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Near-Optimum Regulators for Stochastic
Linear Singularly Perturbed Systems

HASSAN KHALIL, MEMBER,

Abstract —This paper presents a new approach to the decomposition and
approximation of linear-quadratic-Ganssian estimation and control prob-
lems for singularly perturbed systems. The Kalman filter is decomposed
into separate slow-mode and fast-mode filters via the use of a decoupling
transformation. A near-optimal control law is derived by approximating the
coefficients of the optimal control law. The order of approximation of the
optimal performance is O(z") where N is the order of approximation of
the coefficients.

I. INTRODUCTION

HE singular perturbation approach [1] to linear quadratic

(LQ) regulator problems of systems having slow and fast
modes has led to useful and attractive approximation methods
which are well-documented {2]-[8]. There are two different proce-
dures for deriving approximations of the LQ optimal solution. In
the first one, the solution of the regulator Riccati equation is
obtained as an asymptotic, or power series, expansion in the
perturbation parameter g (cf., [3], [5]). Approximate feedback
control laws are derived by truncating the asymptotic expansions
of the feedback coefficients of the optimal control law. Such
approximations have been shown to be near-optimal with perfor-
mance that can be made as close to the optimal performance as
desired by including enough terms in the truncated expansions.
The second procedure for deriving approximate feedback control
laws is based on formal slow—fast decompositions of the LQ
problem [8]. Two lower order LQ problems are defined for the
slow and fast variables leading to slow and fast feedback control
laws. A composite feedback control law is formed as the sum of
the slow and fast controls. It has been shown [8] that the
feedback coefficients in the composite control law are the zero-
order terms of the expansions of the optimal feedback coeffi-
cients. Thus, the second procedure is also near-optimal as g — 0,
although the best it can do is to achieve a performance which is
0(p?) close to the optimal performance. Extending these ap-
proximation procedures to the linear-quadratic-Gaussian (LQG)
problem has not been an easy task. Although the duality of the
filter Riccati equation and the regulator Riccati equation can be
used, together with the results of [3]-[5], to obtain asymptotic
approximations to the filter gains, such approximations will not
be satisfactory because they only reduce the off-line computa-
tional effort of computing the filter gains, but they do not help
the on-line computations of implementing the Kalman filter
which will be of the same order of the overall singularly per-
turbed system. Because of the slow—fast nature of the variables in
singularly perturbed systems it has been felt that the Kalman
filter need not be implemented as one whole filter; rather it may
be replaced by two lower order filters which separately estimate
the slow and fast variables and are implemented in different time
scales. That conviction has motivated the two previous ap-
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proaches for approximating LQG optimal control. The first ap-
proach [9], [10] extends the composite control idea of determinis-
tic LQ problems to stochastic LQG problems. Formal lower
order LQG problems are defined for the slow and fast variables
leading to slow and fast feedback control laws which employ
slow-mode and fast-mode filters, respectively. The slow and fast
controls are added together to get a composite feedback control
which has been shown [10] to be near-optimal by showing that
the performance criterion, under the composite control law, con-
verges to the optimal performance as g — 0. The technical details
of the approach have some difficulties arising mainly from trying
to extend deterministic notions of singularly perturbed tech-
niques [1], like boundary layers, to systems driven by white noise.
Those difficulties affect the results; for example, in the filtering
result of [9] the estimates of the fast variables are formally
approximated by white noise, which, as pointed out in [9], makes
sense only after integrating the fast variables over an interval of
time of fixed length. The formal way of introducing the com-
posite control law has two undesirable consequences. First, there
is no clear link between the composite and optimal control laws.
Recall that in the deterministic LQ regulator even though the
composite control law is derived through formal slow-fast de-
compositions, it is known that its feedback coefficients are the
zero-order terms of the expansions of the optimal feedback
coefficients. There is no corresponding link in the LQG case.
Notice that the composite control law comprises two lower order
filters while the optimal control law comprises a full-order filter
so that direct comparison of the filter coefficients is not feasible.
Second because of the formal nature of introducing the com-
posite control law there are no routines for improving the ap-
proximation. Such routines are available in the LQ problem [3],
[5]). The second approach to approximate the optimal solution of
the LQG problem [11] starts by writing the closed-loop equations
of the optimal system as a system driven by white noise, i.c., after
eliminating the input and output variables by substituting them
in terms of the state variables of the plant and the Kalman filter.
The entry of the filter’s fast variables in its slow variable equa-
tions is eliminated by formally setting u = 0 on the left-hand side
of the filter equations. Such elimination results in a slow-mode
filter which is implemented at a slower rate leading to on-line
reductions [11]. The approximation has been justified [11] by
showing that the state of the plant under the approximate control
law converges to the state of the plant under optimal control as
g — 0. The main difficulty with the approach is that the suggested
approximation does not have the intuitively appealing slow—{fast
decomposition structure of the composite control law of [10].
Even the separation between the regulation and estimation tasks,
which is preserved in the composite control law of [10], is lost
since the approximation is defined by manipulating the closed-
loop equations. Moreover, as in the first approach, there is no
mechanism for improving approximations.

