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Reduced-Order Solution to the Finite-Time
Optimal-Control Problems of Linear Weakly
Coupled Systems

Wu Chung Su and Zoran Gajic

Abstract—The optimal solution to the finite-time optimal-control
problem of weakly coupled linear systems is found in terms of com-
pletely decoupled reduced-order differential equations for both the
closed-loop and open-loop control. This has been achieved via the use of
the decoupling transformstion that block diagonalizes the Hamiltonian
matrix of the weakly coupled linear-quadratic control problem. The
convergence to the optimal solution is pretty rapid. The proposed
technique is very well suited for paraliel computations.

1. INTRODUCTION

The study of linear weakly coupled control systems originated in
[1]. The recursive approach to linear weakly coupled systems, based
on the fixed point iterations, has been developed recently. It has
been shown that the recursive methods are particularly useful when
a coupling parameter e is not extremely small and/or when any
desired order of accuracy is required, namely, O(e*), where k =
2,3,4,---, [2)-17).

The recursive methods of [2]-[7] are based on the fixed point
theory applied to the corresponding algebraic equations, so that the
results reported in [2]-[7] are applicable to the steady-state control
problems only.

In this note, we will study the finite-time optimal-control problem
of weakly coupled systems. The solution of this problem is given in
terms of differential equations, which makes it more challenging for
research. Both the open-loop (linear two point boundary value
problem) and the closed-loop (nonlinear differential Riccati equa-
tion) optimal control problems will be studied.

The recursive reduced-order solution will be obtained by exploit-
ing the transformation introduced in {5] which will block diagonal-
ize the Hamiltonian form of the solution for the optimal linear-
quadratic control problem. Completely decoupled sets of reduced-
order differential equations are obtained in both cases: the closed-
loop and open-loop control. The convergence to the optimal solution
is pretty rapid, due to the fact that the algorithms derived in [5] have
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the rate of convergence of at least of O(e?). This produces a lot of
savings in the size of computations required. In addition, the
proposed method is very suitable for the parallel computations.

It is interesting to point out that the better results are expected
(and obtained) for the open-loop problem since it is less computa-
tionally involved than the closed-loop problem (exactly the same
sets of differential equations have to be solved, but they differ in the
dimensionality).

II. THE RECURSIVE REDUCED-ORDER SOLUTION OF THE
MATRIX DIFFERENTIAL RiccaTi EQUATION

Consider the linear weakly coupled system

X, = Ayx; + €Ay x; + Byu, + eByu,,

X, = €Ayx; + A x, + €Byu, + Bu,, x,(to) = x (1)

B R R R P

where x,€R™, u;e R™, z;€R", i = 1,2 are state, control, and
output vanables, respecuvely The system matrices are of appropri-
ate dimensions and, in general, they are bounded functions of a
small coupling parameter ¢, [2]-[4]. In this note, we will assume
that all given matrices are constant,

With (1)-(2), consider the performance criterion

- T oel] [ H{z] o

21" [ x(T)
[xz(r)] [xz(r)] ®

with positive-definite R and positive-semidefinite F, which has to
be minimized. It is assumed that matrices F and R have the weakly

coupled structure, that is
_ F, ¢€F, _ R, O @)
eFf F | 0 R,|

The optimal closed-loop control law has the very well-known

form [8]
B, B, T X, _
54] P[XZ] =R

—|%] _ p-t
u_[uZ] R [583

where P satisfies the differential Riccati equation given by

x,(t) = x10

BTPx  (5)

-P=PA+A™P + D™D - PSP, P(T)= (6)
with
A, €A, S, €S,
A= , S=BR'BT= . @
[eA3 A4] . , Ls{ S, @)

Due to weakly coupled structure of all coefficients in (6), the
solution of that equation has the form

P, eP,
eP] P | ®
2 3
In this section, we will exploit the Hamiltonian form of the
solution of the Riccati differential equation and a nonsingular trans-
formation introduced in (5] in order to obtain an efficient recursive

method for solving (6).
The solution of (1) can be sought in the form

P(t) = M(t)N"1(2)

©
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where matrices M(¢) and N(¢) satisfy a system of linear equations
{81

= -A™(t) - D'DN(t), M(T)=F (10)
N(t) = -SM(t) + AN(t), N(T)=1. (11)

The following lemma, proved in [9], guarantees the existence of
the invertible solution for N(7).

