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Near-Optimum  Regulators  for  Stochastic 
Linear  Singularly  Perturbed Systems 

,4Z~struct-This paper  presents a ne87  approach to the  decomposition  and 
approximation of linear-quadratic-Gaussian  estimation and  control  prob- 
lems  for  singularly  perturbed  systems.  The  Kalman filter is decomposed 
into  separate slow-mode and fast-mode  filters via  the use of a  decoupling 
transformation. A near-optimal  control  law is derived by approximating the 
coefficients of the  optimal  control law. The order  of  approximation  of  the 
optimal  performance is O(pLN) \there N is the  order  of  approximation of 
the coefficients. 

I. INTRODUCTION 

T (LQ) 
HE singular perturbation  approach [l] to linear quadratic 

regulator problems of systems having slow and fast 
modes has led to useful and attractive approximation methods 
which are well-documented [2]-[8]. There are two different proce- 
dures for deriving approximations of the LQ optimal solution. In 
the first one, the solution of the regulator Riccati equation is 
obtained as an asymptotic, or power series, expansion in the 
perturbation parameter p (cf., [3],  [5]). Approximate feedback 
control laws are derived by truncating the asymptotic expansions 
of the feedback coefficients of the optimal control law.  Such 
approximations have been shown to be near-optimal with perfor- 
mance that can be made as close to the optimal performance as 
desired by including enough terms in the truncated expansions. 
The second procedure for deriving approximate feedback control 
laws is based on formal slow-fast decompositions of the LQ 
problem [8]. Two lower order LQ problems are defined for the 
slow and fast variables leading to slow and fast feedback control 
laws. A composite feedback control law  is formed as the sum of 
the slow and fast controls. It has been shown [8] that the 
feedback coefficients in the composite control law are the zero- 
order terms of the expansions of the optimal feedback coeffi- 
cients. Thus, the second procedure is also near-optimal as p -+ 0, 
although the best it can do is to achieve a performance which  is 
O(p’)  close to the optimal performance. Extending these ap- 
proximation procedures to the linear-quadratic-Gaussian (LQG) 
problem has not been an easy task. Although the duality of the 
filter Riccati equation and the regulator Riccati equation can be 
used, together with the results of [3]-[5], to obtain asymptotic 
approximations to the filter gains, such approximations will not 
be satisfactory because they only reduce the off-line computa- 
tional effort of computing the filter gains, but they do not help 
the on-line computations of implementing the Kalman filter 
which will be of the same order of the overall singularly per- 
turbed system. Because of the slow-fast nature of the variables in 
singularly perturbed systems it has been felt that the Kalman 
filter need not be implemented as one whole filter; rather it may 
be replaced by two lower order filters which separately estimate 
the slow and fast variables and are implemented in different time 
scales. That conviction has motivated the two previous ap- 
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proaches for appro-hating  LQG optimal control. The first ap- 
proach [9], [lo] extends the composite control idea of determinis- 
tic LQ problems to stochastic LQG problems. Formal lower 
order  LQG problems are defined for the slow and fast variables 
leading to slow and fast feedback control laws  which employ 
slow-mode and fast-mode filters, respectively. The slow and fast 
controls are added together to get a composite feedback control 
which has been shown [lo] to be near-optimal by  showing that 
the performance criterion, under the composite control law! con- 
verges to the optimal performance as p -+ 0. The technical details 
of the approach have some difficulties arising mainly from trying 
to extend deterministic notions of singularly perturbed tech- 
niques [l], like boundary layers, to systems driven by white noise. 
Those difficulties affect the results; for example, in the filtering 
result of [9] the estimates of the fast variables are formally 
approximated by white noise,  which, as pointed out  in [9], makes 
sense only after integrating the fast variables over an interval of 
time of fixed length. The formal way  of introducing the com- 
posite control law has two undesirable consequences. First, there 
is no clear link between the composite and  optimal control laws. 
Recall that  in the deterministic LQ regulator even though the 
composite control law is derived through formal slow-fast de- 
compositions, it is known that its feedback coefficients are the 
zero-order terms of the expansions of the optimal feedback 
coefficients. There is no corresponding link in the LQG case. 
Notice that the composite control law comprises two lower order 
filters while the optimal control law comprises a full-order filter 
so that direct comparison of the filter coefficients is not feasible. 
Second because of the formal nature of introducing the com- 
posite control law there are no routines for improving the ap- 
proximation. Such routines are available in the LQ problem [3], 
[5]. The second approach to approximate the optimal solution of 
the LQG problem [ll] starts by writing the closed-loop equations 
of the  optimal system as a system driven by white noise, i.e., after 
eliminating the input  and  output variables by substituting them 
in terms of the state variables of the plant and the Kalman filter. 
The  entry of the filter’s fast variables in its slow variable equa- 
tions is eliminated by formally setting p = 0 on the left-hand side 
of the filter equations. Such elimination results in a slow-mode 
filter which is implemented at a slower rate leading to on-line 
reductions [ll].  The approximation has been justified [ l l ]  by 
showing that the state of the plant under the approximate control 
law  converges to the state of the plant under optimal control as 
p + 0. The main difficulty with the approach is that the suggested 
approximation does not have the intuitively appealing slow-fast 
decomposition structure of the composite control law of [lo]. 
Even the separation between the regulation and estimation tasks. 
which is preserved in the composite control law of [lo], is lost 
since the approximation is defined by manipulating the  closed- 
loop equations. Moreover, as in the first approach, there is no 
mechanism for improving approximations. 

This paper presents a new approach to the decomposition and 
approximation of LQG optimal control for singularly perturbed 
systems. The new approach alleviates the difficulties of the previ- 
ous approaches, is conceptually simple, and retains the physically 
motivated structure of the composite control of [lo].  In the new 
approach the decomposition and approximation tasks are sep- 
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arated from  each other. Decomposing the Kalman filter into 
sloa-mode and fast-mode filters is  achieved  via the use of a 
decoupling transformation that has been introduced in  [12] for 
block diagonalization of singularly perturbed systems. Appr0.G- 
mating the feedback control law is then achieved  by truncating 
expansions of the coefficients in p ,  where the coefficients are 
analytic in p at p = 0. The resulting feedback control law is 
shown to be a near-optimal solution of the LQG prob!em  by 
studying the closed-loop system as a system driven by white 
noise. In that study. standard variance analysis is employed to 
reduce the problem to one of studying a deterministic singularly 
perturbed equation which can be easily handled using  the  well- 
known singular perturbation techniques [l]. 