This paper presents a new approach to the decomposition and
approximation of LQG optimal control for singularly perturbed
systems. The new approach alleviates the difficulties of the previ-
ous approaches, is conceptually simple, and retains the physically
motivated structure of the composite control of [10]. In the new
approach the decomposition and approximation tasks are sep-
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arated from each other. Decomposing the Kalman filter into
slow-mode and fast-mode filters is achieved via the use of a
decoupling transformation that has been introduced in [12] for
block diagonalization of singularly perturbed systems. Approxi-
mating the feedback control law is then achieved by truncating
expansions of the coefficients in p, where the coefficients are
analytic in g at p=0. The resulting feedback control law is
shown to be a near-optimal solution of the LQG problem by
studying the closed-loop system as a system driven by white
noise. In that study, standard variance analysis is employed to
reduce the problem to one of studying a deterministic singularly
perturbed equation which can be easily handled using the well-
known singular perturbation techniques [1].

The paper is organized as follows. In Section II we study the
approximation of singularly perturbed systems driven by white
noise. It is shown that an N th-order approximation in which the
system coefficients and initial conditions are O(p") close to the
exact ones is a well-defined and valid approximation in the sense
that the differences between the exact and approximate solutions
are O(p") in the case of slow variables, and 0(u” ~!/*) in the case
of fast variables, where the order of approximation is taken in
mean square.! In Section III, the LQG regulator is considered. A
decoupling transformation is used to represent the Kalman filter
in new coordinates in which the slow and fast variables are
decoupled. An Nth-order approximate feedback control law is
defined by truncating expansions of coefficients. A study of the
resulting closed-loop system, employing the results of Section II,
shows that the relative mcrease in the performance criterion over
its optimal value is O(u™). A simplified first-order approximation
is defined and shown to be equivalent to the near-optimal control
of [10]. Section IV contains a numerical example and Section V
includes discussions of various aspects of the LQG approxima-
tions and compares them to the corresponding LQ approxima-
tions.

II. APPROXIMATION OF SINGULARLY PERTURBED SYSTEMS

DRIVEN BY WHITE NOISE

Consider the linear time-invariant singularly perturbed system

() =A(p)x(1)+ B(p)y()+ E(p)w(1).

x(0)=x"(n). (2.1)
py()=C(p)x()+D(p) y(2)+ F(p)w(s),
10)=1r"(n). (2:2)

where x€ R™, y € R™, wE€ R, and p is a small positive scalar
parameter. The system matrices are analytic functions in g at
p=0,1ie,

A(p)= Y “A

1—0

(23)

with similar expansions for B, C, D, E, and F. The input w(r)is
zero-mean, stationary, white Gaussian noise with intensity matrix
V>0,ie.,

