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sented by the pair polynomials given in Lemma 2 with

max {84, 84, 835> Baxc}

Tk
0 = min {85 84, O310s Oasc}
£, = max {85, Bgx» 074> Ogi}
T, = min {85, 8¢z, 874, Ogy }

where

O1p = Ncoskd — x,sinke, 8, =N cosko — p,sink¢

83 = upcos ke — pysin k¢, 84 = pcos kd — x, sin k¢
Osx = x4, 08 Kb + Ny sin k¢, &g, = prcos k¢ + N sin ko
Oy = prcos ké + p,sin kg, by = x;,cos ké + p, sin ko

and another four polynomials represented by the pair polynomials
given in Lemma 1 with

T, = max {15, $aks Gaio San)
o, =min {4, Gps G3no San)
&x = max {$sis Sous $no Saic)
Te = min {$sy, Sorer Sas Ssxt

where

$ik = Mecos k¢ + x,sinké, &y = N.cos ko + p, sin ko

Eax

$sk = X oS kKo — N sin ke,  Gop

uecos ko + ppsin kg, &4 = pgcos ko + xisin ko

P COs ko — N\, sin k¢

Sk = Ppcos k¢ — ppsinko, &g

X COS K — py sin k¢

are Hurwitz polynomials.
Proof: The proof is similar to the proof of Theorem 1 using
Lemma 1, Lemma 2, and Lemma 4.
This completes the proof.

IV. ConcLusiON

We have shown that the results given by Soh and Berger [1] for a
family of interval polynomials to have only roots in the sector
defining the damping ratio of linear continuous time systems can be
simplified. The number of polynomials required to be Hurwitz is
half the number of polynomials given by Soh and Berger [1].
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The Recursive Reduced-Order Solution of an
Open-Loop Control Problem of Linear
Singularly Perturbed Systems

W. Su, Z. Gajic, and X. Shen

Abstract—A reduced-order method with an arbitrary degree of accu-
racy is obtained for solving the linear-quadratic optimal open-l
control problem. The original two-point boundary value problem lS
transformed in the pure-siow and pure-fast reduced-order completely
decoupled initial value problems. By doing this, the stiffness of the
singularly perturbed two-point boundary value problem is converted in
the problem of an ill-defined linear system of algebraic equations.

I. INTRODUCTION

A linear singularly perturbed control system is given by [1], [2]
x(to) = X1
x3(to) = X0 (1)
where x;€R"™,i= 1,2, ueR™ are state and control variables,
respectively, and ¢ is a small positive parameter. As the parameter e
tends to zero, the solution behaves nonuniformly, producing a
so-called stiff problem [1], [2].

Since the recursive reduced-order numerical solution for finite-
time closed-loop control has been solved in [3], this note will

concentrate on the finite-time open-loop control.
With (1), consider the performance criterion

LT ([x, 17 [x
- 5/,0 {[x;] Q{x;] +uTRu} dt

1 x(T
e
2| x,(T)
with positive definite R and positive semidefinite Q and F.
The open-loop optimal control problem has the solution given by

u(t) = ~R7'B'p(1) 3)
where p(f) e R™*" is a costate variable satisfying, [5]
x(t) A -8
sy T |-o -aT

with boundary conditions expressed in the standard form as

X, =A;x;+A,x, + Bju
ex, = Azx; + Ayx, + Byu

x(T)

x,(T)

@

(4)

p

IR sk ®
where
[0 =[5 ) - [] W

for the free endpoint problem, or

R

for the fixed endpoint problem.

x(2)

x(T)

™
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Matrices A, @, S, and F have the forms

4, A4 9 &
A= 4, A, |, =
— — 0] O
€ €
zZ
S, — F, €F,
S=BRBT=| _ S| F= - (8)

z S, r
— = eF; €F,

€

m

The approximate optimal solution of the open-loop control for
linear singularly perturbed systems has been studied in {7], where
the problem order was reduced and the stiff problem was avoided
successfully by using the classic approach based on the power series
expansions. The theory developed in [7] was based on the di-
chotomy transformation [8] which requires the positive definite and
negative definite solutions of the corresponding algebraic Riccati
equation. It was concluded in [7] that the developed method is
efficient for an O(e) accuracy only. In this note the solution to the
optimal open-loop control problem of singularly perturbed systems
with an arbitrary order of accuracy is presented.

The optimal open-loop control problem is a two-point boundary
value problem with the associated state-costate equations forming
the Hamiltonian matrix. For singularly perturbed systems, after
modifying some costate variables, the Hamiltonian matrix retains
the singularly perturbed form by interchanging some state and
costate variables so that it can be block diagonalized via the
nonsingular transformation introduced in [4].

The idea of the note is to exploit the reduced subsystems to find
the optimal open-loop control in the new coordinates. The proposed
method is very suitable for parallel computations since it allows
complete parallelism in both slow and fast time scales.

II. THE RECURSIVE REDUCED-ORDER SOLUTION OF AN
OpEN-LooP OPTIMAL CONTROL PROBLEM

Partitioning vector p as p = [pT ep2T]T with p, e R™ and
P, €R™, we get

X,

1 1
X, 3 Ax ©)
s € € D>
where
A, -8 A, -Z
T, = i T, = r
_Ql *Ax _Qz —A3
A, -ZT A, -8
T = T rl’ T, = ; . (10)
_Qz ‘Az _Qa _Aa

Note that (9) retains the singular perturbation form as (1).
Introduce a notation

[l (5]

and apply the following transformation [4] defined by

- I—-e¢eHL —-e¢H I eH
K ' = K =
[L I ]’ [—L I—eLH] (12)

where L and H satisfy
T,L-T,—¢l(T,-T,L) =0
—-H(T, +¢LT,) + T, + (T, - T,L)H = 0.