The paper is organized as follows. In Section I1  we study the 
approximation of singularly perturbed systems driven by white 
noise. It is shown that an Nth-order approximation in which the 
system coefficients and initial conditions are O(pL.'-) close to the 
exact ones is a well-defined and valid approximation in the sense 
that the differences between the exact and approximate solutions 
are O( p") in the case of  slow variables, and O( p N -  '."') in the case 
of fast variables, where the order of approximation is taken in 
mean square.' In Section 111, the LQG regulator is considered. A 
decoupling transformation is used to represent the Kalman filter 
in new coordinates in which the slow and fast variables are 
decoupled. An Nth-order approximate feedback control law  is 
defined by truncating expansions of Coefficients. A study of the 
resulting closed-loop system, employing the results of Section 11. 
shows that the relative increase in the performance criterion over 
its optimal value is O(p"). A simplified first-order approximation 
is defined and shown to be equivalent to the near-optimal control 
of [lo]. Section IV contains a numerical example and Section V 
includes discussions of various aspects of the LQG approxima- 
tions and compares them to the corresponding LQ approxima- 
tions. 

11. &'PROXImTION OF SINGULARLY PERTURBED SYSTEMS 
DRIVEN BY WHITE NOISE 

Consider the linear time-invariant singularly perturbed system 

where x E R". y E R"'. M: E R', and p is a small positive scalar 
parameter. The system matrices are analytic functions in p at 
p = 0, i.e., 

A b ) =  c 74 x 1.1, (2.3) 
r = O  . 

with similar expansions for B ,  C ,  D, E ,  and F. The input w (  t )  is 
zero-mean, stationary, white Gaussian noise  with intensity matrix 
V > 0, Le., 

E { w ( t ) d ( s ) }  = V 8 ( t - - s ) .  (2.4) 

The initial conditions x o ( p )  and ~ ' ( p )  are Gaussian random 
vectors nith means s o ( p )  and po(p). and joint variance matrix 

there exist p* > 0 and K > 0 such that Vp E (0. p* 1, ( E/'( p))' '' < K p .  
'A random variable f ( p )  is said to be O(p) in  the mean square sense if 

r O ( p ) ,  where X o ( p ) .  ~ ' ( p ) ,  and r"(p) are analytic in p at p = 0 
with expansions similar to (2.3). It is assumed that the matrices 
( A o  - B ~ D ~ ' C ~ )  and DO are Hunvitz, i.e., 

ReX(Do) < 0 ( 2 . 5 )  

and 

Reh(Ao - BOD;'Co) < 0. (2.6) 

Conditions (2.5) and (2.6) guarantee [13] that for sufficiently 
small p the singularly perturbed system is asymptotically stable. 
The purpose of this section is to study approximations of x(t) 
and y ( r )  when p is  small. We are interested in approximations 
xy(r) .  J ~ (  t )  which are defined by the following equations: 

m,v(r )  = ~ , ' ( p  

p j y (  t )  = c.'-( p 

The matrices A.l ' (p) through F,'-(p) are analytic functions in p 
which are O ( p s )  close to the corresponding matrices A ( p )  through 
F( p ) ,  respectively.  e.g., 

In other words, the approximation (2.7), (2.8)  is obtained by 
making O( p.') perturbations  in the matrix coefficients and initial 
conditions of (2.1), (2.2), where the perturbation  in initial condi- 
tions is taken in mean square sense. In order to validate ap- 
proximatipg x([) and y ( t )  by . x v ( t )  and y v ( r ) .  we study the 
v a r i a n c e s - o f ( x - ( t ) - x , ( r ) ) a n d ( ~ ( r ) - ~ ~ , ( r ) ) a s ~ ~ O . W e a l s o  
study evaluation of quadratic forms in x and y like 

(2.11) 

where H (  p )  and J (  p )  are analytic functions  in p .  Such quadratic 
forms will appear  in the steady-state LQG control problem 
(Section 111).  We examine approximating u by u,. which  is  given 
by 

'It is sufficient to study the variances of the errors since their means are 
known to be O ( p v )  by deterministic singular perturbation results [l]. 
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where H " ( p )  and J " ( p )  are analytic functions in p which are 
O(p,") close to H ( p )  and J ( p ) ,  respectively. 

The results of this section are given in the following  two 
theorems which are stated under the above conditions (for 
steady-state results (2.10) is not required). 

Theorem 1: For all t(0 < t < w) 

var(x(t)-x,~-(t))=~(p:,~'), (2.13) 

Var(y(t)-y,v(t)) = o(p-1) (2.14) 

and 

Furthermore, if the initial condition closeness assumption (2.10) 
is not satisfied, (2.13)-(2.15) hold at steady state, i.e., as t + 00. 

Theorem 1 establishes that ( x N ( t ) ,  y,v(t ) )  is a valid ap- 
proxiamtion to (x( t ) ,  y( t)). The mean square  order of approxi- 
mation of x is O(pcv), which is the order of perturbation of 
parameters and initial conditions, but the mean square  order of 
approximation of y is only O(P,'- ' '~). It is emphasized that 
Theorem 1 holds even though the variances of y (  t )  and yw( r )  
could be O(l/p) because of the presence of white noise input 
multiplied by l /p.  

Theorem 2: 

(2.16) 

where Au = u , ~  - u. 

and uh,, could be O(l/p). 
Again, we emphasize that Theorem 2 holds even though both u 

Proof of Theorem 1: Let 

e, = x - x N  and e,, = y - y:y. 

The variances of e, and e,. can be determined by studying the 
following system of equations: 

A 0 B 
A A  A' 

P 
- - 

E 
AE 
1 

+ w ( t ) ,  (2.17) ;F  

- A F  
1 
P 

whereAA=A-A",  AB=B-B",etc. 
For shorthand  notation, (2.17) is rewritten as 

t = d z + 9 w  (2.18) 

with obvious definitions of z ,  d, and 33'. Let Qo be the variance 
matrix of the initial conditions z(0).  The matrix Q o  is parti- 
tioned, compatibly with the partitioning of z, as 

By assumption, we have 

QE(p)=O(p" ' ) ,  forij=12,14,23,and34 

and 

QP, ( p )  = O( p"'), for = 22,24,  and 44. (2.19) 

Let Q ( r )  be the variance matrix of z ( t ) .  It is  well-known  [14] 
that Q ( r )  is the solution of the Lyapunov matrix differential 
equation 

Q = &Q + Q & ~ +  ~ c P ,  Q(O) = eo. (2.20) 

Because of the presence of 1/11 terms in d and 9: Q is sought 
in the form 

Q11 € 5 2  Q n  
Qrr  (223 e 2 4  Q14 1 

Substituting (2.21) in (2.20) and  partitioning the Lyapunov equa- 
tion we  get ten linear, time-invariant, ordinary differential equa- 
tions seven of which are singularly perturbed. These are the 
equations involving the derivatives of Q13, QI4, QZ3, Q33, 
Q34, and Q4. The asymptotic behavior as p 0 over the interval 
[0, m) can be studied using the method of  [15]. Using [15] we get 
that for each small p > 0, there exists a unique solution t ,  p )  
on 0 < t < w which  is  given  by 

Q , , ( t , p ) = P , , ( t , p ) + K I , ( 7 , p ) ,  ~ = f / p  (2.22) 

where Pj,( t ,  p )  and K,  ( T ,  p )  are the outer and boundary-layer 
solutions defined in [15[ Moreover, the outer  and boundary-layer 
solutions have Taylor expansions in p such that for any integer 
L > 0, e,,( t ,  p) is  given by 