Lemma: If the triple (A, B, D) is stablizable observable, then
the matrix N(¢) is invertible for any ¢ (¢,, T).

The Hamiltonian approach is considered as the most efficient
numerical method for the solution of the differential Riccati equation
[10].

Knowing the nature of the solution of (6), we introduce compati-
ble partitions of M(¢) and N(¢) matrices as

M(1)  eMy(t) Ni(1)  eNy(1)
M) = (o) M.(r)]’ ”(”=L~,(r> NG |
(12)

Partitioning (10) and (11), according to (6), will reveal a decou-
pled structure, that is, M,, M,, N,, and N;, are independent of
equations for M,, M,, M,, and N, and vice versa. Introducing the
notation

) i) ool e[ o

and
-AT _— -AT _—
n=|4 -] L_[-4 -
-85 4 -5 A,
AT _oT AT _
T, = : Q| L=| "4 - (14)
-5 A, =8 Ay
where

Q, = DID, + ¢*D]D;,
Q, = D[D, + D]D,,
Q, = D/D, + &DID,. (15)

After doing some algebra, we get two independent systems of
weakly coupled matrix differential equations

U=TU+ T,V

V=eT,U+ T,V (16)
with terminal conditions
T
om =[], viny =[] (1)
1 0
and
X=T,X+eT,Y
Y=el, X+ T,Y (18)
with terminal conditions
xm =0 v -3 o

Note that these two systems have exactly the same form and they
differ in terminal conditions only. From this point, we will proceed
by applying the decoupling transformation introduced in [5]. This
transformation is defined by

I —eL — €2
K= , K'=|1-€LH €L
[eH I—ezHL] [ —eH I (20)
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where L and H satisfy
T\L+ T, - LT, - LT,L =0 (21)
H(T, - éLT;) - (T, + €T, L)H+ T, = 0.  (22)

Applied to (16)-(19), it will produce
0= (T, - LT)0, O(T) = U(T) - eLWV(T) (23)
V= (1, +eT,L)P, W(T)

= eHU(T) + (I - HL)V(T) (24)

and
R=(T,- LT R, R(T) = X(T) - eLY(T) (25)
P=(T,+eT,L)?, ¥(T) = eHX(T)

+(I- HL)Y(T). (26)
Solutions of (23)-(26) are given by

O(1) = eTM-<LT0-D)(T) (27)
P(t) = e+ TsLu-Dp(T) (28)
(1) = em-LT0-DR(T) (29)
(1) = T+ Tsba-D p(T) (30)

so that in the original coordinates we have
u(t) = (I- ezLH)e(Tl-szTs)(r—T)fj(T)
+eLe‘T4+‘2T3L)(t-T)]’}(T) (31)
v(e) = —EHC(T‘_EZLT“‘_T)(‘J(T) + e""“zTSLXI—T)f}(T)
(32)
x(t)=(- ezLH)e(Tl“zLTa)('-T))?(T)
+ LT PTEDY(T) (33)
Y(t) = _eHe(r,-JLrg)(r—r))?(T) + e(T4+‘2T3L)(’—T)fl(T).