(11)

(13)
(14)

The transformation (12) applied to (9) produces two completely
decoupled subsystems

7= (Tl - T2L)’7

(15)
and
ef' = (TA + eLTz)E

=131 &

The algebraic equations (13) and (14) can be solved by using any
of the recursive algorithms presented in [3].

The boundary conditions are changed due to an interchange of p,
and x,, which modifies matrices in (6) as follows

(16)

where

w(t w(T
Ml[ (o) +N,[ () =c (18)
Mto) NT)
where
[1,, 0 0
_|0o o0 o0 o
M, = 0 0 7, O ’
L 0 0 0
[0 o o o0
-F, I, —eF, O
M=o o o o)
T
i -F 0 -F I,
[ %10
0
Cl = x20 . (19)
L O
The nonsingular transformation (12) applied to (18) produces
¢ T
Mz["( ")} APV RSN S (20)
£(%) £(T)

where
M,=MK, N,=NK. (21)

Since solutions of (15) and (16) are given by

77([) = -T2 L)z~ t")ﬂ(fo)

(22)

L
—(Ty+eLTo)(t—ty)
€

£(t) =e £(1o). (23)
We can eliminate 7(T) and £(T) from (20) such that
e(Ti= T2 LA(T—to) 0
M, + N, 1
—(Ty+eLT(T1g)
0 e

. "I(to) —c
[5(10)}— - (24)

Equation (24) can be represented in the form

(1) ]
afe) =¢y. (25)
L‘ (%)
It is shown in Appendix that «(e) is invertible, hence n(¢;) and
£(t,) can be obtained.
Now we are able to find 5(#) and £(¢) from (15) and (16). Using
(12), we can find w(¢) and N#). Partitioning w(¢) and N(#)
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according to (11), we get values for p (1), py(t). The costate
variables p(¢) and the optimal control law are therefore found.
The only difficulty we have encountered in the procedure is to
compute a(e) in (25) where an ill-defined problem occurs when ¢ is
extremely small or (T—t,) is very large because the matrix T,
contains both stable and unstable modes. In that case we refer to [71.

II1. NUMERICAL EXAMPLE

In order to illustrate the proposed method, we shall consider a
real world problem—a magnetic control system [9]. Problem matri-
ces are given by

0 0.4 0 0
0 0 0.345 0 0
-0.524  —-0.465 0.262 0
A= . B=|0
€ € € 1
71 —_
0 0 0 R— €

€
Q=diag{1010}, R=1, e¢=0.1

with the initial condition

xT(to) = [ -1.3702 0.10686 —-0.53307 0.83467]

and time interval specified by 7, = 0 and 7 = 1. Obtained results
are presented in Table I.
The approximate control is defined as

ub (1) = ~R-1BTp®(1)

where k stands for the number of iterations used to solve recur-
sively equation (13). Values for p‘*)(¢) are obtained by following
steps (14)-(25), with p®(¢) obtained directly from (17) and (11).
Note that steps (13)-(25) can be performed by using the method of
asymptotic expansions, but since it is not recursive in its nature, it
can be efficient for an O(e) accuracy only, as was pointed out in

[71.

APPENDIX
Transition matrices of (22) and (23) can be denoted &t~ )

and ¥(t - t,), respectively, and partitioned as
(I’(t—to)Z [(bll(t_t()) ¢l2(t_10)
(1= 10)  By(t 1)
(1~ 1) ¥i(t - 1)
V(= 15) ¥pu(t - t,)

] (A1)

Y(t-1,) =

} . (A2)

From (24) we have

ae) = (M2 + N, . (A3)

0 ¥(T - 1)

&(T - 1,) 0 ]

Using expressions for M, and N, given by (18) and (20) we get

1 0 0 0
‘1’22 - qu)l2 0
ale) = |, . J 0 + O(e)
* * ‘1’22 - Fs‘l'lz
(a4)

where asterisks denote terms which are not important for the
nonsingularity of «f(e).

Since matrices ®,,—F,®,, and ¥,,—F,¥,, are invertible [6],
the matrix o(e) is invertible for sufficiently small values of e.

TABLE I
VALUES OF AN APPROXIMATE CONTROL AT CERTAIN TIME INSTANTS
approximate

control t=10.25 t=05 t=1
optimal 3.1719 E-1 3.0299 E-1 —8.2827 E-2
k=3 3.1719 E-1 3.0299 E-1 -8.2827 E-2
k=2 3.1720 E-1 3.0299 E-1 —8.2825 E-2
k=1 3.1712 E-1 3.0287 E-1 —8.2758 E-2
k=0 3.3244 E-1 3.1350 E-1 —7.6749 E-2

However, in the case of singularly perturbed systems, due to the
nature of the fast subsystem transition matrix (23), which contains
unstable modes, we can observe that «(0) is singular. Thus, «(e) is
invertible for 0 < e < ¢, and ¢, sufficiently small. In other words,
the stiffness of the singularly perturbed system of differential equa-
tions is carried over to the stiffness of the linear system of algebraic
equations. However, the latter problem is much easier to handle.
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Balance Realization of Stable Transfer
Function Matrices

Constantine P. Therapos

Abstract—Simple formulas are presented to compute the internally
balanced minimal realization and the singular decomposition of the
Hankel operator of a given continuous-time p x m stable transfer
function matrix E(s)/d(s). The proposed formulas involve the Schwarz
numbers of d(s) and the singular eigenvalues-eigenmatrices of a suit-
able finite matrix. Similar results are also obtained for a given discrete-
time transfer function matrix.
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