L - 1  

Q , , ( t , p )  = [ P,:"(t)+ K;; ' (T)]  pLr+O(p'.)  (2.23) 
r = O  

where O(pL)  hold uniformly for 0 < t < CK). It can be shown (see 
[16] for detailed manipulations) that 

P,!!)( t )  = 0 and K:J)( T )  = 0,  V r  E 10, N - 11: 

for ij =12,14,23, 34, (2.24) 

and 
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P,!;)(t) = 0 and K,(;)(T) = 0 ,  V r  E [0.2N-1]. 

for ij = 22.24.44.  (2.25) 

Hence, 

Q , j ( t , p ) = O ( p . " ) ,  forij=12,14,23,and34, (2.26) 

and 

Q,, ( t ,  p )  = O( p 2 " ) ,  for ij = 22,24, and 44, (2.27) 

which proves (2.13)-(2.15). If (2.10) is not satisfied, the variances 
of e, and e, are evaluated only at steady state where the 
differential equations are replaced by their equilibrium algebraic 
equations. Repetition of the above argument shows that 
(2.13)-(2.15) hold at steady state. 

Proof of Theorem 2: Since o is evaluated at steady state, it is 
given by 

where 

Q , , ( P ) =  lim Q i , ( t , P ) =  lim Pt,(t$P> (2.29) 
f ' X  f ' X  

because K , j ( ~ ,  k) + 0 as T + M) [15]. Using (2.23), we get, for 
any positive integer L ,  that 

- L - 1  

Q , , ( P ) =  Q ! ~ ' P ' + ~ ( P ' )  (2.30) 
r = O  

where Q,!;) = lim, 3: P,!;)@). Since  (2.23) holds for all t E [0, M)), 
(2.26) and (2.27) hold for Q,,, as well. Now, o,,,, is given by 

u , ~  = tr [ H"'H"( o,, - 2Q12 + Q z 2 )  

+ 2 H , ~ ~ J * ~ (  or3 - QL - QT3 + Q:4)] 

+ 1 tr [ J"7jx( 033 - 2e3, + . (2.31) 
P 

Subtracting (2.28) from (2.31) and using  (2.26),  (2.27) we  get 

A 0 = 2 p ~ ' - ' t r [ ( 4 ~ - J , ~ )  T -  J0Q8-J ,7J0Q1~ ' ]+O(p" ) .  

(2.32) 

Recaljink the partitioning of (2.20) it can be verified that a$) 
and Qji  ) are, respectively, the unique solutions of the algebrac 
Lyapunov equations 

and 

On the other  hand, 

Suppose that 

tr [ J , ~ J ~ Q ~ ! ' ]  = o (2.36) 

and recall that Qj;) is given by 

- Q$;) = I f f 3eDofFoV~TeD~r  dt. 
(2.37) 

Substituting (2.37) in (2.36)  yields 

f J o e  DolFoVFze DLV: dt = 0 

which implies that 

JoeDorFo = 0 V t .  (2.38) 

Hence, 

JoQ$!) = 0. (2.39) 

Recalling, that 

and using (2.39), it can be shown that 

JoQ$,*' = 0. (2.40) 

The use of (2.39) and (2.40) in (2.32)  shows that bo = O(,u") 
which completes the proof of Theorem 2. 

R > 0 ,  (3.4) 

where x1 E R"1, x 2  E R"' comprise the state vector, u E R"' is 
the control input, y E R' is the observed output, w1 E R' and 
w 2  E R' are independent zero-mean stationary white Gaussian 
noise processes with intensities V, > 0 and V2 > 0, respectively, 
and z E Rs  is the controlled output which is given by 

We want to show  (2.16), i.e., Ao/o = O ( p N ) .  If tr[J,'J,i&!)] # 0. ~ l a , ( t ) = A ~ ~ ~ : , ( t ) + A , ~ n ~ ( r ) + B ~ ~ ~ ( t )  
(2.164 is obtained by dividing (2.32) by (2.35).  However, if 
tr[JQJqQ$!)] = 0, such division w i l l  show only that ba/o = + K2(P) [Y( t ) -C ,~ l ( t ) - c2 .~2( t ) l~  (3.6) 
O(pLh-  ); further analysis is needed in this case to show  (2.16). .(t> = - [F l (P)n l ( t )+  F2(P)22( f ) I .  (3.7) 
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The regulator gains F, and F, are given by 

F, = R - y  BTP, + BTPL) ,  Fz= R- ' (pB:P , ,  + B27p,) 

(3.8) 

where P I ,   P I ,  ~ and P, satisfy the algebraic equations 

0 = P,A , ,  + P,,A,,  + AT,P, + AT, PA + D:Dl 

- ( P , B , + P , z B , ) R ~ ' ( B : P , + B T P L ) ,  (3.9) 

0 = P 1 A l 2  + P I 2 A Z 2  + pA:,P12 + A i l P ,  + DTD, 
- ( P I B ,  + P, ,B2)R- ' (pB;Pl z  + BTP,),  (3.10) 

O = p P ~ A , , + P , A , 2 + p A : , P l Z + A T z P , + D , T D 2  

- ( p P G B 1  + P2B,)R- ' (pBTP,2  + BrPz)  (3.11) 

while the filter gains K,  and K ,  are given  by 

K , = ( Q , C f + Q 1 2 C ~ ) V ~ ' ,   K , = ( p Q & C T + Q z C T ) V C '  

(3.12) 

where Q , ?   Q , , ,  and Q ,  satisfy the algebraic equations 

0 = A l l Q 1  + A,,Q& + Q,Ar1+  QlrA:, + GlVlG: 

- (Q,c:+ Q&;) K'( C1Ql-t GQL). (3.13) 

0 = p.A,,Ql2 + A12Q2 + QIATI + Ql?AT,+  GIVIG: 

-(Q,cT+ Q & T ) V F ' ( P C ~ Q I ~   + C 2 Q z ) .  (3.14) 

0 = pA, ,Q12 + Ar2Q2 + p Q & A h  + Q2AT2 + GzVIG: 

- ( ~ Q L c T +  pzc;) v ~ l (  ~c,Q,, + C ? Q ~  1. (3.15) 

Equations (3.9)-(3.11) and (3.13)-(3.15) are dual and their solu- 
tions for small p have been studied in [5], [SI.  We recall some 
properties of the solutions which  will be used later. Let  us start 
with (3.13)-(3.15). Setting p = 0 in (3.13)-(3.15) decouples the 
equations  in the following manner. First (3.15) takes the form 

O = A r z Q 2 ( 0 ) + Q z ( O ) A ~ 2 + G , V l G ~ - Q , ( O ) C ~ V ~ 1 C ~ Q z ( O )  
(3.16) 

which is a familiar algebraic Riccati equation. Assuming that the 
triple ( A, , ,  G 2 ,  C,) is stabilizable-detectable guarantees [14] that 
(3.16) has a unique positive semidefinite solution such that 

