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with dim{x;} = n,. The constant matrid is partitioned as

Aty €Adia - AN
rl — 5-'421 ‘422 (2)
General Transformation for Block Diagonalization ) Ao
- eAnt €Ano Ann
of Weakly Coupled Linear Systems Composed of
N-Subsystems wheree is a small parameter. Each block; is of dimensions; x
ni, hence,=%¥, n; = n. All elements in matrix4 are assumed
Z. Gajic and I. Borno to be bounded by)(1). Note that (1) and (2) can also be used to

model block-diagonally dominant nonlinear systems with bounded
weak interconnections. In addition, it is assumed that magnitudes of

Abstract—A transformation is introduced for exact decomposition 4| the svstem eigenvalues are bounded that is. |\;| =
(block-diagonalization) of linear weakly coupled systems composed 6V O1). i _y 1.9 9 This imolies th tth(bM),t' od. 3
subsystems. This transformation can also be used for block diagonalization (1),j = 1,2,---,n. This implies that the matriced;; are non-

of block-diagonally dominant matrices and, under certain assumptions, it singular withdet(A:;; = O(1),¢ = 1,2,---, N, which is the stan-

can be applied for block diagonalization of nearly completely decompos- dard assumption for weakly coupled linear control systems and also
able Markov chains. A twelfth-order real-world power system example is  corresponds to the block diagonal dominance of the system matrix
included to demonstrate the efficiency of the proposed method. A. Thus, the main results presented in this paper are valid under the

Index Terms—Block diagonalization, decoupling, large scale systems, following assumption.

linear systems, weak coupling. Assumption 1:The magnitudes of the system eigenvalues are
bounded byO(1), that is, |A\;| < O(1),j = 1,2,---,n, which
I INTRODUCTION implies that the matriced;;,i = 1,2,---, N are nonsingular with
detA;; = ()(1)

The linear weakly coupled systems were introduced to the controlNote that when this assumption is not satisfied, the system (1), in ad-
audience in [1] and since then have been studied by many contifion to weak coupling, also displays multiple time scale phenomena
researchers (see [2] and [3] and references therein). In addition, ts@gular perturbations), [14], [18].
weakly coupled systems have been studied in mathematics [5]-[7]in the cases when a linear weakly coupled system is not in its explicit
economics [8], [9], and power system engineering [10]-[12] undesrm defined by (1) and (2), one can use the methodology of [19] and

the name of block diagonally dominant matrices and block diagonaltyo] in order to achieve the desired weakly coupled structure.
dominant systems. In addition, weak coupling linear structures

a!so appear in nearly c_ompletely decomposable continuous- and Il. DECOUPLING TRANSEORMATION
discrete-time Markov chains [13]-[15].
A decoupling transformation that exactly decomposes weakly cou-Our goal is to find a transformation that makes the matriblock
pled linear systems composed of two subsystems into independent &diggonal. Consider the following change of the state variables, which
systems was introduced in [16]. In this paper we extend the results'@presents a generalization of a transformation derived in [17] for two
[16] and [17] to the general case of linear weakly coupled systems copyldsystems (see also [3, p. 72] where the results of [17] are reviewed)
posed of N subsystems and establish conditions under which such a N
transformation is feaS|b!e. The estimate of the r_e}te of convergence of ni(t) = wi(t) + e Z Lijz;(b), i=1,---.N. (3
the corresponding algorithm used for decompositio¥ afieakly cou-
pled linear subsystems is given and compared to the case of two weakly
coupled linear subsystems. This leads to
Consider a continuous-time linear system consistingsthtes clus-
tered into/V groups of strongly interacting states. Weak interactions

J=1,5#1

N
Bi(t) =di(t)+e > L), i=12---,N. (4
J=1,5#e
By eliminatingz; (¢), ; =1,2,---. N from (1), (2), thatis
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and using (3), we get the original coordinates can be determined by the inverse transforma-
N tion as
. 2 /
0:(t) = <4 +e D LUAﬁ) 7:(t) 2(t) = T~ () (t). (14)
J=L g
N ; ] . The main problem that we are faced with is the solution of the system
te Z Fij(Lijs €)x;(t), (=12 N of algebraic equations (8). This system has the form
J=1lg# N
© Li;A;; — AL + Aij + e < Z Lz'chkj)
where . k=1,k#i,;
Fij(Lijy€) = LijAj; — AiLij + Aij - < > LkaM) Lij =0,
N k=1,k#i
te ( Z leAl.)) l?.]: 1327"'7*7Vw i ;é.] (15)
F=LkFE It represents a system of nonlinear algebraic equations. However, the
9 a nonlinear (quadratic) terms are nicely multiplied by the squares of the
—€ Z LAk | Lij - : .
) small perturbation parameter Solving the system of algebraic equa-
LR tions (15) will be the focus of the next section
iﬂj:]-a?&"'vArz L#J (7) .
In order to achieve complete decoupling, the matrifes must be [ll. I TERATIVE ALGORITHMS
chosen such that In this section we present iterative algorithms for computing ma-
trices L;; by performing iterations on a set of linear algebraic equa-
fi'(L,'J',E) =0, Vij=12,---,N. (8) tions.

