800

North Pole , %

v
>
«
N

\

99 9,

South Pole

Fig. 2. Riemann’s stereographic projection.

easily seen to be the Riemann metric

. dx? + dy* + dz*
I$° =

1 -
(1 +Z(x2+y2+zz)

By analogy with the S' and S? cases, ds is called arc length
element on the punctured sphere S°. The distance d(q,, g,) be-
tween two points g, g, on S* — {south pole} is given by /. ds,
the integral being evaluated along the geodesic line joining g, and
q,. By definition, the geodesic line minimizes _/:lz ds. Computing
the distance along the geodesic line indeed guarantees that d(-,-)
satisfies the triangle inequality, for

q> g3 qz
ds < min ds + min ds.
q aQ g3

min

Finally, we evaluate the distance between the north pole 1 and the
point ¢ = (4., Gx» 4,>4,)- BY the rotational invariance of the
problem, we can assume that g = (g,, 4,.0,0). Since ds is the
metric induced on S* — {south pole} by the Euclidean metric on
R*, the geodesic joining 1 and g is contained entirely in the
(4, 4,) plane. Therefore

Finally, using (A.1) or doing some elementary geometry on Fig. 2,
it is easily seen that 2tan~! x /2 = cos~' q,. Therefore

d(l,q) =cos~'gq,

as claimed.
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A New Version of the Chang Transformation

Muhammad T. Qureshi and Zoran Gajic

Abstract—A new decoupling transformation is proposed for singu-
larly perturbed linear systems. This transformation has the advantage
over the previous one in that, in order to find such transformation, only
one algorithm is required and the computation can be done in parallel
since the transformation matrices are obtained from two independent
equations having identical form.

I. INTRODUCTION
A singularly perturbed system is represented by [1], [2]
u=Bu+ B,v,

(1)
@)
where u e R™, ve R™ are slow and fast state variables, respec-
tively, and matrices B,, B,, B;, B, are of appropriate dimensions,
which are constant in the case of time-invariant systems, and
functions of time in the case of time-varying systems. A small
parameter e is positive.

The common approach to solve these systems is to first transform
them into new coordinates such that the states are independent
(decoupled) from each other. This leads to a block diagonal form
which is easier to solve [3].

For the singularly perturbed system the corresponding transfor-
mation is [3]

ev = Biu + Byv

T —¢P
T_[—Q I+€eQP )

where P and Q are the solutions of the following two equations:
4)

€Q=5(B|_BzP)Q—Q(B4+€PBz)_Bz~ 5
Note that for the time-invariant case, the derivatives P and Q are
zero.

The difficulty in solving (4) and (5) is that (5) can only be solved
after the results of (4) are available. Therefore, computation must be
done sequentially. Furthermore, two different algorithms are needed:
one for (4) and the other for (5). This difficulty is overcome by
introducing another transformation which decouples the original
system as well as the transformation equations. This will enable us
to compute P and @ in parallel and by using only one algorithm.
The proposed transformations are extremely efficient, from the
numerical point of view, in the case of time-varying systems since
corresponding differential equations are completely decoupled. This
is extremely important for singularly perturbed systems where both
transformation equations (4) and (5) are stiff, and thus numerically
ill-defined [2]. The main result of this note is given in the next
section.

eP = B,P — ¢PB, + ¢PB,P — B,

II. NEw DECOUPLING TRANSFORMATION
Introducing the transformation

a=u—¢ePv,

B=-Qu-+v (6)
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and differentiating, we get
& =1 — ePi— ePv,
B=—Qi—Qu+i.
Substituting for & and ¥ from the original system, and simplifying,
we get

& = Ba— G(P)v (M
where
B,, = B, — PB,
and
G,(P) =eP + PB, — ¢B P — B, + ¢PB,P. (8)
Also
€8 = ByB — Go(Q)u )
where
By, =B, - €0B,
and

Gy(Q) = 0 + 0B, — B,Q - B, + ¢0B,0.  (10)
By setting G,(P) =0, and G,(Q) = 0, we get the decoupled

system
& = Byo = (B, — PBy)a, (11)
B = B8 = (B4 - EQBZ)B (12)

where P and Q can be calculated from the following two stiff
differential equations:

eP = —PB, + B, + ¢(B,P - PB,P), (13)
€Q = B,Q + B, + (0B, + 0B,0). (14)

The initial conditions for differential equations (13) and (14) are
arbitrary [3], [4]. For time-invariant systems, equations (13) and
(14) become algebraic ones. Efficient numerical methods for solving
corresponding algebraic equations are discussed in [5]. Note that
both (4) and (5) and (13) and (14) are stiff differential equations.
They can be solved by using methods from [6]. It is known that due
to a huge initial slope, solution of these equations requires a lot of
time [6].
Thus, the introduced decoupling transformation is

HEEA HEH

T = [1+ ePNQ EPN]
NQ N
with N = (I — ¢QP)"!, and P and Q are the solutions of (13) and
(14), respectively.

It is important to notice that in (4) and (5) one has to solve one
Riccati and one Lyapunov equation sequentially. The total process-
ing time in that case is greater than ¢z, where f; is the time for
solving the Riccati equation. However, in (13) and (14) solutions of
two Riccati equations are required, but due to parallelism the total
processing time is 5.

where

II. CONCLUSION

A different viewpoint is taken in developing the decoupling
transformations for singularly perturbed linear systems. The pro-
posed transformations have the advantage over the previous ones
since they also decouple the transformation equations (13) and (14),
enabling us to perform the computations in parallel. This is numeri-
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cally very efficient for the case of time-varying systems where the
corresponding differential equations are stiff.
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Amster-

Geometric Theory for the Singular Roesser Model
A. Karamancioglu and F. L. Lewis

Abstract—( A, E, B)-invariant and (E, A, B)-invariant subspaces for

the two-di R del are investigated. These
subspaces are related to the exist of the soluti when the bound-
ary conditions are in these sub Also exi of a solution

sequence in certain subspaces derived from the invariant subspaces is
shown. The boundary conditions that appear in the solution when some
semistates in the solution are restricted to zero are also investigated.

I. INTRODUCTION

Two-dimensional (2-D) state-space models have been studied
extensively during the past decade and a half. During this time many
1-D state-space techniques [1], [2] have been generalized to their
2-D counterparts [3]-[6]. However, only a few publications have
emerged considering the 2-D singular models, which are more
general [7]-[10]. In fact, 2-D singular models deserve better con-
sideration due to the physical motivations and their richer structure.

2-D system models may assume spatial parameters as well as
time, consequently, they do not have any natural notion of causality.
The notion of recursibility is a commonly assumed property for 2-D
state-space models, and allows their solution. The 2-D singular
models, however, do not require recursibility. This allows them to
model systems whose states at any value of the parameters depend
on data from any direction in the 2-D plane. For instance, the heat
conduction problem over a finite plane, and a nonrecursible mask
can be modeled as a singular, but not state-space 2-D systems [7],
[10]. Also, the 2-D singular models allow algebraic constraints in
addition to their dynamics, which is an improvement over state-space
models.

In this note we consider geometric notions for the 2-D Roesser
model (SRM). The geometric approach classifies system constraints
and dynamics with respect to subspaces. In singular systems, where
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