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General Transformation for Block Diagonalization
of Weakly Coupled Linear Systems Composed of

-Subsystems

Z. Gajic and I. Borno

Abstract—A transformation is introduced for exact decomposition
(block-diagonalization) of linear weakly coupled systems composed of
subsystems. This transformation can also be used for block diagonalization
of block-diagonally dominant matrices and, under certain assumptions, it
can be applied for block diagonalization of nearly completely decompos-
able Markov chains. A twelfth-order real-world power system example is
included to demonstrate the efficiency of the proposed method.

Index Terms—Block diagonalization, decoupling, large scale systems,
linear systems, weak coupling.

I. INTRODUCTION

The linear weakly coupled systems were introduced to the control
audience in [1] and since then have been studied by many control
researchers (see [2] and [3] and references therein). In addition, the
weakly coupled systems have been studied in mathematics [5]–[7],
economics [8], [9], and power system engineering [10]–[12] under
the name of block diagonally dominant matrices and block diagonally
dominant systems. In addition, weak coupling linear structures
also appear in nearly completely decomposable continuous- and
discrete-time Markov chains [13]–[15].

A decoupling transformation that exactly decomposes weakly cou-
pled linear systems composed of two subsystems into independent sub-
systems was introduced in [16]. In this paper we extend the results of
[16] and [17] to the general case of linear weakly coupled systems com-
posed ofN subsystems and establish conditions under which such a
transformation is feasible. The estimate of the rate of convergence of
the corresponding algorithm used for decomposition ofN weakly cou-
pled linear subsystems is given and compared to the case of two weakly
coupled linear subsystems.

Consider a continuous-time linear system consisting ofn states clus-
tered intoN groups of strongly interacting states. Weak interactions
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among different groups are expressed in terms of a small perturbation
parameter�. The dynamics of such systems are represented by the dif-
ferential equation

dx(t)

dt
= Ax(t) (1)

wherex is then-dimensional state vector partitioned consistently with
N subsystems as

x(t) = [xT1 (t) x
T
2 (t) � � � x

T
N(t)]T

with dimfxig = ni. The constant matrixA is partitioned as

A =

A11 �A12 � � � �A1N

�A21 A22 � � � � � �

� � � � � � � � � � � �

�AN1 �AN2 � � � ANN

(2)

where� is a small parameter. Each blockAii is of dimensionsni �
ni, hence,�N

i=1 ni = n. All elements in matrixA are assumed
to be bounded byO(1). Note that (1) and (2) can also be used to
model block-diagonally dominant nonlinear systems with bounded
weak interconnections. In addition, it is assumed that magnitudes of
all the system eigenvalues are bounded byO(1), that is, j�j j =
O(1); j = 1; 2; � � � ; n. This implies that the matricesAii are non-
singular withdet(Aii = O(1); i = 1; 2; � � � ; N , which is the stan-
dard assumption for weakly coupled linear control systems and also
corresponds to the block diagonal dominance of the system matrix
A. Thus, the main results presented in this paper are valid under the
following assumption.

Assumption 1:The magnitudes of the system eigenvalues are
bounded byO(1), that is, j�j j � O(1); j = 1; 2; � � � ; n, which
implies that the matricesAii; i = 1; 2; � � � ; N are nonsingular with
detAii = O(1).

Note that when this assumption is not satisfied, the system (1), in ad-
dition to weak coupling, also displays multiple time scale phenomena
(singular perturbations), [14], [18].

In the cases when a linear weakly coupled system is not in its explicit
form defined by (1) and (2), one can use the methodology of [19] and
[20] in order to achieve the desired weakly coupled structure.

