1160

different controllable subspaces, we ask if arbitrary rational inputs do not
generate an even larger controllable subspace. (Of course, in this case,
one may not hope to have smooth trajectories.)

Definition 4.1: A regular system (E, A, B) will be said to be almost
controllable if, given any initial condition Ex(0_), there exists a finite
time T > 0, a U(s) € R"(s), and a unique X(s) € R*(s) so that (sE —
A) - BU(s) = Ex(0_) aad x(T) = 0. A regularizable system will be
said to be “almost controllable” if (Ex , Ar , B) is almost controllable
for some F and K.

Theorem 4.3: A regularizable system (E, A, B) is “almost control-
lable” iff R} =R".

Proof: Given a regularizable system (E, A, B), we first choose a
K so that: 1) KerEx NV* = 0 and ii) ImB C ExV*. Note that regu-
larizability of (E, A, B), Theorem 3.2, and Lemma 2.2 guarantee the
existence of such a K. Then, (Ex, 4, B) is regular with ¥'* as its ini-
tial manifold and therefore, there exist two nonsingular matrices W and
V so that the Weierstrass form (W—'Ex V, W—'AV, W' B) [1] of
(Ex, A, B) becomes [5]

x, =Jx, +Bu
NX'Z = X3
where N is a Jordan-form matrix corresponding to the zero eigen-
value. Clearly, (E, 4, B) is “almost controllable” iff (Ex,A, B)
is ‘“‘almost controllable” and, as it is regular, (Ex, A, B) is “al-
most controllable” iff it is almost controllable, or equivalently iff
(W'ExV, W 'AV, W~'B) is almost controllable. As X2(t) =0
for ¢ >0, almost controllability of (W~'ExV, W—' 4V, W~IB) is
equivalent to the controllability of the state-space system (J, B, ). How-
ever, (J, By) is controllable iff R¥(W~'ExV,W—' AV, W~'B) =
R" [6). As RY(W™'ExV, WAV, W~'B) = R}(Ex,A,B) =
R} (E, A, B) the result follows. Q.E.D.

It should now be clear that the property of controllability depends on
the type of feedback to be applied because, in general, it is quite sensitive
to the inputs used to drive the given initial condition to the origin. On the
other hand, as suggested by its noninvariance with respect to the type of
feedback to be admitted, the property of reachability is independent of
the class of inputs to be used to reach a given point. Or, more precisely:

Lemma 4.2: Let (E, A, B) be regularizable and let y € R” be given.
If there exist T > 0, X(s) € R"(s) and U(s) € R" (s) satisfying:

a) (SE —A) —BU(s) =0,

b) x(T) = y [where, as before, X () denotes the inverse Laplace
transform of X (s)], then there exist X, (s) € R}, (s)and U, (s) € R, (s)
enjoying the same properties a) and b).

This result demonstrates that if a point y can be reached from the origin
in finite time along an impulsive trajectory generated by an impulsive
input, then the same point can be reached from the origin in finite time
along a smooth trajectory generated by a smooth input. This explains
why enlarging the class of inputs from R? » (5) 10 RY, (s) (or, equivalently,
introducing derivative feedback) does not enlarge the reachable space of
the system; and why there is no need to introduce the concept of “‘almost
reachability.”

Proof (Lemma 4.2): First, choose an F so that (E, Ar, B) is reg-
ular. Let y, T, X(s), and U(s) be as in the statement of the lemma.
Expand X(s) and U(s) as in (4.2) and (4.3). It is casy to show that
Xy ER} forallk <Oandx; € V* forall k > 0. As the initial condition
is zero, we also have Ex| = Axy 4+ Bu,. Then, x, € R NA—YWEV* +
ImB) =R NV* =R* [6], and x, c V* NE~'(AR} +ImB) =R*.
Then, an easy induction argument shows that x, € R* for all k. As
x(t)y €Sp{---, x i, X0, X1, X2,-++, } CR*, it follows that y =x(T)
is in R*. As (E, Ar, B) is regular and as y € R*, there exists a
smooth input u(¢) with a strictly proper Laplace transform U(s) so
that the trajectory x(#) is smooth with strictly proper Laplace trans-
form X (s) which satisfies x(¢) = y [5]. Then, taking X, (s) = X(s) and
Ui(s) = U(s) + FX(s) completes the proof. Q.E.D.