E{w(t)w'(s)} =V8(r~3s). (2.4)

The initial conditions x°(p) and y»°(g) are Gaussian random
vectors with means x°(p) and 7%). and joint variance matrix

'A random variable f(p) is said to be O(p) in the mear square sense if
there exist p* >0 and K > 0 such that Vp € (0. p*), (Ef*(u)'2 < Kp.
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I'O(p), where x%(p), 7°(p), and TO(p) are analytic in g at p=0
with expansions similar to (2.3). It is assumed that the matrices
(A, — ByDy 'Cy) and Dy are Hurwitz, ie.,

ReA(D,) <0 (2.5)

and

ReA(4q = ByDy 'Cy) <0. (2.6)
Conditions (2.5) and (2.6) guarantee [13] that for sufficiently
small p the singularly perturbed system is asymptotically stable.
The purpose of this section is to study approximations of x(7)
and y(r) when p is small. We are interested in approximations
X (1), yy (1) which are defined by the following equations:

k(1) =A%) xx () + BY(p) yy (1) + EN(m)w(2),

xy(0)=x%(p). (2.7)
pix () =CY(p) yy (1) + DY () py (£)+ F¥(p)w (1),
yn(0)=y2(n). (28)

The matrices A™(p) through F¥(p) are analytic functions in p
which are 0(u™) close to the corresponding matrices A(u) through
F(p), respectively, e.g.,

o0

ANwy= L Har ar-
i=0""

(4, vie[o,N-1].
| arbitrary i > N

(2.9)

The initial condmons x%(w) and va(p) are Gaussian random
vectors with means ¥ ( p) and 7 (u) and joint variance matrix
T2(n), where x3(p), #3(n), and TO(p) are analytic in u at
g =0. It is assumed that

) T]

i “ 7T = 0(p*).

1—27\

xy ()= x(w)

xx-(u)—xo(u))( X
S ()= »° ()

£l ( ;
[\ra ()= 2%(n)

(2.10)

In other words, the approximation (2.7), (2.8) is obtained by
making O(p”) perturbations in the matrix coefficients and initial
conditions of (2.1), (2.2), where the perturbation in initial condi-
tions is taken in mean square sense. In order to validate ap-
pronmatmg x(2)y and y(r) by x,(#) and y,(r). we study the
variances” of (x(#)— xy (1)) and (y(1)— py(1)) as p — 0. We also
study evaluation of quadratic forms in x and y like
x(r) )

y(1)

(2.11)

x(1)

o= lim E{(
1> y

where H(p) and J(p) are analytic functions in p. Such quadratic
forms will appear in the steady-state LQG control problem
(Section IIT). We examine approximating ¢ by o, which is given
by

o) (02" (G0

Ttis suff1c1ent to study the variances of the errors since their means are
known to be O(n") by deterministic singular perturbation results [1].
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gy = lim
=0

x;’\’(t) ! N N T
E{(y,v(t)) (HY(1), 7" (1))

N N x.’\'(’)
(HY(n),J (P))(}'N(t))} (2.12)

where H™(p) and JV(p) are analytic functions in p which are
O(p™) close to H(p) and J(u), respectively.

The results of this section are given in the following two
theorems which are stated under the above conditions (for
steady-state results (2.10) is not required).

Theorem 1: For all 1(0 <t <o0)

var (x(1) = xy (1)) = 0(p*"),
var(y(£)= yy(£)) =0(p*""1)

(2.13)
(2.14)

and

E{[(x(1)= x5 (1))~ E(x(1)= xy(1))]
L= (D)= EG ()= yu (D]} =0(w?™). (215)

Furthermore, if the initial condition closeness assumption (2.10)
is not satisfied, (2.13)—(2.15) hold at steady state, i.e., as t = .

