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Fig. 1. Bode plot of the true system and mean errors.

The reference signalr and the noisee0 were chosen as independent,
zero mean, Gaussian white noise signals, with variances 1(=�r(!))
and 0.01(=�0), respectively.

A Monte Carlo simulation consisting of 1024 different runs was
performed. In each run we generatedN = 1024 data points and
identified the system directly using second-order ARX and output
error models and indirectly using a second-order model of the kind
(35) where we fixed�H(q; �) = 1. For the direct method with an
output error method we can expect biased results since for this model
H(q; �) = 1 6= H0(q) [cf. (23)]. For the ARX model, on the other
hand, there should ideally be no bias error since the chosen model
structure coincides with the one used to generate the data. In Fig. 1 we
plotted the true system together with the mean errors in the estimated
models. The results for the ARX and the indirect cases are similar.
The differences are likely to be due to numerical problems (poor
initial conditions, problems with local minima, etc.) in the estimation
routine used for the indirect method. These problems are not present
in the ARX case since there the prediction error estimate is found
without iterations by solving a standard least squares problem. In
Fig. 1 we also included a plot of the theoretical bias error according
to (22) for the output error model. As can be seen from the figure,
the obtained bias error is close to the theoretical value.

VII. CONCLUSION

By studying the bias error due to feedback in the estimated
transfer functions when using the direct method we have obtained
a nonstandard motivation for the indirect approach to closed-loop
identification. This method gives consistency regardless of the noise
color but requires perfect knowledge of the regulator and gives
suboptimal accuracy.
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Singular Perturbation Analysis of Cheap
Control Problem for Sampled Data Systems

Dimitrie C. Popescu and Zoran Gajić

Abstract—This paper studies the discrete-time cheap control problem
for sampled data systems using the theory of singular perturbations. It
is shown, by using the two time-scale property of singularly perturbed
systems, that the problem can be solved in terms of two reduced-
order subproblems for which computations can be done in parallel, thus
increasing the computational speed. Similarly to the continuous-time case,
the singular perturbation approach enables the decomposition of the
algebraic Riccati equation into two reduced-order pure-slow and pure-fast
continuous-time algebraic equations.

Index Terms—Cheap control, decoupling, order reduction, sampled
data systems, singular perturbations.

I. INTRODUCTION

Cheap control refers to an optimal control problem in which the
performance index includes only a small control cost. Its continuous-
time version has been studied by a number of researchers (see, for
example, [3], [6], [9], and references therein). However, the discrete-
time cheap control problem, which occurs naturally when dealing
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with sampled data systems, has not been completely solved in the
spirit of decomposing the problem into the slow and fast time scales
and removing the problem’s ill conditioning. A first approach in
that direction can be found in [9], where a near optimal solution is
presented. In this paper, we obtain the exact solution to the optimal
cheap control problem for sampled data systems.

Consider the sampled data system

x(k + 1) = (I + "A)x(k) + "Bu(k) (1)

which can be obtained by uniformly sampling a continuous-time
system with a sampling period", where" is an arbitrary small positive
number,x 2 RRRn are state variables, andu 2 RRRn is the control
input. In addition, we assume that

Ba = "B = "
0
B2

(2)

with B 2 RRRn�n , B2 2 RRRn �n , and det(B2) 6= 0, which is
required for the cheap control problem formulation [3], [9]. Under
the above assumption, the system can be partitioned as

x1(k + 1) = (In + "A1)x1(k) + "A2x2(k)

x2(k + 1) = "A3x1(k) + (In + "A4)x2(k) + "B2u(k): (3)

The cheap control problem for (1) is to determine the optimal
control sequenceu(k) that minimizes the performance index

J = 1

2

1

n=0

[xT (k)Qx(k) + "
2
u
T (k)Ru(k)]

Q =
Q1 Q2

QT

2 Q3

� 0; R > 0 (4)

with Q3 > 0, which is the standard assumption for cheap control
problems [3].