V. ConcLusions

Arguing against the assumption of regularity which overwhelms the
literature on continuous-time singular systems, we have introduced the
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notion of regularizability and have shown that, unlike regularity, it is
invariant under linear “state” feedback. We have established that a mod-
ification of the definition of reachability so as to make it dependent on
regularizability rather than regularity is not only possible but also de-
sirable as it is invariant under linear “‘state” feedback. It has also been
shown that a similar remedy of the noninvariance of controllability un-
der linear feedback turns out to be somewhat involved in the sense that
the correct way to define controllability depends on the type of feedback
law to be used. Thus, we have defined *“controllability by proportional
feedback,” “controllability by derivative feedback,” and *“controllability
by proportional-plus-derivative feedback” and have shown that the last
two are the one and the same property. Apart from their feedback and
geometric characterizations, dynamical interpretations of these concepts
have also been introduced. It has been shown that, under the quite nat-
ural assumption that ImE +ImA +ImB = R", regularizability is the
condition whereby given any initial condition one can find at least one
admissible input which generates a trajectory. The dependence of the def-
inition of controllability on the type of feedback has been reinterpreted as
a symptom of its dependence on the type of inputs to be used to drive the
given initial condition to the origin. It has been established that the use
of derivative feedback in the closed-loop system is equivalent to using an
open-loop control which has a Dirac delta term. Finally, the definition
of reachability has been shown to be insensitive not only to the changes
in the type of feedback inputs, but also to possible changes in the class
of open-loop inputs.
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type algebraic Riccati equation via the use of a bilinear transformation.
The proposed method has a rate of convergence of O(e2) where ¢ rep-
resents a small coupling parameter. The method is applicable under mild
assumptions.

I. INTRODUCTION

Linear weakly coupled continuous systems have been studied in
[1]-[12]. However, linear weakly coupled discrete systems have not been
studied due to the fact that the partitioned form of the main equation of
the optimal linear control theory, Riccati equation, has a very compli-
cated form in the discrete-time domain. This note overcomes that prob-
lem by the use of a bilinear transformation, which is applicable under
mild assumptions, such that the solution of the discrete algebraic Riccati
equation of weakly coupled systems is obtained using results from the
corresponding continuous-time equation.

The algebraic Riccati equation of weakly coupled linear discrete sys-
tems is given by

P=A"PA+Q-A"PB(B"PB +R)"'B"PA,

R>0,0>0 (€}
where
A, €A, B, B,
() o (a )
€A3 A4 €B3 By
O €, R, 0
Q - P R ( ) '
CQ; Qs 0 R,

and e is a small coupling parameter. Due to the block dominant structure
of the problem matrices, the required solution P has the form
P,

eP,
P ( ) .
ePg Ps

The main goal in weakly coupled system theory is to obtain the re-
quired solution in terms of reduced-order problems, namely, subsystems.
In the case of the weakly coupled algebraic discrete Riccati equation, the
inversion of the partitioned matrix (87 PB + R) will produce a lot of
nonzero terms and make the corresponding approach computationally
very involved, even though one is faced with reduced-ordef numerical
problems.

To solve this problem, we have used a bilinear transformation in-
troduced in [13] to transform the discrete Riccati equation (1) into a
continuous-time algebraic Riccati equation of the following form:

2

ATP. +P.A. +Q. —P.S.P, =0, S, =B.R7'Bl. (3)

The solution of (1) is equal to the solution of (3). Appendix I shows
that (3) preserves the structure of weakly coupled systems and can be
efficiently solved in terms of the reduced-order problems using the fixed-
point type method developed in [7]. The required solution is then ob-
tained with the rate of convergence of O(e?).

