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TABLE V

INVESTMENTS (MW)

COOP SQUO PURPA
Utilities
Combined cycle 3000 3000 3000
Natural gas
Thermal 1588 2758 1588
coal
Cogenerators
Boiler coal 0 6.421 0
85% efficiency
Extraction 0 576 0
turbine
Boiler + turbine 1000 1000 1000
conden. B
Gas 1738 0 1738
turbine
Exchange 0 0 0
capacity

additional unit from cogenerator is its shadow price corrected by
the 12% loss factor; for instance in summer day, this amounts to
82.17/(1 — 0.12) = 93.3 mills, which is higher than the utility
marginal cost.

Finally, it is worth noting that in the SQUO case, the cogener-
ators adopt an entirely different strategy in which they indeed
buy electricity from the utility. Table V indicates that this
strategy is also characterized by very different types of invest-
ments than in the COOP and PURPA cases.
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The Exact Slow-Fast Decomposition of
the Algebraic Riccati Equation of
Singularly Perturbed Systems

Wu Chung Su, Zoran Gajic, and Xue Min Shen

Abstract—The algebraic Riccati equation of singularly perturbed con-
trol systems is completely and exactly decomposed into two reduced-order
algebraic Riccati equations corresponding to the slow and fast time
scales. The pure-slow and pure-fast algebraic Riccati equations are
nonsymmetric ones, but their O(e) perturbations are symmetric. It is
shown that the Newton method is very efficient for solving the obtained
nonsymmetric algebraic Riccati equations. The presented method is very
suitable for parallel computations. In addition, due to complete and
exact decomposition of the Riccati equation, this procedure might pro-
duce a new insight in the two-time scale optimal filtering and control
problems.

I. INTRODUCTION

A linear singularly perturbed control system is given by
x(t) =X10

x5(2g) =Xz ¢9)
where x; € R", i =1, 2, u € R™ are slow and fast state and
control variables, respectively, and e is a small positive parame-
ter. As a parameter € tends to zero, the solution behaves
nonuniformly, producing a so-called stiff problem [1], [2].

The main idea of this note is to exploit the reduced-order slow
and fast subsystems to find the exact solution of the global
algebraic Riccati equation in terms of the reduced-order prob-
lems—both leading to the nonsymmetric algebraic Riccati equa-
tions: pure-slow and pure-fast. It is shown that the O(e) pertur-
bations of these nonsymmetric algebraic Riccati equations are
symmetric ones and equal to the well-known first-order approxi-
mations of the slow and fast algebraic Riccati equations of
singularly perturbed systems. The solutions of the symmetric
reduced-order algebraic Riccati equations play the role of the
initial guess for the Newton method which is very efficient for
solving the obtained nonsymmetric Riccati equations. Due to
complete and exact decomposition, the proposed method is very
suitable for parallel computations.

X, =Ax; + Ayx, + B

€x, =Asx; + Ayx, + Bou

1I. PROBLEM FORMULATION
With (1) consider the performance criterion

1 o T
J= 5f,0 {[2] Q[Z] +uTRu} dt
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with positive definite R and positive semidefinite Q. The open-
loop optimal control problem of (1), (2) has the solution

u(t) = —R7'Bp(t) 3)
where p(t) € R™*"2 is a costate variable satisfying [4]
#(t) A -S]=x
(ol -[% el @
with
A A
4= Al AZ _ (O} Q, _ X1
1L Ly 27 of 7w
€ €
Z
B, S -
| B — BRR-1BT = €
B=|B,|, S=BRB - Sz.(S)
€ - =2
€ €

The optimal closed-loop control law has a very well-known
form [4]

T
B, x
u=—-R"1 B, P[x:] = —R'BTPx 6)
€
where P satisfies the algebraic Riccati equation given by
0=PA+ATP+ Q — PSP. @)

Our main goal is to find the solution of (7) in terms of the
solutions of reduced-order pure-slow and pure-fast algebraic
Riccati equations.

III. MAIN RESULT

Partitioning p such that p = [p] epl]” with p, € R™ and
P, € R™ and interchanging second and third rows in (4), we can
get

b I, T, 1
1 Py
=|T T,
X, AL | B2 ®)
R € €
P2 P2
where
- A -8 - A, -Z
! -0, -47| -0 -4
A3 —ZT A4 "S;g
Ty, = , T,= .
=|-or —arf l-e -4l @

It is important to notice that (8) retains the singular pertur-
bation form. Also, the matrix 7, is the Hamiltonian matrix of
the fast subsystem, and it is nonsingular under stabilizability—
detectability conditions imposed on the fast subsystem [4].