Reh(A,, - K37CZ) < 0 (3.17) 

where K,, L Q,-,(O)CTV;' = K,(O). Second, with p = 0 (3.14)  is 
linear  in Q,,(O) and can be used to express Q I 2 ( 0 )  in terms of 
Q,(O) and Q,(O). Third, eliminating Q,,(O) from (3.13) and then 
using (3.15) to eliminate Q,(O), it has been shown in [8] that 
Q ,  (0) satisfies the algebraic Riccati equation 

0 = [ A ,  - G,VIH~V,-'C,] Q , ( O ) + Q , ( O ) [   A ,  - G,V,',H~V,-'C,] 

+cy[  V, - v,H:c-w,] G:- Q , ( O ) C P - ~ C , Q , ( O ) .  
(3.18) 

where 

Assuming that the triple ( A , ,  G, , C,) is stabilizable-detectable 
guarantees [14] that (3.12) has a unique positive semidefinite 
solution such that 

Reh(A, - K,C,) < 0 (3.19) 

where K ,  2 [Q,(O)CF+ GsVIHs]<-' .  Based on the stability prop- 
erties (3.17) and (3.19) and using implicit function theorem 
arguments the following lemma was proved in [SI. 

Lemma I: If A, ,  is nonsingular and the triples ( A , ,  G,, C,) 
and ( A z z ,  G2, C,) are stabilizable-detectable, then for sufficiently 
small p (3.7)-(3.9)  have a unique stabilizing solution which 
possesses a power series expansion at p = 0. 

The solution of (3.9)-(3.11) has dual properties. It is seen that 
if ( A z 2 ,  B2. D , )  is stabilizable-detectable, then P,(O) is the unique 
positive semidefinite solution of the algebraic Riccati equation 

O = P z ( 0 ) A , z + A ~ 2 P , ( O ) + D ~ D 1 - P , ( O ) B ~ R - 1 B ~ P , ( 0 )  

(3  20) 

and 

Reh(A,, - B 2 F z z )  < 0 (3.21) 

where 

F2z 4 R 'B lP ,  (0)  = F, (0 ) .  

Also, if ( A , ,  B,, 0,) is stabilizable-detectable, then P,(O) is the 
unique positive semidefinite solution of the algebraic Riccati 
equation 

0 = P , ( O ) [   A ,  - B,R;'E:D,] + [ A ,  - B,R;'E:D,] T P , ( 0 )  

+ D T [  I -  E ,R; 'E, ]  0, - P , ( O ) B , R J ' B ~ P , ( O ) ,  (3.22) 

and 

Reh(A,-B,F,)<O, (3.23) 

where 

The existence and uniqueness of the solution of (3.9)-(3.11) is 
established in the following lemma [8] which  is the dual of 
Lemma 1. 

Lemma 2: If A:,  is nonsingular and the triples ( A , ,  B,, 0,) 
and ( A22, B,, D , )  are stabilizable-detectable, then for sufficiently 
small p (3.9)-(3.11) have a unique stabilizing solution which 
possess a power series expansion at p = 0. 

Previous attempts to simplify the optimal control exploiting 
the two-time scale nature of the system are due to Haddad  and 
Kokotovic [lo] and Teneketzis and Sandell [ll]. A special case of 
[lo] was studied by Khalil [18]. In [lo]. an approximate control 
law has been derived through slow-fast decompositions of the 
singularly perturbed system. The control law is shown to be 
near-optimal by showing, via  involved study of J ,  that AJ/J  is 
a( p )  where AJ is the increase in the performance criterion. In 
[ll],  an approximate control law has been derived from the 
optimal one (3.5)-(3.7)  by, first, substituting u from (3.7) into 
(3.5) and (3.6), second, formally setting p = 0 in the left-hand 
side of (3.6) and, finally, using the resulting algebraic equation to 
eliminate .?z from (3.5). It has been shown that the error, 
between the state of the system under optimal control and the 
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state of the system under the approximate control. converges to 
zero. in the mean square sense. as p -+ 0. A common feature in 
both approaches is that the decomposition of the Kalman filter 
into slow-mode and fast-mode filters is  achieved  via formal 
elimination of the fas t  variables from the  slow equations. Because 
of the formal nature of deri\lng approximations. there is no way 
of modifying the approximate controls in order to get  higher 
order approximations. 

Our approach toward simplifyng the LQG regulator separates 
the decomposition and approximation tasks. To decompose the 
Kalman filter into slow-mode and fast-mode filters there is no 
need to introduce any approximations. All that is needed  is to 
represent the Kalman filter in new coordinates where the filter 
state variables cluster into n,  slow variables and n ,  fast vari- 
ables. We achieve this by using a decoupling state transformation 
that was introduced by Chang [12] to block diagonalize singularly 
perturbed systems. In fact because our system is time-invariant 
we only need to use the special case of the transformation that 
was introduced by Kokotovic [17] and which  uses algebraic 
equations  rather  than differential equations as in the general form 
of Chang. The basic properties of the transformation are sum- 
marized in the Appendix. Since the objective of the decomposi- 
tion task is to decouple the slow and fast variables of the Kalman 
filter, we have to examine the power spectra of the filter vari- 
ables. To characterize the power spectra of the state variables of 
the Kalman filter we  view the filter as a system driven by the 
innovation process, i.e., 

. ~ l ( t ) = ( . 4 1 1 - B I F , ) ? l ( t ) + ( A l 2 - B 1 F , ) . i r l ( t ) + K , ~ ~ ( t )  

p . ~ , ( t ) = ( A , , - B , F , ) ? . , ( t ) + ( A 2 2 - B Z ~ , ) - i . Z ( t ) + K , ~ ~ ( t ) .  

(3.24) 

(3.25) 

Since  the innovation process u ( r )  is  white noise the power 
spectrum of ? ( t )  is determined by the homogeneous part of 
(3.24), (3.25)  which is a well-defined singularly perturbed system: 
recall that, by Lemma 2, ( A z 2  - B , K )  is nonsingular at p = 0. 
Therefore, we block diagonalize the homogeneous part of  (3.241, 
(3.25)  using the transformation 

where the matrices M I  and L,  satisfy equations similar to (A4) 
and (A8) of the Appendix with ( A .  - B,F,) replacing A,.!. The 
optimal feedback control, expressex in the new coordinates, is 
given by 

41(t)= [ ( A , ,  - B , G ) - ( A , ,  - BlF2>L,lill(t) 

P4 , ( t )=  [ ( A , ,  - B,F?)+PLl(A,2 - BIF2)142(t) 

+ ( K , -  1M1K,-p!M,L,K,)P(t)  (3.27) 

+ ( K , + p L I K l ) v ( t )  (3.28) 

o ( t ) = ~ ( t ) - ( C , - C z L , ) ~ , ( t )  

-[c,+~(cl-c?~,)IM,l4,(t) (3.29) 

. ( r ) = - ( ~ I - ~ 2 ~ 1 ) 4 1 ( t ) - [ ~ , + C L ( ~ l - ~ , ~ l ) M 1 1 4 ~ ( ~ ) .  