II. CompuTaTIONAL ALGORITHM

Since the proposed algorithm for a discrete algebraic Riccati equation
combines features of the bilinear transformation [13} and the fixed-point
algorithm developed in [7] for the weakly coupled continuous algebraic
Riccati equation, we will briefly summarize the main results obtained in
[13] and [7].

The bilinear transformation states that (1) and (3) have the same so-
lution if the following relations hold [13];

A.=1-2D7T (4a)
Se=2I+A)"'SeD™', S, =BR7'BT (4b)
Q. =2D7'QU +A)™! (4c)

D= +A")+QU +A)"'S, (4d)
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and assuming that (J + A)™' exists. Matrix D has been shown to be
invertible [15]. The physical interpretation of the transformation between
the continuous and discrete type algebraic Riccati equation is discussed
in [13].

The proposed algorithm will be valid under the following assumption.

Assumption 1: The system matrix A has no eigenvalues located at
-1

It is important to point out that the eigenvalues located in the neighbor-
hood of —1 will produce ill conditioning with respect to matrix inversion
and make the algorithm numerically unstable.

It can be verified that the weakly coupled structure of matrices defined
in (1) will produce the weakly coupled structure of transformed matrices
given in (4) (Appendix I). The compatible partitions of these matrices

are
A edn Si eSi2
(o o) (&)
€A2| A22 GST{Z 522
On Qi P, P
(o o) (o )
€0, On eP] Py
These partitions have to be performed by a computer only in the process
of calculations and there is no need for the corresponding analytical
expressions.

Solution of (3) can be found in terms of the reduced-order problems
by imposing standard stabilizability-detectability assumptions on the sub-
systems. The efficient fixed-point reduced-order algorithm for solving (3)
is obtained in [7].

The O(€?) approximation of (3) is obtained from the following decou-
pled set of equations:

A, =

P A, +ATP, +Q, —P .S \P, =0 (52)
P3Ay + ALPs 4+ Qy —P3S;,P3 =0 (5b)

P3(A2 —SnP3) + (A —~SyP Y Py +P 1Ay, + AL P,
+Q12 —PS1,P; =0. (5¢)

Unique positive semidefinite stabilizing solutions of (5a) and (5b) exist
under the following assumption.
Assumption 2: Triples (Aii, \/Sii, VQii), i = 1,2 are stabilizable-
detectable.
Defining the approximation errors as
P; =P; + €'E;,

i=1,2,3 (6)

the fixed-point type algorithm, with the rate of convergence of O(é), is
obtained in [7] in the decoupled form as

E(le)Al +A{E(lj+l) :M(]j) (7a)
E§j+I)A2 + A;E;IH) :M;j) (7b)

EJ™V 0, + ATEY™ + EV*V A, + AT EYHY
- M;j‘jﬂ) (7c)

with j = 0,1,2,-, and EX” =0, E” = 0, E = 0 where newly
defined matrices are given in Appendix II. Note that A, and A, are
stable matrices [1].
The rate of convergence of (7) is O(e?) [7], that is
IP; PP =0¥), i=1,2,3;

J=0,1,2,---, (8

where

i=1,2,3 j=01,2,---,. 9

The proposed algorithm for the reduced-order solution of the discrete
algebraic Riccati equation under conditions stated in Assumptions 1 and
2 has the following form.

1) Transform (1) into (3) using (4).

2) Solve (3) using the reduced-order algorithm (5)-(7).