Introduce the notation

x| X
=" [Pz] =A (10)
and the transformation [3] defined by
1 _|I—-—€eHL —eH I eH
k ‘[ L I ] K_[—L [—et| (D
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where L and H satisfy

T,L — T, — eL(T; - T,L) =0 (12)
—H(T, + eLT,) + T, + (T, - T,L)H = 0. (13)
The unique conditions of (12) and (13) exist under the condi-
tion that T, is nonsingular [3].
The transformation (11) applied to (8) produces two com-
pletely decoupled subsystems
7=(T) - T,L)n 14
and
ef = (T, + eLT,)é (15)
where
n -
[§]=K 3] (16)
The algebraic equations (12) and (13) can be solved by using

any of the recursive algorithms developed in [5], [6].
The rearrangement and modification of variables in (8) is
done by using the permutation matrix E; of the form

L, 0 0 0
;1 o 0 I, O ;1 .
2
Plalo 5, 0o 0|l =E1[p]. a7
I, €
P2 0 0 0 P2
€

Combining (16) and (17), we obtain the relationship between
the original coordinates and the new ones

T
e N HE [ﬁ; 31][;] (18)
& ‘
where E, is a permutation matrix in the form
I, 0 0 O
o o0 7, O
Ex=lo 1, 0 o (19)
0 0 0 ]

ny

Since p = Px, where P satisfies the algebraic Riccati equation
(7), it follows that

7] 2
[§1] = (I, + I, P)x, [fz] = (II; + O,P)x. (20)
In the original coordinates, the required optimal solution has

a closed-loop nature. We have the same attribute for the new
systems (14) and (15); that is

T >P1 0 U
[§Z]=[O PZ][&]' @1)
Then, (20) and (21) yield
P, O -1
o Pl= (I + I,PY(II, + IT,P)™ . (22)
2

Following the same logic, we can find P reversely by introduc-

ing
Q @
Q,

E['KE, = Q = [ 0, (23)
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where
I, 0 0 0
» o o0 I, 0
Ef=lo 1, o o (24
0 0 0 €,
and it yields
P, 0 p, 01\
P={Q;+Q, 0 P, Q,+0, 0 P, . (25)

It is shown in Appendix I that required matrices in (22) and
(25) are invertible for sufficiently small e. Partitioning (14) and

(15) as
[:’;;] [Z; 33][31] =(T1—T2L)[Z;] (26)

. I3 N
£ by b,
and using (21) yield to two reduced-order nonsymmetric alge-
braic Riccati equations

0= P,a, — a,P; —a; + Pya, Py
0 = P,b, — byP, — by + P,b,P,

Al &
fz] = (T, + eLTz)[ﬁ] @7

(28)
(29)

where

a;

as
A — AL, +ZLy =S, — ALy + ZL,
| -0, + Q,L, + A5L, AT + Q,L, + A}L,
b,

b,
b
Ay + e(LiA; — L Q00)
i -0+ e(L3A4; - L,0,)

L 2
L,|

The pure-slow algebraic Riccati equation (28) is nonsymmetric
and it is given by

-8, — e(L,Z + L, AY)
—AT = €(L,Z + L, A%)
(30)

with

L= [L‘ @31

L,

T
P(A, — ALy + ZL;) + (A, — L1307 — Li4;5) Py
+(Q1 — QoLy — AYLs) — Py(Sy + Ay Ly = ZL)Py = 0.
(32)

The pure-fast algebraic Riccati equation (29) is also nonsym-
metric

Py(Ay + (LA, — Ly 05)) + (A% + e(LsZ + L,A%))P,
+(Q; — (L4, - L,Q5))

—P,(S, + e(L,Z + L,AT)P,=0 (33)
but its O(e) approximation is a symmetric one, that is
P,A, + A%P, + Q3 — P,S,P, + O(e) = 0. (34)

|
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In addition, it can be shown (see Appendix II) that (32) is an
O(e) perturbation of the first-order approximate slow algebraic
Riccati equation obtained in [10]

PA, +AP +Q PSP =0

where A, Q,, and S can be found in [10].