(3.30) 

Equation (3.27) is a slowmode filter whose state 4, has  a 
frequency band of order one, while  (3.28)  is a fast-mode filter 
whose state t2 has  a frequency band of order l /p.  Implementa- 
tion of the optimal feedback control as given by (3.27)-(3.30) 

should lead to a reduction in the on-line computations. In partic- 
ular, in implementing (3.27) and (3.28)  using numerical integra- 
tion routines, different integration step sizes can be used. It is 
crucial that the decomposition of the Kalman filter is  achieved 
without sacrificing the nice analytical properties of the system 
because the matrices L ,  and M ,  are analytic in p .  This makes 
the approximation task, to be discussed next, a feasible one. 

Approximate control laws are defined by perturbing the right- 
hand side coefficients of (3.27)-(3.30).  Specifically, the matrices 
F,. F., K,,  K,, M I ,  and L ,  are approximated by their Nth-order 
approximations Fi", F:, K r ,  KT. M:. and L r ,  respectively, 
where an Nth-order approximation of a matrix consists of the 
leading N terms of the expansion of that matrix The state 
variables of the perturbed filter nil1 be denoted by ty and 4:. If 
the filter (3.5), (3.6) in the optimal control law are initiated at 
certain initial conditions .?,(O) and i 2 (0 ) .  then the initial condi- 
tions @'(O) and .il:(O) should be taken as 

4 : ' ( 0 ) = ( Z n , - p M ~ L i Y ) ? 1 ( 0 ) - p M ~ ? ~ ( 0 )  (3.31) 

?$(O) = L:?l(o)+.i(2(o). (3.32) 

The near-optimality of the proposed control law is established in 
the following theorem. 

Theorem 3: Suppose that the conditions of Lemma 1 and 
Lemma 2 hold. Let x , ( r )  and x 2 ( t )  be the optimal trajectories 
and J be the optimal value of the performance criterion. Let 
x,([), x l ( t ) ,  and J be the corresponding quantities under the 
h'th-order approximate control law and let A J = J - J .  Then 

- AJ o( p . v ) ,  
J (3.33) 

var (x , ( r ) -X , ( t ) )=O(p*" ) ,  (as r - - t o o ) ,  (3.34) 

and 

v a r ( x , ( t ) - x , ( t ) ) = ~ ( p * , ~ - ~ ) ,  (as t + m ) .  (3.35) 

Moreover, if 4,(0) and 4,(0) are chosen according to (3.31), 
(3.32), then (3.34) and (3.35) hold for all t 2 0. 

Proof of Theorem 3: The result of Section I1 is employed by 
studying systems of equations driven by white  noise. For the 
optimal control consider the equations 

where e ,=q ,  - 4 ,  and e z = q r  -q2 are the estimation errors, 
and 7,. q 2  are transformahons of xl. x, using (3.26). The corre- 
sponding equation for the approximate control is 

where e: = q ,  - 4.; and e.''-- ? - q2 - ?$ are the estimation errors. 
The matrices di,, 9, and dl:, 9: in (3.36) and (3.37),  respec- 
tively. are obtained in an obvious way. It can be verified that 

so that condition (2.9) is satisfied. To apply Theorem 1 we should 
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verify conditions (2.5) and (2.6),  i.e., we should show that d22(0 )  
and [dil(0)- di2(0)d;1(O)d21(O)j are Hursvitz matrices. It can 
be shown that 

(3.39) 

Stability of d,,(O) and [Jip,,(0)- d12(0)d~1(O)d,1(O)] results 
from the stability properties (3.13, (3.19),  (3.21), and (3.23). The 
use of Theorem 1 proves (3.34) and c3.35). Theorem 2 leads to 
(3.33) after verifying that when J and J are expressed as quadratic 
forms in (t,, e;) and ( t y ,  e:), respectively, the matrices in J are 
qp“) perturbations of the matrices in J .  

A special case of interest is the case when p is small enough 
that O ( p )  suboptimality is acceptable. In this case a simplified 
first-order near-optimal control law  is defined by neglecting all 
O ( p )  coefficients on the right-hand side of (3.27)-(3.30). This 
results, after some algebraic manipulations, in 

i i ( t ) = ( A S - B , F S ) ~ l ( f ) + [ K 5 ( ’ - c ~ A ~ ~ K , 2 )  

+ B,F2*(A2,- B2F2,)-IK2,] ~ ( t )  (3.40) 

p $ ? ( t )  = ( A , ,  - B 2 F 2 2 ) t 2 ( r ) +  Kzza(r) (3.41) 

u ( t ) = ~ ~ ( t ) - ( C s - N , F , ) . F l l ( t ) - C 2 t , ( t )  (3.42) 

4 t )  = - F,.il1(t)- F z z i z ( t )  (3.43) 

where A‘, = - C,Ai:B,. Similar to the proof of Theorem 3, it can 
be verified that the use of the control law  (3.40)-(3.43) is near- 
optimal. Theorem 4, which is given without proof, summarizes 
this conclusion. 

Theorem 4: If the conditions of Lemmas 1 and 2 are satisfied, 
then 

AJ 
J - = O ( p ) ,  (3.44) 

Var(x1(t)-x1(t>)=o(r2), (3.45) 

Var(x2(t)--2(t))=O(P) (3.46) 
and 

where (3.45) and (3.46) hold at steady state for any choice of 
t1(O) and 4,(0), and hold for all t >  0 if G1(O) and iZ(O) are 
chosen as t1(O) = 21(0) and i2 (0)  = 2,(O)+ A;’(A, ,  - 

To derive the near-optimal control law (3.40)-(3.43) one need 
not consider the overall LQG problem. Rather, two lower order 
LQG problems defied by Haddad and Kokotovic [lo] are solved 
under the conditions of Lemmas 1 and 2. The first one is a slow 
LQG problem defined by 

B2F,)%l(O). 

k , ( t ) = A , x , ( t ) + B , z ~ , ( t ) + G , w 1 ( t ) ,  (3.47) 

y ( t ) = C , x , ( r ) + N , u , ( t ) + H , w , ( t ) + y ( t ) ,  (3.48) 
1 J,= lim - 

to + - 3cI ti - t o  
I, + x 

~E(j11[x~D~Dsx,+2x~E~Dsu,+u~R,u,dt 10 1 )  
(3.49) 

and its optimal solution is given  by 

us = - 4 2 ,  (3.50) 

where the slow filter for any given u satisfies 

(3.54) 

and  its optimal solution is given by 

U / ( t )  = - F,?Tc/(f) (3.55) 

p . ~ , ( t ) = ~ , ~ - i r ~ ( r ) + B , u / ( t ) ~ ~ ~ ~ ( ~ , ( t ) - c , ~ ~ ( t ) ) .  