PY =P, + @EY,
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TABLE 1
REDUCED-ORDER SOLUTION OF THE DISCRETE WEAKLY COUPLED
AvrceBraic Riccatt EQuaTion

R (3) j j

3 »f I,;J) ng)
39.937 2.6157 | 3.5566 2.5105 30.533 | 1.4838 0.3050 2.1505
0 1.2121 1.8158
1.5479 | 0.7706 0.4539 3.4863 26.135
51.477 3.7414 | 4.4048 2.9652 34.448 | 1.5641 0.3488 2.5341
1 1.2353 2.0101
1.6922 [ 0.8767 0.5108 3.9782 27.622
56.881 4.3019 | 4.7920 3.1561 35.815 | 1.5985 0.3665 2.6762
2 1.2441 2.0740
1.7581 | 0.9224 0.5340 0.4155 27.970
60.175 4.6541 | 5.0253 3.2657 36.500 | 1.6186 0.3763 2.7440 |
4 1.2487 2.1036
1.7983 | 0.9492 0.5478 4.2398 28.116
60.733 4.7144 | 5.0644 3.2836 36.600 [ 1.6218 0.3778 2.7529
6 1.2494 2.1076
1.8050 | 0.9535 0.5488 4.2514 28.136
60.824 4.7243 | 5.0708 3.2864 36.616 | 1.6223 0.3781 2.7542
8 1.2495 2.1082
1.8061 | 0.9542 0.5491 4.2531 28.139
60.838 4.7258 | 5.0714 3.2865 36.617 | 1.6224 0.3781 2.7544
9 1.2495 2.1082
1.8063 | 0.9543 0.5491 4.2533 28.139

Py = p1(9) p, = P, (%) Py = py(9)

II. NumericaL ExampLes

A real world physical example (a chemical plant model {14]) demon-
strates the efficiency of the proposed method

95.407 19643 03597 0.0673 0.0190
40.849 41317 16.084 44679 1.1971
A=10"2| 12217 26326 36.149 15930 12383
41118 12.858 27.209 21442 40.976
0.1305 0.5808 1.8750 3.6162 94.280
e ( 00434 26606 3.7530 3.6076 0.4617)
00122 —1.0453 —55100 —6.6000 —0.9148
Q=1Is, R=I,.

These matrices are obtained from [14] by performing a discretization
with a sampling rate AT = 0.5. The small weakly coupling parameter ¢
is built into the problem and can be roughly estimated from the strongest
coupled mairix (matrix B). The strongest coupling is in the third row,
where

_ by 37530 _

(*b—lz—m'\aoﬁs.

Simulation results are obtained using the L-A-S package for computer-
aided control system [16] and presented in Table I.

For this specific real world example the proposed algorithm perfectly
matches the presented theory since convergence, with the accuracy of
1074, is achieved after 9 iterations (i.e., 0.68'* = 10™*). Numerical
examples performed in [7] for different values of e support the proposed
algorithm.

IV. ConcLrusion

A reduced-order optimal solution of the algebraic discrete weakly cou-
pled Riccati equation is obtained. This result reduces off-line computa-
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tional requirements and plays an important role in the design procedure
of optimal and near-optimal controllers and filters for weakly coupled
discrete systems.

ApPENDIX T
It can be shown that
O(1) Of(e)
d+A)~"' = ( ) . (A1)
O O(1)

Since Sy from (4b) and Q from (1) have the same weakly coupled struc-
ture as (A.1) so does D in (4d). The inverse of D is also of the weakly
coupled form as defined in (A.1). From (4a) and (4c) the weakly coupled
structure of matrices A, and Q. follows directly since they are given in
terms of sums and/or products of weakly coupled matrices.

Appenpix 11

A=Ay ~-SuP, Ay =Apn —SpP;

A=A, —SuPy —SiPs, Ay = Ay —SpPY - SL,P,

MY = pYST,PY 4 pYs,, P(Zj)’ +PYSy, P(Zif
P4, —Ag,ng’T —e’E‘l”S.,E“”
MY = pPST, py) +ng)rS|2P(3j) _‘_P«zj)’SHP(Zj)
+P§”S(z P;” _ P;j)T Ay — AT, P(Z/) e E;j’Sn E;”
MY = POSTPY 4 GBS EY + @BV SpEY

(j+1 G+1)
+e2EV VS, EYTY.
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