(34)
Partitioning U(#), ¥ (), X(¢), and Y(¢) according to (13) will
produce all components of the matrices M(#) and N(¢); that is

v(s) - [ v.(r)] = [M.m

Uy(¢) NG |
0[] [%0
wo-[o]- [0
-] [46]
so that the required solution of (6) is given by
ro-[ Yol Tl - e

Thus, in order to get the solution of (6) P(f) which has dimen-
sions n X n = (n, + n,) X (n, + n,), we have to solve two sim-
ple algebraic equations (21) and (22) of dimensions 2ny X 2n,))
and (2n, X 2n,), respectively. The efficient numerical algorithm




based on the fixed point iterations and the Newton’s method for
solving (21) and (222) can be found in [5]. Then, two exponential
forms exp (T, — €2LT,)(t — T)] and exp[(T, + *T;L)(t —
7)), have to be transformed in the matrix forms by using some of
the well-known approaches [11]. Finally, the inversion of the matrix
N(t) has to be performed.

Since the matrices M(¢) and N(f) contain unstable modes of the
Hamiltonian [8], even though the product M(¢)N~!(¢) tends to a
constant as ¢ — oo the inversion of the nonsingular matrix N(?),
which contains huge elements, will hurt the accuracy.

The reinitialization version of the Hamiltonian approach avoids
that problem. It is considered as the most efficient numerical method
for the solution of the general matrix differential Riccati equation
[10]). The reinitialization technique applied to the problem under
consideration will modify only terminal conditions in formulas (10),
(17), and (19), respectively,

M(kAf) = P(kAf) 37)

U(kat) = [Pl(’;“)], V(kat) = [f”zr(o"“‘)] (38)

x(kat) = [‘Pz(:“)], Y(kAt) = [Pa(’;“)] (39)

where k represents the number of steps and At is an integration
step. ‘

The transformation matrix K from (20) can be easily obtained,
with required accuracy, by using numerical techniques developed in
[S] for solving (21)-(22). They converge with the rate of conver-
gence of at least of O(e?). Thus, after k iterations, one gets the
approximation K® = K + O(¢*¥). The use of K® in (23)-(26)
instead of K, will perturb the coefficients of the corresponding
systems of linear differential equations by O(e?), which implies that
the approximate solutions of these differential equations are O(e?)
close to the exact ones [12]. Thus, it is of interest to obtain K*)
with the desired accuracy, which produces the same accuracy in the
sought solution.

HI. THE RECURSIVE REDUCED-ORDER SOLUTION OF AN
OPEN-LoOP OPTIMAL-CONTROL PROBLEM

The open-loop optimal-control problem of (1)-(4) has the solu-
tion given by

u(t) = -R™'B7p(r) (40)
where p(f) e R™M™*" is a costate variable satisfying [8]
(1) ] _|-4T —-D™» 1 10)
[x(:)‘ “[ s a ] *(f) “1)
with boundary conditions expressed in the standard form as
[ p(%) p(T)
W_x(to)] +G[x(T) =c (42)
where
] - 0
welo 3] o=[5 T] eslui) @

Partitioning p into p,€R™ and p,eR" such that p = [p]
P17 and rearranging rows in (41), we can get

by P
x| [ T, eT,] X (44)
P, T, T,||P:
% *2

where T}s, i = 1,2,3,4 are given by (14).
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Introducing the notation
- (#5)

and applying the transformation (20) to (41) will produce a decou-
pled form

7= (T, — €LTs)n (46)
£= (T, +TL)E (47

where
[Z] -x[}]- (48)

In order to be able to solve (46) and (47), we need to find their
initial or terminal conditions, which can be obtained as follows. An
interchange of rows for p, and x, in (41) will modify matrices
defined in (42) and (43) as follows

¢, w(T
WI[W( ) + G, (7) =0 49)
M) NT)
where .
[0 0 0 o
0 7, 0 0
"i=lo 0 o of
0 0 0 I,
[I, —-F, 0 —¢F, 0
0 0 0 0 X10
G, = = .
“lo -eFF 1, -KR| 7o (50)
[0 0o o o *»
The transformation (48) applied to (49) produces
(%) 7(T)
W, +G =c 51
2[5(’0) 2 z(T) 1 ( )
where
W, = WK, G, = G,K. (52)
Since solutions of (46) and (47) are given by
(1) = e(n—ezl-rsw-ro),,( fo) (53)
E(f) = e(T4+e21'3L)(t—to)£(to) (54)
we can eliminate 7(7") and £(T') from (51); that is, we have
(T1— €2 LT3XT-tg)
W, + G, et HTo 0
0 e(r4+e2731.x1'— 10)
t
Mo (ss)
£(to)

It is shown in the Appendix that this system of linear algebraic
equations has unique solution, assuming that a coupling parameter e
is sufficiently small. Namely, we have shown that if (55) is repre-

1(to)

sented in the form
a(e)[f(to)] =6

with obvious definition for a(e), then a(e) is nonsingular.