(3.56) 

Once F , ,  K , ,  F,,, and IC,, are computed, the simplified first-order 
near-optimal control law  (3.40)-(3.43) can be implemented. The 
resemblance with [lo] goes far beyond just computing the coeffi- 
cients. In  [lo] a near-optimal control law  is taken as 

. ( t)=.,+Ur=-F,%,(r)-F,,2/(t) .  (3.57) 

Comparing (3.57) to (3.43)  shows that we should expect .i.,$ and 
2, to be equivalent, in some sense, to .ill and ij,. In  [lo] the fast 
filter (3.56) is implemented by taking yf as yf  = y - Cy%, + N,F,k, 
so that the fast filter can be written as 

p i f ( t )  = (A, ,  - B2Frl)2i(( t )+ K,,c (3.58) 

where 

v ( t ) = y ( t ) - C , f , ( t ) + N , F , 2 S ( t ) - C , n , ( t ) .  (3.59) 

Comparing (3.58),  (3.59) to (3.41),  (3.42)  shows that the two fast 
filters are indeed equivalent. To see the equivalence of the slow 
filters we rewrite (3.51) as 

~ , ( t ) = ( A , - B , F , ) 2 , ( t ) - B s F ~ ~ 2 / ( t )  

+ K , [ v ( t ) + N s F , , 2 / ( t ) + C , j r / ( t ) ] .  (3.60) 

Following the arguments of [lo] one can say that. as an input to 
the slow filter (3.60), 2 / (  t )  can be approximated by 

2 , ( t )  = - ( A z 2  - B,F,z)-1K,2~:(t). (3.61) 

If the formal expression (3.61) is substituted in (3.60), it can be 
shown that 2 , ( t )  satisfies the same slow filter equation (3.40) as 
i1 ( t )  with D as the deriving term. This shows that the simplified 
first-order near-optimal control (3.40)-(3.43)  is indeed equivalent 
to the near-optimal control of Haddad and Kokotovic [lo]. 

JY. A NUMERICAL E x A h l p ~  

In order to demonstrate the numerical behavior of the near- 
optimum design of singularly perturbed LQG regulators, we 
present results for an LQG controller of an F-8 aircraft which 
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was considered in [ll].  The system model is given  by 

- 1.357 X lo-’ - 32.2 - 46.3 0 
1 . 2 ~ ~ ~  0 1.214 0 

-1.212XlO-‘ 0 - 1.214 1 
5.7 X 0 -9.01 -0.6696 I 

+ [ -0.433 O . I W ] ~ + [  -46.3 1.214 

- 0.1394 - 1.214 
-0.1577 - 9.01 ] w 1  

5 1  

5 2  

5 3  

5 4  

where the white noise processes wl and w 2  are independent and 
have intensities VI = 3.15X10-4 and Vz = diag[6.859x10-‘.40]. 
The performance criterion is 

J =  lim -E/”[O.Ol[~ +3260(55 + 5: + u ’ ) ]  d l .  
1 

--cc tr - to 
‘ I  - 

(4.3) 

The reader is referred to [ l l ]  for discussion of the modeling 
aspects and the choice of J .  

The open-loop eigenvalues are -0.94k  j2.98  and -0.0075 
j0.076 which  shows clearly the two-time-scale property of the 
system. The choice of state variables adopted in [ l l ]  led  nicely to 
a formulation in whxh the first two variables are slow variables. 
A logical choice of the parameter p is p = 0.025 which  is  roughly 
the ratio of the magnitude of the slow  eigenvalues to the magni- 
tude of the fast eigenvalues. The singularly perturbed nature of 
this system becomes more etident [i.e., the right-hand side coeffi- 
cients of the last two  rows of the state equations are of O(l/p), 
and those 01 the first two  rows are O(l)] by scaling the variables 
as follows: ( =  diag(1,500,15000,5000) 5. 6 =lOOOu. GI =lOOw,. 
.? = diag(100,l)y and G 2  = diag(100.1)w2. Introducing p artifi- 
cially by multiplying the left-hand sides of the last two state 
equations by p and the right-hand sides by  0.025. the system 
takes the singularly perturbed form (3.1)-(3.4) with 

A ,  - [ -0.045375 :], A _ -  - [ -0.03035 
-I - 0.07125 77 - -0.075083 -0,01674 0.075 1 ’ 

B ,  = [ -0.000433], B, = [ -0,0522751 
0.0697 0.019712 ’ 

[ 6.07 1’ ‘ 2  [ - 0.463 

0 0  o]. C 2 =  [: E”’], R=3.26x10-’  

0; = 
[ 3.81X10-3 

0 11.42xlO-’ O I  
V, = 3.15 V2 = diag{6.859,40}. 

€omponentwise results for F:, F:. K:.  K:,  L‘, and :ti‘ 
approximations, for N = 1,2.3. and corresponding values of the 
performance criterion are shown in Table I. Shown also are the 
simplified first-order approximation and optimal solutions. The 

TABLE I 
AN F-8 AIRCR4FT LQG CON-TROLLER E ~ M P L E :  p = 0.025 

-0.435272 
1.092964 

-0.019812 

-0.032611 

3.231563 
0.33OOCG 

0.00300c 
2.276973 
0. 300000 
5.632790 
0.000000 

-0.57C315 
-0.316417 
-l.!50816 
3.523607 

I 

0.003400 
0.037518 
-0. I I1529 
-0.503085 

J 

T + 

! 

-0.535152 -0.435318 
1.109612 

-0.016716 -0.016535 
0.011866 

0.0339i5 
-3.043135 
-0.028639 
2.2831 sa 
0.049663 
5.632759 
0.056851 

-0.604521 -0.60533C 
-0.636575 -0.436673 

-1.163621 , -1.163267 

I T 
! 

O P T I M L  

-0.535326 
1.109888 
-0.016576 
0.011873 

0.219508 
0.004146 
-3 .ow065 
-0.028690 
2.28C667 
0.g59344 
5.632612 
0.047050 

-0.605345 
-3.436679 
-1 .I64268 

I 
I 

0.607638 C.6E499 , ‘ 0.608514 

0.017i95 C.Cl785r 
0.031582 C.Cjlj27 
-9.111386 -C.1;1503 
-0.51 2595 4.512d17 

! 25.066652 25.C66596 

2.274~10‘~ 4 ~ 1 0 - ~  

3. CI 7854 
0.331515 
-0.111810 
-3.512825 

25.066595 

rate of convergence of the coefficients and A J / J  towards the 
optimal solution can be noticed. In this example the simplified 
first-order approximation behaves better than the first-order one. 
But, in general, it could be the other way around. 

In order to illustrate the numerical behavior of the near-opti- 
mum solution as p + 0, p is varied over the range [0.0025,0.2] 
and the percentage relative error in J is given in Table 11: while 
doing that all the matrices A , : .  B , .  G,. C,, D,. and R are kept 
fixed. i.e., only the solution for p = 0.025 is meaningful as far as 
the F-8 aircraft controller is concerned. Table I1  verifies that 
l J ’ / J  is indeed O( p,’) as p + 0. 