II. DECOUPLINGTRANSFORMATION

Our goal is to find a transformation that makes the matrixA block
diagonal. Consider the following change of the state variables, which
represents a generalization of a transformation derived in [17] for two
subsystems (see also [3, p. 72] where the results of [17] are reviewed)

�i(t) = xi(t) + �

N

j=1;j 6=i

Lijxj(t); i = 1; � � � ; N: (3)

This leads to

_�i(t) = _xi(t) + �

N

j=1;j 6=i

Lij _xj(t); i = 1; 2; � � � ; N: (4)

By eliminating _xi(t); i = 1; 2; � � � ; N from (1), (2), that is

_xi(t) = Aiixi(t) + �

N

j=1;j 6=i

Aijxj(t); i = 1; 2; � � � ; N

(5)
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and using (3), we get

_�i(t) = Aii + �
2

N

j=1;j 6=i

LijAji �i(t)

+ �

N

j=1;j 6=i

Fij(Lij ; �)xj(t); i = 1; 2; � � � ; N

(6)

where

Fij(Lij ; �) =LijAjj � AiiLij + Aij

+ �

N

k=1;k 6=i;j

LikAkj

� �
2

N

k=1;k 6=i

LikAki Lij

i; j = 1; 2; � � � ; N; i 6= j: (7)

In order to achieve complete decoupling, the matricesLij must be
chosen such that

Fij(Lij ; �) = 0; 8i; j = 1; 2; � � � ; N: (8)

Assuming that (8) is satisfied, we get in the new coordinates a set of
completely decomposedN subsystems, that is

_�i(t) = 
i�i(t); i = 1; 2; � � � ; N (9)

with


i = Aii + �
2

N

j=1;j 6=i

LijAji; j = 1; 2; � � � ; N: (10)

Let

� = [�T1 �
T
2 � � � �

T
N ]T

then

_�(t) = 
�(t) (11)

where
 = diagf
1;
2; � � � ;
Ng.
The transformation matrix that relates the original weakly coupled

linear system and the set of completely decoupled subsystems in the
new coordinates is given by

�(t) = �x(t) (12)

where

�(�) =

I �L12 � � � �L1N

�L21 I � � � �L2N

... � � �
. . .

...
�LN1 � � � �LN(N�1) I

= I + �	 (13)

with the obvious definition of	.
Note that�(�) is invertible for sufficiently small values of�. This

transformation offers the advantage that it exactly decomposes a high-
order linear system intoN completely decoupled reduced-order sub-
systems that can be solved independently. The state of the system in

the original coordinates can be determined by the inverse transforma-
tion as

x(t) = ��1(�)�(t): (14)

The main problem that we are faced with is the solution of the system
of algebraic equations (8). This system has the form

LijAjj �AiiLij +Aij + �

N

k=1;k 6=i;j

LikAkj

� �
2

N

k=1;k 6=i

LikAki Lij = 0;

i; j = 1; 2; � � � ; N; i 6= j: (15)

It represents a system of nonlinear algebraic equations. However, the
nonlinear (quadratic) terms are nicely multiplied by the squares of the
small perturbation parameter�. Solving the system of algebraic equa-
tions (15) will be the focus of the next section.

III. I TERATIVE ALGORITHMS

In this section we present iterative algorithms for computing ma-
tricesLij by performing iterations on a set of linear algebraic equa-
tions.

Algorithm 1: The first algorithm that can be used to efficiently solve
the set of algebraic equations (15) is based on the fixed-point iterations.
The algorithm is given in two steps.

Step 1: Set� = 0 in (15) and solve theO(�) perturbed set of com-
pletely decoupled reduced-order algebraic Sylvester equations

L
(0)
ij Ajj � AiiL

(0)
ij + Aij = 0; i; j = 1; 2; � � � ; N; i 6= j:

(16)

Equation (16) has a unique solution under the assumption that matrices
Ajj andAii have no eigenvalues in common [21], thus, we have to
impose the following assumption.

Assumption 2:The matricesAjj andAii have no eigenvalues in
common for everyi; j; i 6= j.

This step produces anO(�) approximation for the desired solution,
that is,kLijk = kL

(0)
ij k+O(�). Note that under Assumptions 1 and 2

we havekL(0)
ij k = O(1) andkLijk = O(1).