Note that the choice of (4) does not constrain the choice of the
sampling period". We first perform sampling with any given", and
then use that" to scale the control penalty matrix in the performance
criterion, which leads to the cheap control problem formulation. Note
thatR is an arbitrary positive definite matrix ofO(1), and the fact
that the overall penalty matrix"2R is small indicates only that the
control input is not expensive. We can use another small parameter
"1 to indicate this fact as follows: take the control penalty matrix as
"21R1, with "1 = �" andR1 = RT

1 > 0 an arbitrary matrix ofO(1).
This leads to the control penalty matrix"2R with R = �2R1. To
avoid the problem of dealing with two small parameters, we have
adopted the form defined in (4), which has also been used in [9].1

1It should be emphasized that the presentation of this paper is valid within
the framework ofO(") theory. In general,O("r) is defined byO("r) < K"r,
whereK is a bounded constant andr is any real number.

II. DECOMPOSITION OF THECLOSED-LOOPCHEAP CONTROL PROBLEM

The decomposition of the cheap control problem is obtained by
starting with the open-loop optimal solution of the optimization
problem defined in (1)–(4), which is given by

u(k) = �
1

"
R
�1
B
T
�(k + 1) (5)

where� is a costate variable satisfying [4]

x(k + 1)
�(k + 1)

= HHH
x(k)
�(k)

: (6)

The matrix HHH is the standard Hamiltonian matrix, and has the
following form [4]:

HHH =
Aa +

1

"2
BaR

�1BT

a A
�T

a Q �
1

"2
BaR

�1BT

a A
�T

a

�A�Ta Q A�Ta

(7)

where

Aa =
In + "A1 "A2

"A3 In + "A4

BaR
�1
B
T

a = "
2 0 0
0 B2R

�1BT

2

A
�T

a =
In + "A1 "A2

"A3 In + "A4

A
�T

a Q =
Q1 Q2

Q3 Q4

: (8)

There is no need for analytical expressions of “bared” matrices; they
have to be constructed by the computer in the process of calculations.

According to the above-defined partitions, the state–costate equa-
tions have the following expression:

x1(k + 1)
x2(k + 1)
�1(k + 1)
�2(k + 1)

= HHH

x1(k)
x2(k)
�1(k)
�2(k)

(9)

with the Hamiltonian matrix partitioned as shown in (10), at the
bottom of the page.

Our goal is to put the state–costate system (9) and (10) into
the singular perturbation form, and to achieve the pure slow–fast
decomposition of the cheap control problem. We introduce the
permutation matrix

E1 =

In 0 0 0
0 0 "In 0
0 In 0 0
0 0 0 In

(11)

HHH =

In + "A1 "A2 0 0

"A3 +B2R
�1BT

2 Q3 In + "A4 +B2R
�1BT

2 Q4 �"B2R
�1BT

2 A3 B2R
�1BT

2 (In + "A4)

�Q1 �Q2 In + "A1 "A2

�Q3 �Q4 "A3 In + "A4

(10)

E1HHHE
�1

1 =

In + "A1 0 "A2 0

�"Q1 In + "A1 �"Q2 "2A2

"A3 +B2R
�1BT

2 Q3 �B2R
�1BT

2 A3 In + "A4 +B2R
�1BT

2 Q4 B2R
�1BT

2 � (In + "A4)

�Q3 A3 �Q4 In + "A4

(12)
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and set

p1(k)
p2(k)

=
"�1(k)
�2(k)

to obtain the coordinate transformation

E1

x1(k)
x2(k)
�1(k)
�2(k)

=

x1(k)
p1(k)
x2(k)
p2(k)

:

In the transformed coordinates, the Hamiltonian matrix has the form
shown in (12), at the bottom of the previous page. It is easy to observe
that the transformed Hamiltonian matrix can be partitioned as

E1HHHE
�1
1 =

I2n + "T1 "T2
T3 T4

(13)

with matricesT1, T2, T3, andT4 being given by

T1 =
A1 0

�Q1 A1

T2 =
A2 0

�Q2 "A2

T3 =
"A3 +B2R

�1BT

2 Q3 �B2R
�1BT

2 A3

�Q3 A3

T4 =
In + "A4 +B2R

�1BT

2 Q4 �B2R
�1BT

2 (In + "A4)

�Q4 In + "A4

:

Since the matricesT1, T2, T3, T4 are all ofO(1), the state–costate
equations have, in the new coordinates, the standard form of a discrete
singularly perturbed system [7], [8]:

x1(k + 1)
p1(k+ 1)

