_̂�f(t)

= ��1
A1 �K1C1 A2 �K1C2

1
�
(A3 �K2C1)

1
�
(A4 �K2C2)

� �
�̂s(t)

�̂f(t)
+ ��1

K1
1
�
K2

y(t) (28)

does not lead to a block diagonal filter matrix in the new coordinates.
The reason for this inconsistency lies in the fact that the closed-loop
H1 filtering problem matrix is

A� P CTC �
1


2
GTRG = A �KC �

1


2
PGTRG: (29)

This matrix is indeed block diagonalized by the similarity transforma-
tion�. However, theH1 optimal filter defined in (10) has the feedback
matrix given by

A � PCTC = A �KC

=
A1 �K1C1 A2 �K1C2

1
�
(A3 �K2C1)

1
�
(A4 �K2C2)

(30)

This singularly perturbed matrix can be diagonalized by using another
Chang transformation of the form

TF =
I � �HL ��H

L I
; T

�1
F =

I �H

�L I � �LH
(31)

whereL andH matrices satisfy the Chang decoupling equations

(A4 �K2C2)L� (A3 �K2C1)� �[(A1 �K1C1)

�(A2 �K1C2)L] = 0

�H(A4 �K2C2) + (A2 �K1C2)� �HL(A2 �K1C2)

+ �[(A1 �K1C1)� (A2 �K1C2)L]H = 0: (32)

The unique solutions of these equations exist under the as-
sumption that the matrixA4 � K2C2 is nonsingular. Note
that based on theory of singular perturbations [14], the matrix
A4�P3C

T
2 C2� (1=
2)P3G

T
2 RG2 is nonsingular since it represents

the fast feedback matrix. By the result from [8], the stability of
the matrixA4 � P3C

T
2 C2 � (1=
2)P3G

T
2 RG2 implies that the

matrix A4 � P3C
T
2 C2 is nonsingular also. Using (7) we see that

A4 �K2C2 + O(�) is a stable matrix. Thus, the matrixA4 �K2C2

is stable for sufficiently small values of the small singular perturbation
parameter�. The unique solutions of (32) can be easily obtained either

by using the Newton method or the fixed point iterations starting with
the following initial conditions:

L(0) = (A4 �K2C2)
�1(A3 �K2C1)

M (0) = (A2 �K1C2)(A4 �K2C2)
�1: (33)

Hence, the application of the following similarity transformation:

�̂s(t)

�̂f (t)
= T�1F

x̂1(t)

x̂2(t)
(34)

produces in the new coordinates theH1 optimal pure-slow and op-
timal pure-fast reduced-order filters, that is,

_̂
�s(t)
_̂
�f (t)

= T�1F

A1 �K1C1 A2 �K1C2
1
�
(A3 �K2C1)

1
�
(A4 �K2C2)

�TF

�̂s(t)

�̂f (t)
+T�1F

K1
1
�
K2

y(t)

_̂
�s(t)
_̂
�f (t)

=
as 0

0 1
�
af

�̂s(t)

�̂f (t)
+

Ks

1
�
Kf

y(t) (35)

with the pure-slow and pure-fast filter gains given by

Ks

1
�
Kf

= T�1F

K1
1
�
K2

: (36)

Using the expression for the similarity transformation defined in (31)
we can obtain analytical expressions foras; af ; Ks; Kf as follows:

as = (A1 �K1C1)� (A2 �K1C2)L

af = (A4 �K2C2) + �L(A2 �K1C2)

Ks = K1 �HK2 � �HLK1

Kf = K2 + �LK1: (37)

The reduced-order independent pure-slow and pure-fast filtering
equations (35) represent the main result of this paper. Due to complete
independence of the slow and fast filters, the slow and fast signals
can be now processed with different sampling rates. In contrast,
the original full-order filter (10) requires the fast sampling rate for
processing of both the slow and fast signals.