Step 2: In order to improve the required solution accuracy up to any
arbitrary order, we propose the following fixed-point iteration scheme
with L

(0)
ij , obtained in Step 1, playing the role of the initial conditions

L
(m+1)
ij Ajj � AiiL

(m+1)
ij + Aij + �

N

k=1;k 6=i;j

L
(m)
ik Akj

� �
2

N

k=1;k 6=i

L
(m)
ik Aki L

(m)
ij = 0

i; j = 1; 2; � � � ; N; i 6= j; m = 0; 1; 2; � � � : (17)

Algorithm 1 has the advantage that it operates on the linear decou-
pled Sylvester’s equations to solve the set of nonlinear coupled alge-
braic equations (15).

The convergence proof of the fixed point algorithm (17) can be ob-
tained under Assumptions 1 and 2 by generalizing the corresponding
proofs of [3] and [16] toN subsystems. Note that under Assumptions 1
and 2, the system of nonlinear algebraic equations (15) has unique solu-
tions for sufficiently small values of� since the corresponding Jacobian
is nonsingular at� = 0. This also implies thatkL(0)

ij k = O(1). By gen-
eralizing the results of [3], [16], it can be established that the rate of con-
vergence of the algorithm (17) isO(�), hence,kLij�L

(m)
ij k = O(�m),

wherem is the number of iterations. It is interesting to point out that in
the case of algorithms considered in [3] and [16], that is, forN = 2 the
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convergence rate of the corresponding algorithms is much faster, that
is, it is equal toO(�2m).

Algorithm 2: Since (16) produces initial guesses that are onlyO(�)
apart from the exact solutions, it seems that the Newton method is an
excellent candidate for solving nonlinear algebraic equations (15). In
the following, the Newton algorithm for solving the set of nonlinear
coupled algebraic equations (15) is derived. The Newton method is
known for its quadratic rate of convergence, hence, this algorithm will
converge to the solutions of the algebraic equations (17) faster than the
fixed-point Algorithm 1, which has linear convergence. The Newton al-
gorithm can be basically derived by replacingLij with L

(m+1)
ij ; 8i; j,

substitutingL(m+1)
ij = L

(m)
ij +�ij ; 8i; j; i 6= j into quadratic terms,

and neglecting quadratic terms with respect to�ij . This yields the fol-
lowing algorithm:

L
(m+1)
ij Ajj � Aii + �

2
N

k=1;k6=i

L
(m)
ik Aki L

(m+1)
ij

+ �

N

k=1;k 6=i;j

L
(m+1)
ik Akj

� �
2

N

k=1;k 6=i

L
(m+1)
ik Aki L

(m)
ij

+Aij + �
2

N

k=1;k 6=i

L
(m)
ik Aki L

(m)
ij = 0

i; j = 1; 2; � � � ; N; i 6= j; m = 0; 1; 2; � � � :

(18)

It can be seen that the Newton method leads to a set of linear equa-
tions coupled by terms which areO(�) andO(�2). These equations
can be solved in terms of the decoupled linear equations by using the
fixed-point iterations as in Algorithm 1. SincekL(m+1)

ij � L
(m)
ij k =

O(�), we can replaceL(m+1)
ij in the third and the fourth terms of (19)

byL(m)
ij without affecting the corresponding fixed point type algorithm

which now has the form

L
(m+1)
ij Ajj � Aii + �

2
N

k=1;k 6=i

L
(m)
ik Aki L

(m+1)
ij

+Aij + �

N

k=1;k 6=i;j

L
(m)
ik Akj = 0

i; j = 1; 2; � � � ; N; i 6= j; m = 0; 1; 2; � � � : (19)

This algorithm can be called the hybrid Newton-fixed-point iterations
algorithm.

The Newton method requires an initial guess that has to be quite
close to the exact solution, otherwise the Newton method does not
converge. In such cases when the initial guess is not good (small pa-
rameter� is not very small), one has to use the fixed-point iterations
Algorithm 1.