= (I2n + "T1)
x1(k)
p1(k)

+ "T2
x2(k)
p2(k)

x2(k + 1)
p2(k+ 1)

=T3
x1(k)
p1(k)

+ T4
x2(k)
p2(k)

: (14)

It is important to observe that the matrixT4 is the Hamiltonian matrix
of the fast subsystem, and has no eigenvalues on the unit circle in
the case when the stabilizability–detectability assumption is satisfied.
Note that, from (8), we haveQ4 = Q3 + O("). Since

T4 = T
(0)
4 +O(") =

I2n �B2R
�1BT

2

�Q3 I2n
+O(")

the required assumption is as follows.
Assumption 1:The triple (I; B2;

p
Q3) is stabiliz-

able–detectable.
Since we have already assumed thatdet(B2) 6= 0, andQ3 > 0,

the above assumption is satisfied; in other words, Assumption 1 is
implied by the following assumption.

Assumption 2:det(B2) 6= 0 andQ3 > 0.
To decouple slow and fast variables, we can now apply Chang’s

transformation [5], defined by

T
x1(k)
p1(k)
x2(k)
p2(k)

=

�1(k)
�1(k)
�2(k)
�2(k)

T =
I2n � "HL �"H

L I2n

T �1 =
I2n "H

�L I2n � "LH
(15)

where matricesL andH satisfy the equations

H + T2 �HT4 + "(T1 � T2L)H + "HLT2 =0

�L+ T4L� T3 � "L(T1 � T2L) = 0: (16)

The unique solution of (16) exists under the assumption that(T4�I)
is nonsingular, which is, as we have noted previously, satisfied for
sufficiently small values of" since the matrixT (0)

4 has no eigenvalues
on the unit circle. An algorithm for solving (16) is presented in [1].

Application of the transformation (15) results in a block-diagonal
system matrix, that is,

T I2n + "T1 "T2
T3 T4

T �1

=
I2n + "T1 � "T2L 0

0 T4 + "LT2
(17)

which corresponds to a singularly perturbed system in which slow
and fast variables are completely decoupled [1]. Hence, in the new
coordinates, we have

�1(k+ 1)
�1(k + 1)

= (I2n + "(T1 � T2L))
�1(k)
�1(k)

�2(k+ 1)
�2(k + 1)

= (T4 + "LT2)
�2(k)
�2(k)

:

In the original coordinates, the required optimal solution has a
closed-loop form

�(k) = Px(k) (18)

with P being the solution of the discrete algebraic Riccati equation

P = Q+A
T

a PAa �A
T

a PBa "
2
R+B

T

a PBa

�1

B
T

a PAa:

(19)

The same is true in the transformed coordinates [1], that is,�1(k) =
P1�1(k) and �2(k) = P2�2(k) or

�1(k)
�2(k)

=
P1 0
0 P2

�1(k)
�2(k)

: (20)

To use this fact, we rearrange the variables in (15) using the
permutation matrix

E2 =

In 0 0 0
0 0 In 0
0 In 0 0
0 0 0 In

(21)

so that the overall transformation between the original and new
coordinates is� = E2T E1, which is partitioned as

�1(k)
�2(k)
�1(k)
�2(k)

=
�1 �2

�3 �4

x1(k)
x2(k)
�1(k)
�2(k)

: (22)

Expression (20), together with (18) and (22), produces

�1(k)
�2(k)

=�1
x1(k)
x2(k)

+ �2
�1(k)
�2(k)

= (�1 +�2P )
x1(k)
x2(k)

�1(k)
�2(k)

=�3
x1(k)
x2(k)

+ �4
�1(k)
�2(k)

= (�3 +�4P )
x1(k)
x2(k)

: (23)
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It follows from (20) and (23) thatP1 andP2 can be expressed in
terms of the solution of the global (full-order) Riccati equation (19) as

P1 0
0 P2

= (�3 +�4P )(�1 +�2P )
�1
: (24)

Following the same logic, we can findP in terms ofP1 andP2

by introducing the inverse transformation


1 
2


3 
4
= E

�1
1 T

�1
E
T

2 (25)

which yields

P = 
3 + 
4
P1 0
0 P2


1 + 
2
P1 0
0 P2

�1

: (26)

It is shown in Appendix A that the inversions defined in (24) and
(26) exist for sufficiently small values of parameter".