Now we are able to find 7(¢) and £(¢) from (53) and (54). Using
(48), we can find w(?) and Nt). Partitioning w(f) and Nt)
according to (45) we get values for py(¢) and p,(?), in other words,
z):g) finds the optimal reduced-order open-loop control defined by

(56)
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As a matter of fact, following the discussion at the bottom of
Section II, we have obtained the approximate expression for the
optimal control in the form

u@O(f) = —R-IBTPEY = uoPi(t) + O(*).  (57)

Apparently, as k increases, the approximate control defined in (57)
converges very rapidly to the optimal solution.

Simulation results for finding the optimal closed-loop and open-
loop controls in terms of the reduced-order problems can be found
in [13], where a fifth-order distillation column example is solved. It
is interesting to point out that the proposed method produces better
accuracy for the open-loop control. This can be justified by compar-
ing linear systems of differential equations (16)-(19) and (44).
Apparently, the closed-loop solution is computationally much more
involved since (16) and (18) are of the order of 2 X (2n X n),
whereas (44) represents the same set of equations of order 27 X 1.

IV. ConcLusion
The optimal finite-time closed- and open-loop control problems of
weakly coupled systems are solved with any desired accuracy in
terms of the reduced-order systems of linear differential equations.
The proposed methods reduce considerably the size of required
computations and introduce full parallelism in the problems under

study.
APPENDIX

Let the transition matrices of (46) and (47) be denoted as &(¢ —
to) and ¥(¢ — t,), respectively, and let us partition them as follows

_|2u(t— 1) @t -1)
B to) = [‘I’zl(‘ —t) ®n(t-1)
_ ¥t —t0) ¥i(r- 1)
¥(i=t) = Yt - t0) ¥p(t-1,)] (a1
From (55), we have ;
ale) = (W2 + G,[d’(ro' ‘o) ‘p(T(i Wl (A2)

Using expressions for W, and G,, defined by (52) and (20), we get

I 0
$,, — -

u(e) = 21 opl(bll q’ZZ OFIQIZ
0 0

Since matrices ®,(T — 15) — Fi®,,(T — t;) and ¥,,(T - 1) —
F3¥,5(T — t,) are invertible (see [14, p. 211]), the matrix a(e) is
invertible for sufficiently small values of e.
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Vibrational Stabilization of Nonlinear Parabolic
Systems with Neumann Boundary Conditions

Joseph Bentsman and Keum S. Hong

Abstract—This note derives the conditions for the existence of the
stabilizing vibrations for a class of distributed parameter systems gov-
erned by parabolic partial differential equations with Neumann bound-
ary conditions and gives the guidelines for the choice of the vibration
parameters that ensure stabilization. Examples of vibrational stabiliza-
tion of unstable systems by linear multiplicative and vector additive
vibrations are given to support the theory.

I. INTRODUCTION

The concept of vibrational control proposed in [1] is especially -
attractive when it is applied to distributed parameter systems (DPS),

0 0

0

I 0 + O(e). (A3)
‘1,21 - FB‘?U ‘P22 - FSWIZ

generally known as not readily amenable to sensing and actuation.
Indeed, being an open-loop strategy that can ensure desired system
behavior via zero-mean parametric excitations, vibrational control
requires no on-line sensing and it can stabilize all system modes
simultaneously. The experimental and applied theoretical results on
the vibrational control of DPS include stabilization of plasma pinches
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