V. DISCUSSIONS 

The significance of the near-optimal control laws and Theo- 
rems 3 and 4 that have been derived in Section I11 is extending to 
the LQG problem the approximation procedures of the LQ 
problem. The Nth-order near-optimal control extends a corre- 
sponding result due to Yackel and Kokotovic [5]  while the 
simplified first-order near-optimal control extends the composite 
control result of Chow and Kokotovic IS]. There are.  however, 
important differences between approximating LQ and approxi- 
mating LQG solutions. These differences are summarized in 
Table I11 and explained here in some detail. The first difference 
is not related to the approximation scheme, rather to the problem 
definition itself. While in the LQ problem the optimal value of J 
is O(1). in the LQG problem the optimal value of J is. in general, 
O(l/p), which results from haling a white  noise input multiplied 
by l /p.  The LQG problem definition may be altered to avoid 
O(l/p) optimal value of J ;  more about this point later.  The 
second difference has to do with using h’th-order approxima- 
tions. In the LQ problem it has been shown ([3]: see also [19]) 
that the use  of Yth-order approximations in feedback coeffi- 
cients results in 2A‘th-order approximation in J .  Le.. ( A J / J )  = 
O ( p ” ) .  In the LQG problem, Theorem 3 assured only that 
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TABLE I1 
BEHAVIOR OF RELATIVE ERROR AS 1.1 + 0 

0.0025 

‘1 0-6  <lo-6 0.011914  0.005 

<10-6 . lo-6 0.002977 

0.01 .10-6 3 . 2 ~ 1 0 ~ ~  0.0477 

0.025 

1 . 4 3 6 ~ 1 0 - ~   5 . 3 2 0 6 ~ 1 0 - ~  1.207573 0.05 

4x1  0-6 2 . 2 7 4 ~ 1 0 ‘ ~  0,299179 

0.1 

4,455874 E .  71 7748 24.299446 0.2 

0.011531 0.134547 5.000657 

TABLE I11 
COMPARISON BEIWEEN LQ AND LQG 

I I  I LQ I L% I 

I 2 1 W t h   o r d e r   a p p r o x i n a t i o n  
i 

Lj = O(.”) 

1 ;  

S l m p l i f l e d  
f i r s t  order appvoximation 4 = O( .21 4 = O(.) I 

( A J / J )  = O(pLM). The next three differences compare the sim- 
plified first-order near-optimal control law of the LQG problem 
to the composite control law of the LQ problem 181. First, the use 
of the composite control in the LQ problem results in (4J/J) = 
O(p2), versus ( A J / J )  = O(p) in the LQG problem. Second, if x1 
and x, are the states of the system under optimal control, and X1 
and x, are the states under near-optimal control, then in the LQ 
problem x1 - X, = O(p) and x: - X, = O(p), while in the LQG 
problem x1 - x1 = q p !  and x2 - X, = O ( P ’ / ~ )  in mean-square 
sense. Third, and that IS an important difference, in the case of 
LQ problem it has been shown that X1 and X, are asymptotically 
close to x, and 7f - A,’(AZ1 - Bs&)x5 where x, and x/ are the 
optimal  trajectones of the slow and fast optimal control problems 
[8]. There is no corresponding result in the LQG problem, i.e., Z1 
is not asymptotically close to x, [the solution of the slow optimal 
control problem (3.47)-(3.49)]. To see this notice that  the 
asymptotic behavior of q1 or .x1 is determined by the matrix 
[~~~(0)-~l~(O)~~l(O)d~l(O)] [which is given by (3.39)].  If a 
correspondmg matm for the optimal closed-loop slow problem is 
written down it will be exactly the same as (3.39) except that the 
upper right block r12 is, in general, not equal to that of [ dll (0)  

-d12(0)dG1(O)d21(O)]. The fact that the on-diagonal blocks 
are the same and  the matrix is block triangular has been em- 
ployed in the proof of Theorem 5 to conclude the stability of 
[ d l l ( ~ ) - ~ l , ( 0 ) ~ ~ l ( O ) d , l ( O ) ]  from the properties of the opti- 
mal slow solution. However, closeness of x1 and x, is not true in 
general. It is interesting to mention that the same observation was 
made by OReilly [20]  while studying deterministic output feed- 
back of singularly perturbed systems using controller-observer 
compensators which is the deterministic version of the LQG 
problem. Finally, the last difference is in the use of reduced 
controls. In the LQ problem it is known [8] that an approximate 
control law derived by solving only the slow optimal  control 
problem, i.e., u = - &xl is near-optimal with ( A J / J )  = O(p). 
This fact justifies using the slow reduced-order model as a basis 
for solving the LQ problem. In the LQG problem a similar 
reduced control will not be near-optimal. This results from the 
fact that  in the LQG problem the value of J as p + 0 is 
determined by both the slow and fast variables. In fact, when 
J =  O(l/p), it is determined mainly by the fast variables. So, 
optimization of the fast variables is necessary to achieve near 
optimdity. There are, however, special cases  when the reduced 
control is near-optimal, e.g., when D, = 0 [lo]  or G, = 0 1181. 
Among the six differences discussed above, the  last two are 
important because they show features of the LQ problem that are 
not extendable to the LQG problem. 

As we have pointed out,  the classical formulation of the LQG 
problem which has been adopted in this paper leads to an 
optimal value of J which is O(l/p). We have shown that despite 
this fact meaningful approximations can be defined and used to 
approximate the optimal value of J .  The problem of divergent 
performance criteria can be avoided by altering the problem 
formulation. Khalil, Haddad, and Blankenship [21] studied an 
alternative LQG problem formulation in which various scaling 
parameters have been introduced in such a way that the value of 
J remains finite as p + 0. For example, the coefficient of the 
white noise input  in the singularly perturbed equations (3.2) is 
taken as peG2, a 3 1/2, instead of G2 in the classical formula- 
tion. Such modifications guarantee that J will be well-defined as 
p -+ 0, and they are extremely useful in dealing with nonlinear 
problems 1221. They have also been used in stochastic Nash 
games [23]. The modified LQG problem has been treated in [21] 
using the slow-fast decomposition approach of [lo]. Naturally, 
the approxiamtion procedures of this paper can be applied to the 
modified LQG problem and the fundamental results of Section 
11, about approximations of singularly perturbed systems driven 
by white noise, will play the same essential role they have played 
in this paper. So far, there has not been an adequate comparative 
study of the modified LQG problem formulation versus the 
classical one. More work is needed in that direction. 

Approximation methods for the estimation problem when u = 0 
can be obtained in a way similar to those of the control problem. 
In fact setting the regulator gain F equal to zero in the Kalman 
filter equations of Section I11 results in the near-optimal Kalman 
filter in the open-loop case. Assuming that A ,  and A_- 77 are 
Hurwitz matrices theorems similar to Theorems 3 and 4 can be 
proved to assure that .tl and . t 2 ,  the approximate estimates, are 
near-optimal in the sense that var(2,  - k!) = q p “ )  and var(3, 
- 2,) = O ( p N - ( l / Z ) )  for  Nth-order appromations. 