Theorem 1 establishes that (xy(z), yo(¢)) is a valid ap-
proxiamtion to (x(¢), y(2)). The mean square order of approxi-
mation of x is 0(u"), which is the order of perturbation of
parameters and initial conditions, but the mean square order of
approximation of y is only O(u"~'/?). It is emphasized that
Theorem 1 holds even though the variances of y(z) and y, (1)
could be 0(1/p) because of the presence of white noise input
multiplied by 1/p.

Theorem 2:

(2.16)

where Ao =0, — 0.
Again, we emphasize that Theorem 2 holds even though both o
and oy, could be 0(1/u).
Proof of Theorem 1. Let

e, =x—xy and e,=y— yy.

The variances of e, and e, can be determined by studying the
following system of equations:

A 0 B 0
x(1) A4 4% Aap BV || x()
e _| 1o o 1, e, (1)
(1) r P »(1)
é,(1) 2AC lC‘ Lap Lpnv|]edr)
2 p L
E
AE

1
+ ;F w(t), (2.17)
IaF
n
where AA=A— AV, AB=B - B", etc.
For shorthand notation, (2.17) is rewritten as
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i=Az+ Bw (2.18)

with obvious definitions of z, 2, and %. Let Q° be the variance
matrix of the initial conditions z(0). The matrix Q° is parti-
tioned, compatibly with the partitioning of z, as

oh oL 0% Ok
00— 0% 0% 0%
% 0%

0l

By assumption, we have

07 (r)=0(p"), forij=12,14,23, and 34

and

Q% (p)=0(p*Y), forij=22,24,and 44. (2.19)

Let Q(¢) be the variance matrix of z(r). It is well-known [14]
that Q(?) is the solution of the Lyapunov matrix differential
equation

Q=HQ0+QLT+BVET, Q0)=0° (2.20)
Because of the presence of 1/p terms in & and %, Q is sought
in the form

[0, 0 0 Qu |
QZZ Q23 Q24
0= Lo, 1o (2.21)
P’ 33 Il' 34 .
1
i e

Substituting (2.21) in (2.20) and partitioning the Lyapunov equa-
tion we get ten linear, time-invariant, ordinary differential equa-
tions seven of which are singularly perturbed. These are the
equations involving the derivatives of Q,3, @14, @13, a4, O35
Q14, and Q.. The asymptotic behavior as p — 0 over the interval
[0, %0) can be studied using the method of [15]. Using [15] we get
that for each small p > 0, there exists a unique solution Q, (7, 1)
on 0 < 7 < oo which is given by

O, (t,n) =P (t.p)+ K, (7,p), T=1/p (2.22)

where P;(¢,p) and K, (7, p) are the outer and boundary-layer
solutions defined in {1 5]1. Moreover, the outer and boundary-layer
solutions have Taylor expansions in p such that for any integer
L>0,0;,(1,p) is given by

L-1
2u(tm= E [PPO+KP(]w+0(6t) (2.23)

where 0(g’) hold uniformly for 0 < < oo. It can be shown (see
[16] for detailed manipulations) that

P(1)=0 and K (7)=0, vrelo,N-1],
for ij =12,14, 23,34, (2.24)

and
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PO(1)=0 and K{'(r)=0, Vrel02N-1],

for if = 22,24, 44. (2.25)

Hence,
Qij(tsﬂ)=0(l’-'~)’

for jj =12, 14,23, and 34, (2.26)

and
0, (t,p)=0(p*"),  forij=22,24,and 44, (2.27)

which proves (2.13)-(2.15). If (2.10) is not satisfied, the variances
of e, and e, are evaluaied only at steady state where the
differential equations are replaced by their equilibrium algebraic
equations. Repetition of the above argument shows that
(2.13)-(2.15) hold at steady state.