Algorithm 1: The first algorithm that can be used to efficiently solve

Assuming that (8) is satisfied, we get in the new coordinates a settbe set of algebraic equations (15) is based on the fixed-point iterations.

completely decomposedl subsystems, that is The algorithm is given in two steps.
Step 1: Sete = 0 in (15) and solve th€(e) perturbed set of com-

pletely decoupled reduced-order algebraic Sylvester equations
LPA4; - ALl + Ay =0, i j=12-- N, i#]
with (16)
N Equation (16) has a unique solution under the assumption that matrices
O = Aui + €2 Z LiAji, j=1,2,---,N. (10) j‘/ljj and A4;; have.no eigenvalyes in common [21], thus, we have to
impose the following assumption.
Assumption 2:The matrices4;; and A;; have no eigenvalues in
Let common for every, j,i # j. o . .
This step produces afi(¢) approximation for the desired solution,
n=mi n - Nt thatis,||Li;|| = ||}’ || + O(e). Note that under Assumptions 1 and 2
we have|| L[| = O(1) and||L;;|| = O(1).
then Step 2: In order to improve the required solution accuracy up to any
arbitrary order, we propose the following fixed-point iteration scheme
with L%, obtained in Step 1, playing the role of the initial conditions

i !

’Il(t) = Qi7/i(t)v i=12-- N 9)

J=1,#i

() = Q(t) (11)

where(2 = dlﬂg{Q1 ’ §22.' o 7QN } ’ (m+1) (m+1) - (m)
The transformation matrix that relates the original weakly coupled Li;' " A5 — AuLy™ ™ + A +e | >0 LAy,

linear system and the set of completely decoupled subsystems in the k=1,k#1,j
new coordinates is given b ‘ N
ey e ( > ngwAM) Lo =
. k=1,k#i
n(t) = Ta(?) (12) Lj=12 N, i m=012--. (17)
where Algorithm 1 has the advantage that it operates on the linear decou-
pled Sylvester’s equations to solve the set of nonlinear coupled alge-
I €L, eLin braic equations (15).
Lo, T . eLon The convergence proof of the fixed point algorithm (17) can be ob-
T(e) = . =T+ (13) tained under Assumptions 1 and 2 by generalizing the corresponding
: : proofs of [3] and [16] taV subsystems. Note that under Assumptions 1
eLni -+ €eLyv—y I and 2, the system of nonlinear algebraic equations (15) has unique solu-
tions for sufficiently small values afsince the corresponding Jacobian
with the obvious definition of?’. is nonsingular at = 0. This also implies thaﬁLE?) || = O(1).Bygen-

Note thatT'(¢) is invertible for sufficiently small values of. This eralizing the results of [3], [16], it can be established that the rate of con-
transformation offers the advantage that it exactly decomposes a higérgence of the algorithm (17)d%(¢), hence|| L;; —LE;”) || = O(e™),
order linear system intd" completely decoupled reduced-order subwherem is the number of iterations. It is interesting to point out that in
systems that can be solved independently. The state of the systerthecase of algorithms considered in [3] and [16], that is)or 2 the
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convergence rate of the corresponding algorithms is much faster, thatThe Newton method requires an initial guess that has to be quite
is, it is equal toO (™). close to the exact solution, otherwise the Newton method does not
Algorithm 2: Since (16) produces initial guesses that are @hly)  converge. In such cases when the initial guess is not good (small pa-
apart from the exact solutions, it seems that the Newton method isrametere is not very small), one has to use the fixed-point iterations
excellent candidate for solving nonlinear algebraic equations (15). Afgorithm 1.
the following, the Newton algorithm for solving the set of nonlinear Note that the Sylvester equations (16) have unique solutions if the
coupled algebraic equations (15) is derived. The Newton methodsiguare matricesl;; andA;;,4,j = 1,2,---, N,i # j have one or
known for its quadratic rate of convergence, hence, this algorithm witiore common eigenvalues. However, any solution of (16) and, subse-
converge to the solutions of the algebraic equations (17) faster than guently, any solution of (17) will produce the desired transformation.
fixed-point Algorithm 1, which has linear convergence. The Newton aNamely, the fact that there are several solutions of (15) implies that
gorithm can be basically derived by replacihg with LE}"*‘),W, j, there are several transformations having the form of (13) that block
substitutinng;”“) = Lg;”) + Ay;, Vi, 5, # j into quadratic terms, diagonalize the considered weakly coupled system composéd of
and neglecting quadratic terms with respechtg. This yields the fol-  subsystems. This is particularly important for nearly decomposable

lowing algorithm: Markov chains for which Assumptions 1 and 2 are not satisfied. For
N block iterative methods for Markov chains, the reader is referred to
LE’;'77+1)‘411 a4 Z LE:@ A LE;nJrl) [15]. Here we jgst give the known resuIF fgr solvability of (;6) needgd
o when Assumptions 1 and 2 are not satisfies. The solvability condition
N of the Sylvester equations is given by the following lemma [22].
+e < Z LEZH)AM) Lemma 1: Equation (16) has a solution if and only if matrices
k=1,k#i,j f'l]']' 0 A.J'j f’lji
- (mt1) (m) { 0 el ™ Lo o 20
- Y] LA LY are similar.
k=1,k#i
N
pA+e < Z LEZZ)AM> LE;n) -0 IV. NUMERICAL EXAMPLE
k=1,k#i In order to demonstrate the efficiency of the presented method we
i,j=12,---,N, i#yj; m=0,12,---. have run a twelfth-order power system example composed of three ma-