V. CONCLUSION

An approach to solve theH1 filtering problem for linear systems
with slow and fast modes is proposed. The completely independent
reduced-order pure-slow and pure-fastH1 filters driven by the system
measurements are obtained. The proposed method allows independent
and parallel processing of information in slow and fast time scales.
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Bifurcations and Chaos in the Tolerance Band PWM
Technique

Andreas Magauer and Soumitro Banerjee

Abstract—In this paper we study the dynamical behavior of the tolerance
band PWM technique, which is used in controlling power electronic ac in-
verters and dc–dc converters. We demonstrate numerically as well as ex-
perimentally the existence of three basic modes: quasiperiodic, chaotic, and
square wave mode. We also observe saddle node bifurcation as the cause of
boundary crises with transient chaos, merging crisis following symmetry
breaking bifurcations and interior crisis. The critical value of the ampli-
tude of external reference for saddle node bifurcation is evaluated analyti-
cally by the Tsypkin method.

Index Terms—Chaos, hysteresis band method, PWM, tolerance band
method.

I. INTRODUCTION

Most power electronic circuits are controlled by pulse width modu-
lation (PWM) schemes. Various PWM control schemes are now avail-
able, each suitable for particular applications. A systematic categoriza-
tion can be found in [1].

It has been reported that dc-dc converters with the PWM principles
of current mode control [2], [3] and duty cycle control [4]–[9] exhibit
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chaotic behavior over a wide range of parameter values. Various non-
linear phenomena and pathways to chaos have been investigated.

In this paper we investigate the dynamics of another PWM tech-
nique, the tolerance band method [1]. This PWM technique is generally
applied to current controlled ac inverters for variable frequency drives
and uninterruptable power supply (UPS) systems. In addition, modern
concepts for voltage and current control in three-phase ac inverters with
decoupling of state space variables include this method [10]. Therefore,
the nonlinear dynamics of the tolerance band PWM technique is of im-
portance to the engineering community.

For the tolerance band method, no time base exists. The switching
action is controlled by the upper and lower threshold voltage of an
on–off controller with hysteresis. One of the system variables is com-
pared with the tolerance band around the reference waveform. If the
state variable tends to go above or below the tolerance band, appro-
priate switching action takes place and the variable is forced to follow
the reference waveform within the tolerance band.

Depending on the control strategy the feedback can be generated
by the load-voltage, the load-current or the inverter output current. We
study the load-voltage feedback with resistive loadR, as shown in
Fig. 1. The variable frequency is produced by variation of the frequency
of the sinusoidal reference signalW (�): To eliminate the higher har-
monics of the load current the LC filter is used.

Dc-dc converters can also use this principle, where the sinsoidal ref-
erence is changed to a constant value.

II. M ODEL OF THE SYSTEM, DIFFERENT EQUATION, AND THE

POINCARÉ MAP

From the point of view of control engineering the system in Fig. 1
shows a nonautonomous relay connected to a linear plant of second
order. Because the switching characteristic of the controller and the
linearity of the plant, the nonlinearity can be reduced to piecewise lin-
earity. This allows analytic integration of the differential equation in
each piece. The dependence of the signals on time is described by the
normalized time variableτ, given by� = !0t; where!0 = (

p
LC)�1

is the resonant frequency of the linear system of second order. Also, the
frequency of the sinusoidal drive signal!w is normalized to
 when
the timet is substituted, i.e.,!wt = (!w=!0)� = 
� . Furthermore,
the correcting variable of the controlleru(�), the output voltagex(�),
and the drive signalw(�) and the corresponding amplitudea, the error
signale(�), and the hysteresis or the width of the tolerance band of the
controllerh are normalized to the maximum value of the on–off con-
troller output voltageum

U(�) =
u(�)

2um
= �1

2
; X(�) =

x(�)

2um

W (�) =
w(�)

2um
; E(�) =

e(�)

2um

A =
a

2um
; H =

h

2

1

2um
: (1)

In normalized notation, the expression2H is the width of the toler-
ance band.H represents the threshold value where the switching action
takes place. The piecewise linear differential equation in normalized
notation is as follows:

X 00(�) + 2DX 0(�) +X(�) = U(E(�)) (2)

where

E(�) =W (�)�X(�)

W (�) =A cos[
� +�]
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