To determineP1 andP2, we rewrite the decoupled system (17) in
terms of its components

�1(k + 1)
�1(k + 1)

= (I2n + "(T1 � T2L))
�1(k)
�1(k)

=
�1 �2

�3 �4

�1(k)
�1(k)

(27)

�2(k + 1)
�2(k + 1)

= (T4 + "LT2)
�2(k)
�2(k)

=
�1 �2
�3 �4

�2(k)
�2(k)

: (28)

Using these two decoupled state–costate systems (27) and (28), the
reduced-order nonsymmetriccontinuous-time, respectively, pure-slow
and pure-fast, algebraic Riccati equations are derived:

P1�1 � �4P1 � �3 + P1�2P1 =0 (29)

P2�1 � �4P2 � �3 + P2�2P2 =0 (30)

where matrices�i and�i are shown in (31) and (32), at the bottom
of the page, with

L =
L1 L2

L3 L4
; H =

H1 H2

H3 H4
: (33)

The Riccati equation for the slow subsystem becomes

P1(A1 �A2L1)� (A1 +Q2L2 � "A2L4)P1 +Q1

�Q2L1 + "A2L3 � P1A2P1 = 0: (34)

Note thatP1In1 and �In1P1 cancel out, and that the remaining
terms are divided by".

The Riccati equation for the fast subsystem becomes

P2 B2R
�1
B
T

2 Q4 + "(A4 + L1A2 � L2Q2) � "(A4 + "L4A2)P2

+ P2 �B2R
�1
B
T

2 (In + "A4) + "
2
L2A2 P2

+ (Q4 � L3A2 + L4Q2) = 0: (35)

It is shown in Appendix B that anO(") perturbation in (34) and
(35) leads to the symmetric Riccati equations of the form

P
(0)
1 A1 � A2Q

�1
3 Q

T

2 + A1 � A2Q
�1
3 Q

T

2

T

P
(0)
1

+ Q1 �Q2Q
�1
3 Q

T

2 � P
(0)
1 A2Q

�1
3 A

T

2 P
(0)
1 = 0 (36)

P
(0)
2 = In2P

(0)
2 In2 +Q3 � P

(0)
2 B2 R+B

T

2 P
(0)
2 B2

�1

� B
T

2 P
(0)
2 : (37)

The unique positive semidefinite stabilizing solution of (37) exists
under Assumption 1. The existence of such a solution of the slow
algebraic Riccati equation (36) requires the following assumption.

Assumption 3:The triple

A1 �A2Q
�1
3 Q

T

2 ; A2Q
�1
3 AT

2 ; Q1 �Q2Q
�1
3 QT

2

is stabilizable–detectable.
The solutions of (36)–(37) can be used as very good initial

guesses for the Newton method for solving the nonsymmetric Riccati
equations (34) and (35).

Having determined the solution of the global Riccati equation in
terms of solutions of the reduced-order algebraic Riccati equations
using formula (26), we can now write the optimal control sequence
using (5) and (18):

u(k) = � "
2
R+B

T

a PBa

�1

B
T

a PAax(k)

= �
1

"
R+B

T
PB

�1

BPAax(k): (38)

The advantage of the singular perturbation approach is the fact
that completely decoupled slow and fast subsystems can be used for
parallel processing of information. Using (22), we can rewrite (38) as

u(k) = �
1

"
R+B

T
PB

�1

BPAa(�1 +�2P )
�1 �1(k)

�2(k)

= �
1

"
F1�1(k)�

1

"
F2�2(k) (39)

with �1(k) and �2(k) obtained from the pure-slow and pure-fast
subsystems, respectively, given by

�1(k+ 1) = (�1 + �2P1)�1(k) (40)

�2(k+ 1) = (�1 + �2P2)�2(k): (41)

The optimal gainsF1 2 RRRn �n andF2 2 RRRn �n are obtained by
appropriately partitioning the gain matrix defined in (39).