(18) chines playing the role of three subsystems. Each machine is modeled
as a fourth-order subsystem consisting of a third-order synchronous
It can be seen that the Newton method leads to a set of linear edggrchine and a first-order exciter regulator system (see [23]).
tions coupled by terms which aré(e) and O(¢*). These equations  MatricesA,,.i,j = 1.2,3, can be found in Delacotet al. Their
can be solved in terms of the decoupled linear equations by using tgenvalues and determinants satisfy both Assumptions 1 and 2 since
fixed-point iterations as in Algorithm 1. SindgL.{" " — L{"™|| =

N J J
(m+1)

O(e), we can replacé,;; in the third and the fourth terms of (19) detf{Ai} =142.2,

by L{" without affecting the corresponding fixed point type algorithm AMArr) ={-0.0362 + j7.4534, —1.3733 £ j0.8211 };

which now has the form det{ Az} =147.5,
N Aos) = £ —0.09¢ 7 44 _ / 7 481:
UV > 1o\ o AM(A22) ={=0.0241 4 j7.44461, —0.9649 + j1.3148);
1] JJ B R ik . 1) det{fl%%} — 13819’
N A(Ags) ={—16.6128,—-3.9337, —0.1660 =+ j4.5956}.
a5 (Tn) Ay =
+Aijte ( Z o Lk A"’) 0 Using Algorithm 1 withe = 0.01, we have obtained the results pre-
=Lk sented in Table |. The accuracy of the solutions obtained is measured b
i j=1,2,--N, i#j, m=0,1,2---. (19) ' Y Y

using the MATLAB functionnorm in the following sense errom) =

This algorithm can be called the hybrid Newton-fixed-point iterationsiax; ; ||J:ij(L§;”), €)||. Note that this error estimate is a conserva-

algorithm. tive measure so that the results presented in Table | are slightly worse
[ 0.0000 1 —0.2660 —0.0090 0 0 0 0 0 0 0 0 7
—2.7498 —-2.78 —1.3601 —0.0370 0 0 0 0 0 0 0 0
—0.0011 0 0.0006 1.0000 0 0 0 0 0 0 0 0
—4.9447 0 —55.5028 —0.0389 0 0 0 0 0 0 0 0
0 0 0 0 —-0.21 1 —1.5998 —0.005 0 0 0 0
0= 0 0 0 0 -1.90 —-1.8 9.2999 —-0.120 0 0 0 0
) 0 0 0 0 0.00 0 —0.0007 1.000 0 0 0 0
0 0 0 0 —-3.10 0 —55.9992  0.032 0 0 0 0
0 0 0 0 0 0 0 0 —0.197 1 —1.2001 —0.003
0 0 0 0 0 0 0 0 —54.400 —-20 70.1000 —2.370
0 0 0 0 0 0 0 0 0.000 0 0.0000 1.000
L 0 0 0 0 0 0 0 0 —3.400 0 —20.9994 —-0.017 |
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TABLE |
ERROR PROPAGATION PER ITERATION
iteration(m) error(m)
0 6.2458 x 10°
1 2.5816 x 107!
2 7.0832 x 1073
3 6.7502 x 10~4
4 2.6511 x 1073
5 7.7792 x 1077
6 6.4017 x 10~8
7 2.1459 x 107°
8 1.4050 x 10-*0
9 5.2846 x 10712
10 2.5311 x 10713
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[7] A.Zecevic and D. Siljak, “A block-parallel Newton method via overlap-

(8]
9]
(10]

(11]

(12]

(13]

[14]

(15]
(16]

(17]

than predicted by the rate of convergence of the presented algorithm. In

addition, the matricesl;; and A, have a pair of complex conjugate
eigenvalues close to each other causing numerical bad-conditioning.

o

achieving higher order of accuracy we have experienced some prolto]

lems with MATLAB function lyap . However, by using MATLAB
functionlyap2 those problems have been eliminated.

(20]

The new decoupled system matrix is obtained as shown at the bottom

of the previous page.

(21]

All elements in this matrix denoted by 0 are zeros with the accuracy

of at least 10'*.

V. CONCLUSION

The transformation is introduced for decomposition of weakly cou-

(22]

(23]

pled linear dynamic controllers, observers, and Kalman filters, that is,

for the block-diagonal control and filtering of weakly coupled linear

deterministic and stochastic systems. It can be also used to simplify
computations of large systems of linear and nonlinear algebraic equa-
tions displaying block diagonal dominance. The transformation is very
useful for parallel processing of information and computations on par-

allel computers. In addition, this matrix block diagonalization trans-

formation might simplify many problems of linear algebra, such as the

problem of finding matrix eigenvalues.
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