The nonsymmetric algebraic Riccati equation was studied in
[7]. An algorithm for solving a general nonsymmetric algebraic
Riccati equation was derived in [8].

Using (34), (35) and the implicit function theorem [11], the
existence of the unique solutions of (32) and (33) is guaranteed
by the following lemma.

Lemma: 1 the triples (A4, By, 1/03) and (4, /S, , YQ,) are
stabilizable—detectable, then Je, > 0 s.t. Ve < €, unique solu-
tions of (32) and (33) exist.

From (34) one can obtain an O(e) approximation for P, as

POA, + ALPO + Q5 — POS, PP = 0. (36)

Having obtained a good initial guess, the Newton-type algorithm
can be used very efficiently for solving (34). The Newton algo-
rithm is given by

P§i+1)(b1 - bZPg)) - (b4 - Pgi)b2)Pg+1) = b3 + Pg)bngi)
i=0,1,2, (37)

(3%

with an initial guess obtained from (36).

The pure-slow equation (32) can be solved by using the
Newton algorithm also, with an initial guess obtained from (39).
The Newton algorithm for (32) is given by

P Da, — ayP{) = (a4 = PPay) P

P i=0,1,2,-.

—a+ PP, PP PO =P,

(3%

It is important to notice that the total number of scalar
quadratic algebraic equations in (32) and (33) is n? + n3. On the
other hand, the global algebraic Riccati equation (6) contains
(1/2) (ny + nyXny +ny + 1) scalar equations. Thus, the pro-
posed method can reduce the number of equations if

n? +n3 < 1(ny +ny)(ng +ny+ 1) (39)
or

(40)

Using solutions of both pure-slow and pure-fast Riccati equa-
tions and formulas (21) and (26), we can get completely decou-
pled slow and fast subsystems in the form

n, —n,)> <n,+n,.
1 2 1 2

i = (ay + a;P)m
651 = (b + b,Py)é;. (41)

The global solution in the original coordinates is then ob-
tained at any time instant by using the formula (20), that is

x = (T, + HZP)”[;] “2)

where P is given by (25).
A numerical example that demonstrates the efficiency of the
proposed method can be found in [12].

IV. CONCLUSION

In summary, we have obtained the solution of the global
(full-order) algebraic Riccati equation of singularly perturbed
systems in terms of pure-slow and pure-fast reduced-order alge-
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braic Riccati equations. Instead of solving (n; + n,Xn; + ny +
1)/2 equations for symmetric P in (7), we solve (n? +nd)
equations in (32) and (33). This is more efficient if n,, n, are
selected to be close to each other. Furthermore, due to the split
into two independent subsystems, the advantage of the parallel

computation becomes significant in this case.

APPENDIX |
It is easy to show that
Q Q -1
[93 04] = E] 'KE,
I, 0 0
-L, I,, -L, 0
= + O(e Al
oo L o|Toe @
0 0 0o o0
which implies
L, 0 0
Q,= -L, I, + O(e), Qz=[ L 0] + O(e).
(A2)
Then, the matrix
a,+a,|7 0 n 0
R S Rl S A R S
is invertible for sufficiently small values of e.
Similarly
I, 1, Tr-1
o8] enc
I, 0 —H,
L, I, O 0
=0 0 I, -Hg|+0(e) (Ad)
L, 0 0 =2
€
with
0
| _ |0 -H,
II, = L, Inz] + O(e), In, = [0 0 ] + O(€)
(A5)
imply that the matrix
ny
m, +m,P= [Lx I, + O(€) (A6)

is invertible for sufficiently small values of e. In this Appendix,
we have used the following notation for the partitioned matrix

H:
H H 1 H 2
“\H, H| (A7)
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APPENDIX 1T
From (A1) we have

P, 0 P, 0
Q3+Q4[ 0 Pz] = [ 01 0] + 0(e).

Using (B1) and (A3) in formula (25) produces

(B1)

p=|f O b 0 _l+0(e) (B2)
0 0)| —Li—-Lp 1,

or

(B3)

PO
P=[01 0]+0(e).

It is very well known that the structure of the solution of P is
given by [1], [2]
eP,
€P;

P, = Py + O(e).

PO
P=| pr (B4)

which implies
(B5)

On the other hand, P, is O(e) close to the solution of (35), that
is to P, [10] so that

P, =P, + O(e). (B6)
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