In summary, we have established the following theorem.
Theorem: Under the conditions stated in Assumptions 1–3, there

exists a nonsingular transformation�1 + �2P such that

�1(k)
�2(k)

= (�1 +�2P )
x1(k)
x2(k)

decouples the original system into pure-slow and pure-fast subsystems
(40) and (41), whereP1 and P2 are the unique solutions of the
exact pure-slow and pure-fast completely decoupled algebraic Riccati
equations (29) and (30). Even more, the global solutionP can
be obtained from the reduced-order exact pure-slow and pure-fast

�1 �2

�3 �4
=

In1 + "(A1 �A2L1) �"A2L2

"(�Q1 +Q2L1 � "A2L3) In1 + "(A1 +Q2L2 � "A2L4)
(31)

�1 �2
�3 �4

=
In2 + "A4 +B2R

�1BT

2 Q4 + "(L1A2 � L3Q2) �B2R
�1BT

2 (In2 + "A4) + "2L2A2

�Q4 + L3A2 � L4Q2 In2 + "A4 + "2L4A2

(32)
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algebraic regulator Riccati equations using formula (26). Known
matrices
i; i = 1; 2; 3; 4, and�1; �2 are given in terms of the
solutions of the Chang decoupling equations (16).

As pointed out by an anonymous reviewer, the condition stated
in Assumption 2,det(B2) 6= 0, can be replaced by the assumption
that the pair(A; B) is controllable and the sampling period is not
pathologic.

A numerical example that demonstrates the efficiency of the
proposed method can be found in [10].

III. CONCLUSIONS

This paper presents the cheap control problem associated with
sampled data systems. Using the theory of singular perturbations, the
required optimal solution has been obtained in terms of pure-slow and
pure-fast subsystems, which have been constructed through parallel
computations. High dimensionality and ill conditioning of the original
problem are eliminated, and the computational speed is increased.
The discrete-time algebraic Riccati equation associated with the
cheap control problem has been decomposed into two reduced-order
nonsymmetric continuous-time algebraic Riccati equations which are
easily solvable.

APPENDIX A

For the matrices involved in (24), we can write

� = E2T E1 =
�1 �2

�3 �4

=

In1 0 0 0
L1 In 0 0
0 0 0 0
L3 0 0 In

+O(")

from which we get

�1 =
In 0
L1 In

+O("); �2 =
O("2) O(")
O(") 0

:

Taking into account the partition for the solution of the Riccati
equation which is given by [9]

P =

1

"
P11 P12

P T

12 P22

we get

�1 +�2P =
In 0

L1 + L2P11 In
+O(")

which proves that�1+�2P is always invertible for small values of".
Similarly, for the matrices involved in (26), we can write


 =E
�1

1 T
�1
E
T

2 =

1 
2


3 
4

=

In1 0 0 0
�L1 In �L2 0

0 H3

1

"
In H4

�L3 0 �L4 In

+O(")

from which we have


1 =
In 0
�L1 In

+O("); 
2 =
0 0

�L2 0
+O("):

It follows that


1 + 
2

P1 0
0 P2

=
In 0

�L1 � L2P1 In
+O(")

which proves that


1 + 
2

P1 0
0 P2

is also invertible for small values of".

APPENDIX B

An O(") approximation forA�1a is

A
�1

a" =
In � "A1 "A2

"A3 In � "A4

from which theO(") approximation forA�Ta is

A
�T

a" =
In + "A1" "A2"

"A3" In + "A4"

=
In � "AT

1 "AT

2

"AT

3 In � "AT

4

:

This implies thatO(") perturbation in the matricesA1, A2, A3, A4

results in the following matrices:

A1" = �A
T

1 ; A2" = A
T

3 ; A3" = A
T

2 ; A4" = �A
T

4 :

An O(") approximation forA�Ta Q produces

A
�T

a Q =
In + "A1 "A2

"A3 In + "A4

Q1 Q2

QT

2 Q3

=
(In + "A1)Q1 + "A2Q

T

2 (In + "A1)Q2 + "A2Q3

"A3Q1 + (In + "A4)Q
T

2 "A3Q2 + (In + "A4)Q
T

3

=
Q1 Q2

Q3 Q4

=
Q1 Q2

QT

2 Q3

+O("):

Hence, anO(") perturbation leads to

Q1" = Q1; Q2" = Q2; Q3" = Q
T

2 ; Q2" = Q3:

An O(") perturbation in the Chang transformation results in

T" =
I2n 0
L" I2n

; T
�1

" =
I2n 0
�L" I2n

with L" satisfying

�L" + T4"L" � T3" = 0

from which

L" = (T4" � I)�1T3"

with matricesT3" andT4" representingO(") approximations forT3
and T4. We get

T3" =
B2R

�1BT

2 Q
T

2 �B2R
�1BT

2 A
T

2

�QT

2 AT

2

T4" � I =
B2R

�1BT

2 Q3 �B2R
�1BT

2 Q2

�Q3 0

(T4" � I)�1 =
0 �Q�1

3

�B�T
2

RB�1
2

�I
:

Thus, anO(") approximation forL is

L" =
Q�1
3
QT

2 Q�1
3
AT

2

0 0
:

Now, we plug all of theseO(") approximations in the slow and
fast nonsymmetric Riccati equations (34) and (35) and neglect all
terms which are ofO(").

For the slow equation (34), we have

A1 � A2L" =A1 � A2Q
�1

3 Q
T

2

A1" +Q2"L2" = � A1 � A2Q
�1

3 Q
T

2

Q1" �Q2"L1" =Q1 �Q2Q
�1

3 Q
T

2

A2L2" =A2Q
�1

3 A
T

2
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which yields the symmetric continuous-time algebraic Riccati equa-
tion

P
(0)
1 A1 � A2Q

�1
3 Q

T

2 + A1 �A2Q
�1
3 Q

T

2

T

P
(0)
1

+ Q1 �Q2Q
�1
3 Q

T

2 + P
(0)
1 A2Q

�1
3 A

T

2 P
(0)
1 = 0:

It is interesting to observe that this equation is identical to the slow
approximate algebraic Riccati equation of [9].

For the fast Riccati equation (35), we get anO(") approximation
as follows:

P
(0)
2 B2R

�1
B
T

2 Q3 +Q3 � P
(0)
2 B2R

�1
B
T

2 P
(0)
2 = 0

which can be rewritten as

0 = �Q3 + P
(0)
2 B2 R+B

T

2 P
(0)
2 B2

�1

B
T

2 P
(0)
2

which is the discrete-time algebraic Riccati equation corresponding
to the fast variables of [9].
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Guaranteed Cost-Switching Surface Design for
Sliding Modes with Nonmatching Disturbances

Richardo H. C. Takahashi and Pedro L. D. Peres

Abstract—This note presents an extension of Utkin and Yang’s method
for sliding surface design via the minimization of a quadratic performance
criterion. The method proposed here takes into account nonmatching
disturbance signals and nonmatching system model uncertainties. An
upper bound for the HHH2 norm of the disturbance-to-output transfer
function is minimized, leading to a guaranteed costHHH2 controller.

Index Terms—HHH2 guaranteed cost, nonmatching disturbances, sliding
modes, uncertain systems.

NOTATION

R(�) Range space (for matrices) or the image (for functions) of
the argument, depending on the context.

N (�) Null space of the argument.
�(�) Rank of the argument.
(�)0 Transpose of the argument.
(�)� Complex conjugate transpose of the argument.
E(�) Mathematical expectation of the argument.
tr(�) Trace of the square matrix argument.

I. PROBLEM STATEMENT

This note deals with the design of sliding surfaces for sliding
mode control systems. Systems with convex-bounded nonmatching
model parameter uncertainties and nonmatching disturbance inputs
are considered. The design problem is formulated in terms oflinear
matrix inequalities(LMI’s) with the minimization of an upper bound
for the systemH2 norm in the uncertainty set. As a byproduct, the
quadratic stability of the closed-loop system is guaranteed.

For brevity, there is no presentation of the background of these
theories, and the reader is referred to [1]–[3] for further details on
the sliding mode theory, and to [4] and [5] for more information
on the convex optimization approach forH2 optimal control with
convex-bounded uncertainties.

In the paper by Utkin and Yang [6] (and also in [7]), a nominally
linear system is considered:

_x(t) = Ax(t) +Bu(t) (1)

whereA 2
n�n and B 2

n�r are, respectively, the nominal
dynamic matrix and the control input matrix. This system will be
controlled with a sliding mode controller which constrains the state
vector to a linear surface (sliding surface) of dimensionn � r after
a finite transient time� :

Cx(t) =0; 8 t � �

�(C) = r: (2)
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