Proof of Theorem 2: Since ¢ is evaluated at steady state, it is
given by

[HTHQH+2HTJQ13]+tr[ TJQB] (2.28)

where

@ij(#)=11iH:chj(taﬂ)=lliﬁg‘c P,-,-(t,p,) (2.29)

because X ;(7,p)— 0 as 7 —o0 [15]. Using (2.23), we get, for
any posmve integer L, that

0,(p)= Z 0" +0(p") (2.30)

where Q{7 =lim, _, ,, P{’(1). Since (2.23) holds for all ¢ € [0, c0),
(2.26) and (2.27) hold for 0., as well. Now, oy is given by

=1tr [ HNTHN(QU -2Q5,+ sz)
+2HYT¥(QL - 07, - 0%, + 0%)]
+ i e[ JVTTN(Q33 — 2034 + Qus)]- (2.31)

Subtracting (2.28) from (2.31) and using (2.26), (2.27) we get

) 1608 - KR | +o(”).
(2.32)

Ao=2u~’1tr[(

Recal]mg the partitioning of (2.20) it can be verified that o
and Q4 are, respectively, the unique solutions of the algebraic
Lyapunov equations

D0 +09D] + RVE =0 (2.33)
and

DyOLY + 04D + DR (AD)} + RV(AF);=0. (234)
On the other hand,

o= tr[J T7,09] +0(1). (2.35)

We want to show (2.16), i.e., Aa/o = 0(u™). If tr[J{/,043 ]+ 0,
(2.16) is obtained by dividing (2.32) by (2.35). However, if
tr[JQ qQ(O’]—O such division will show only that Ac/o =
0(p™ ™), further analysis is needed in this case to show (2.16).
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Suppose that

e[ JT,00] =0 (2.36)
and recall that Q3 is given by
09 - fo % e P FVFTePY d, (2.37)
Substituting (2.37) in (2.36) yields
[ PRIV di= 0
0
which implies that
JePr R =0 V1. (2.38)
Hence,
J,09 = (2.39)
Recalling, that

— oc
o= [ e? [ QQ(AD) + FV(AF)Y] €2 at,

and using (2.39), it can be shown that

S0 = (2.40)
The use of (2.39) and (2.40) in (2.32) shows that Ao =0(p")
which completes the proof of Theorem 2.

I1I. LINEAR-QUADRATIC-GAUSSIAN CONTROL

Consider the singularly perturbed system

%1 (8) = Anx (£)+ Apx, () + Buu()+ Gwy (1), (3.1)
pxy () =Ayx (1) + Ay x, () + Bou(r)+ Gow (1), (3.2)
y(2)=Cix (1) + Coxy (1) + wy (1) (3.3)

with the performance criterion

J=
- — ¢
n—x

{/‘I[ZT(z) (t)+uT(z)Ru(t)dt]}

-t

R>0, (34)
where x, € R™, x, € R™ compnse the state vector, u € R™ is
the control input, y € R’ is the observed output, w; € R” and
w; € R’ are independent zero-mean stationary white Gaussian
noise processes with intensities ¥; > 0 and ¥, > 0, respectively,
and z € R® is the controlled output which is given by

z(1) = Dyx; (1) + Dyx, (7).

The optimal control law is given by [10]

3(0) = Ank (1) + A%, (1) + Byu(r)

+ K (w)[y(1)= G123, (1) - G &2 ()], (3.5)

pxy (1) = An 3 (1) + A%y (1) + Byu(1)
+ Ky () p(1) - Cix() - G2 ()], (3.6)
u(t)=—[F(p) 5 (1)+ B (p) % ()] (3.7
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The regulator gains F; and F, are given by
F,=R (B[P, +BJP}), F,=R '(nB{P+ B;P,)
(3.8)
where P, P,, and P, satisfy the algebraic equations
0= P Ay + Py Ay + A[ P+ AL P + DID,
—(PB,+P,B,)R(B]P,+ BIP)),
0=P Ay + Pppdyy + pd{ Py + A3, Py + DD,

(3.9)