Note that the Sylvester equations (16) have unique solutions if the
square matricesAii andAjj , i; j = 1; 2; � � � ; N; i 6= j have one or
more common eigenvalues. However, any solution of (16) and, subse-
quently, any solution of (17) will produce the desired transformation.
Namely, the fact that there are several solutions of (15) implies that
there are several transformations having the form of (13) that block
diagonalize the considered weakly coupled system composed ofN

subsystems. This is particularly important for nearly decomposable
Markov chains for which Assumptions 1 and 2 are not satisfied. For
block iterative methods for Markov chains, the reader is referred to
[15]. Here we just give the known result for solvability of (16) needed
when Assumptions 1 and 2 are not satisfies. The solvability condition
of the Sylvester equations is given by the following lemma [22].

Lemma 1: Equation (16) has a solution if and only if matrices

Ajj 0

0 Aii

and
Ajj Aji

0 Aii

(20)

are similar.

IV. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the presented method we
have run a twelfth-order power system example composed of three ma-
chines playing the role of three subsystems. Each machine is modeled
as a fourth-order subsystem consisting of a third-order synchronous
machine and a first-order exciter regulator system (see [23]).

MatricesAij ; i; j = 1; 2; 3, can be found in Delacouret al. Their
eigenvalues and determinants satisfy both Assumptions 1 and 2 since

detfA11g =142:2;

�(A11) = f�0:0362� j7:4534;�1:3733� j0:8211g;

detfA22g =147:5;

�(A22) = f�0:0241� j7:44461;�0:9649� j1:3148g;

detfA33g =1381:9;

�(A33) = f�16:6128;�3:9337;�0:1660� j4:5956g:

Using Algorithm 1 with� = 0:01, we have obtained the results pre-
sented in Table I. The accuracy of the solutions obtained is measured by
using the MATLAB functionnorm in the following sense error(m) =

maxi;j kFij(L
(m)
ij ; �)k. Note that this error estimate is a conserva-

tive measure so that the results presented in Table I are slightly worse


 =

0:0000 1 �0:2660 �0:0090 0 0 0 0 0 0 0 0

�2:7498 �2:78 �1:3601 �0:0370 0 0 0 0 0 0 0 0

�0:0011 0 0:0006 1:0000 0 0 0 0 0 0 0 0

�4:9447 0 �55:5028 �0:0389 0 0 0 0 0 0 0 0

0 0 0 0 �0:21 1 �1:5998 �0:005 0 0 0 0

0 0 0 0 �1:90 �1:8 9:2999 �0:120 0 0 0 0

0 0 0 0 0:00 0 �0:0007 1:000 0 0 0 0

0 0 0 0 �3:10 0 �55:9992 0:032 0 0 0 0

0 0 0 0 0 0 0 0 �0:197 1 �1:2001 �0:003

0 0 0 0 0 0 0 0 �54:400 �20 70:1000 �2:370

0 0 0 0 0 0 0 0 0:000 0 0:0000 1:000

0 0 0 0 0 0 0 0 �3:400 0 �20:9994 �0:017
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TABLE I
ERRORPROPAGATION PER ITERATION

than predicted by the rate of convergence of the presented algorithm. In
addition, the matricesA11 andA22 have a pair of complex conjugate
eigenvalues close to each other causing numerical bad-conditioning. In
achieving higher order of accuracy we have experienced some prob-
lems with MATLAB function lyap . However, by using MATLAB
function lyap2 those problems have been eliminated.

The new decoupled system matrix is obtained as shown at the bottom
of the previous page.

All elements in this matrix denoted by 0 are zeros with the accuracy
of at least 10�14.

V. CONCLUSION

The transformation is introduced for decomposition of weakly cou-
pled linear dynamic controllers, observers, and Kalman filters, that is,
for the block-diagonal control and filtering of weakly coupled linear
deterministic and stochastic systems. It can be also used to simplify
computations of large systems of linear and nonlinear algebraic equa-
tions displaying block diagonal dominance. The transformation is very
useful for parallel processing of information and computations on par-
allel computers. In addition, this matrix block diagonalization trans-
formation might simplify many problems of linear algebra, such as the
problem of finding matrix eigenvalues.
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