Finally, we conclude our discussions by reexamining the de- 
coupling transformation which was  used to restructure the Kal- 
man filter in Section 111. There we  used a transformation of the 
form 

with the specific choices L = L,  and M = Ml. Since the purpose 
of the transformation is to represent the Kalman filter in new 
coordinates where the slow and fast variables are decoupled, one 
might principally examine many transformations which could 
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achieve this goal. For example, appropriately selected modal 
transformations would certainly decouple slow and fast variables. 
However, we restricted our  attention to the class of transforma- 
tions represented by (5.1) in which L andM are analytic in p at 
p = 0. The transformation (5.1) is well-defined and well-condi- 
tioned as p + 0, its inverse is readily available in terms of L and 
M ,  and its use results in  a transformed Kalman filter whose 
coefficients are analytic in p which is crucial for obtaining 
approximations. The use  of any transformation outside this class 
has to be preceded by examining the analytical and numerical 
properties of the transformation for small p ,  which is beyond the 
goal of our research. Within the class of transformations repre- 
sented by (5 .1)  there is arbitrariness concerning the choice of the 
matrices L and 144. Aside from the choice L ,  and M I  which was 
adopted in Section I11 to block diagonalize ( A  - B F )  one might 
consider several other choices. For example L and M might  be 
chosen to block diagonalize the open-loop state matrix .4 or the 
matrix ( A  - KC) which is the homogeneous part of the Kalman 
filter if it is viewed as a system driven by both the control input 14 

and the observed output y. They might even  be chosen as zeros 
meaning that the K h a n  filter is represented in the original 
coordinates.’ With such arbitrariness in choosing L and M we 
need to get some insight in the effect of using  the transformation 
(5.1) on the decoupling of the state variables of the Kalman filter. 
If 

is the state vector of the transformed Kalman filter. then the 
power spectrum of f i  can be determined by studying the equation 

$=T(A-BF)T- ’ f i+TKc) .  

Since the innovation process c is white noise. the power spectrum 
of f i  is determined by the transfer matrix 

w, E C”lXl. w, E C”’”’. 

To compute the resolvent matrix ( s l  - A + B F ) -  I .  the transfor- 
mation (3.26) is used to block diagonalize ( A  - B F ) .  resolvent 
matrices of the on-diagonal blocks are computed and then the 
inverse transformation of (3.26) is a plied to recover (sf - A 
BF)- ’ .  Multiplying ( s l -  A + B F ) -  P from the right by K and 
from the left by T,  where T is any member in the class of 
transformations defined by (5.1), we  get 

where 

‘In our discussion here the matrices .4, B .  C. F, and K represent 
overall sy-stem matrices, i.e.. 

F = ( F ,  F 2 )  and K = (  K 1  ). 
K ,  /P 

r , ( s ) =  [ S I - ( A , , - B , ~ ~ , ) + ( A , ~ -  B,F,)L,]-’ 

and 

r r ( p ~ ) = [ p s z - ( A , , - ~ , ~ , ) - p ~ l ( A l ~ - B l ~ l ) ] - l .  

Examining expressions (5.2) and (5.3) shows that all transforma- 
tions of the form (5.1) share two properties. First, the fast 
variable f i 2  has  a slow bias. Second, the fast component in W , ( s )  
is multiplied by p, hence. for sufficiently small p ,  fil is predomi- 
nantly slow. This shows that,  for sufficiently small p .  implemen- 
tation of the slow equation of the Kalman filter can be done 
using an integration step size much larger than  that used for 
integrating the fast equation. Examination of (5.2) and (5.3) 
shows also that there is one choice of L and M that results in 
perfect decoupling of the slow and fast variables and that is the 
choice L = L ,  and M = M I  which  was adopted in Section 111. Of 
course the final word on the choice of the appropriate coordi- 
nates for representing the Kalman filter is problem dependent 
and implementation factors which are not considered here  (e.g.. 
physical constraints, hardware architectures, etc.) mil1 affect the 
choice. It is clear, however, that from the decoupling viewpoint 
the transformation used in Section 111 is the best. The important 
point we want to make here is that for any other transformation 
of the form (5.1) the results of Section I11 are generic in  nature, 
that is, approximation schemes can be defined by truncating 
expansions of Fl. F2,  K,, K 2 ,  L ,  and exactly as it was done 
in Section 111, and theorems similar to Theorems 3 and 4 can be 
proved. 

VI. CONCLUSIONS 

A new approach to simplifyln- LQG optimal control for 
singularly perturbed systems has been outlined. The new ap- 
proach alleviates the difficulties of the previous approaches, is 
conceptually simple, and retains the physically motivated struc- 
ture of the composite control of [lo]. 

APPENDIX 

PERTURBED SYSTEMS 
BLOCK DIAGONALIZATION OF SINGULARLY 

Consider the linear time-invariant singularly perturbed system 

- ‘ c l ( f ) = A I 1 X l ( f ) t A l I X ~ ( t ) + B 1 U ( f )  (AI) 

p i 2 ( r )  = A z , . x , ( t ) +  Azz .rz ( t )+ B , u ( t )  (a) 
where the matrices A , ,  and B, are analytic functions of p 3  and 
det [ A2?(0)] f 0. The  state transformation 

J.2 = X? + LY, > 

where L is chosen to satisfy 

0 = A, ,L  - A?, - p L ( A , ,  - A , & ) :  (A41 

transforms the system (Al),  (a) into 

% ( r )  = ( A l l  - A,zL)x,(r)+A12Yz(r)+ B , u ( t )  6 4 5 )  

p j . 1 ( t ) = ( A Z 2 + p L L A l ? ) J - ’ ( r ) ~ ( B 7 + p L B l ) ~ ( f )  (A61 

which is a lower block triangular matrix. Now, the state  transfor- 
mation 

‘1 = x1 - pMy2. (A7) 

where M is chosen to satisfy 
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O = - M A , , + A ~ , - p M L A ~ , + p ( A ~ ~ - A ~ , L ) M ,  (A8) 

transforms the system (A5), (A6) into 

.9l(t) = ( 4 1  - AlZL)Yl(t)+ (Bl - MBz - P M L B d 4 t )  
(A91 

p j t z ( t ) = ( A z z + p ~ l * ) Y z ( t ) + ( B z + I 1 L B l ) u ( t )  (A10) 

which is a block diagonal matrix. The existence of L and M 
satisfying (A4) and (A8) is established in two steps. First, at 
1.1 = 0, the nonsingularity of A,,(O) guarantees that L(0) and 
M(0) exist and are given by 

L(O)= [A22(0)1r1A21(0)9 (Al l )  

~ ( O ) = ~ 1 , ( O ) [ ~ , , ( 0 ) 1 - ’ .  (A121 

Second, applying the implicit function theorem and using again 
the nonsingularity of A,,(O), it can be shown that there exists 
p* > 0 such that Vp E (0, p*) ,  there exist L ( p )  and M ( p )  satisfy- 
ing (A4) and (A8). Moreover, L( p )  and M ( p )  are analytic 
functions of p. The overall transformation is given by 

whose inverse is well-defined and is given by 

P I  

[31 

[41 

[51 

[71 
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