~(P,B,+ P;,B,)R"(nB{P, + BIP,), (3.10)
0=pPLA;,+ PyAy +pAL Py + A%, Py + DID;
—(wPLB+ PyBy )RV (wBIPy + BIPy)  (3.11)

while the filter gains K; and K, are given by

K, = (Q1C1T+ Q12C2T) vl K,= (P'Q1T2C1T+ chzr) vit

(3.12)
where Q,, Q,,, and Q. satisfy the algebraic equations
0=4,0,+ Alesz + Q1A1T1 + leAsz + GIVIGIT
—(@:CT+ 0TV (G101 + GOL). (3.13)
0=pdQi+ 430, + Q145 + 01,45 + GG,
—(Q:CT+ QLT ) V5 H(1C1@12 + G6:03), (3.14)

0=pAyQ0n + AQs + pQlL A5 + 0,45 + G GY
- (PQ1T2C1T+ QzCzT) Vi H(pC101n + C620:)-

Equations (3.9)-(3.11) and (3.13)-(3.15) are dual and their solu-
tions for small g have been studied in [5], [8]. We recall some
properties of the solutions which will be used later. Let us start
with (3.13)-(3.15). Setting p=0 in (3.13)-(3.15) decouples the
equations in the following manner. First (3.15) takes the form

(3.15)

0=A,,0,(0)+0,(0) 4%, + G,V1G37 ~ 0, (0) T 5 'C,0,(0)
(3.16)

which is a familiar algebraic Riccati equation. Assuming that the
triple (A5, G5, C,) is stabilizable-detectable guarantees [14] that
(3.16) has a unique positive semidefinite solution such that

Re A Az — K2sCy) <0 (3.17)

where K3, 2 05, (0)CT V5 1= K,(0). Second, with p =0 (3.14) is
linear in Q,,(0) and can be used to express Q1,(0) in terms of
0,(0) and Q,(0). Third, eliminating @;,(0) from (3.13) and then
using (3.15) to eliminate Q,(0), it has been shown in [8] that
0.(0) satisfies the algebraic Riccati equation
0=[4,- GNHV,'C]01(0)+ 0 (0)| 4, - 6mHTV, ']
+ G [V = H[V H] 6] - 0,(0)¢]v71¢,0,(0).
(3.18)

where
A=Ay~ AleleA 21
H =- C2-4{21G2s
Vs' = V2 + HSV]HsT’

G,=G,- Alez_zle,

C,=C,~ A5,
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Assuming that the triple (4,,G,,C,) is stabilizable-detectable
guarantees [14] that (3.12) has a unique positive semidefinite
solution such that

ReA(A,— KC,)<0 (3.19)

where K, 2 [Q,(0)C] + G,V H,]V," 1. Based on the stability prop-
erties (3.17) and (3.19) and using implicit function theorem
arguments the following lemma was proved in [8].

Lemma 1: If A., is nonsingular and the triples (A4,,G,,C,)
and (A4, G,, C,) are stabilizable-detectable, then for sufficiently
small p (3.7)-(3.9) have a unique stabilizing solution which
possesses a POWEr series expansion at p= 0.

The solution of (3.9)-(3.11) has dual properties. It is seen that
if (A4, By, Dy) is stabilizable-detectable, then P,(0) is the unique
positive semidefinite solution of the algebraic Riccati equation

0=P,(0) Ay + A%, P2(0)+ DID, — P,(0) B,R™'BIP,{0)
(3.20)
and
ReA(A4,, —

B,F;,)<0 (3.21)

where
Fy, £ R7'B]P,(0) = F,(0).

Also, if (A4,, B, D,) is stabilizable-detectable, then P,(0) is the
unique positive semidefinite solution of the algebraic Riccati
equation
0="P(0)[4,~ BR;'E'D,| + |4, - B,R;'E/D,] "P,(0)
+D][1~ E,R;'E,] D, - P,(0) B,R; 'BP,(0), (3.22)
and
ReA(4, -

BF)<0, (3.23)

where

B,= B, - AleleBza
E,=—D;A%'B,,
=R+ E'E F,=R;'(EID,+ BIP).

5§ s s

D,=D;~ Dy 454y,

The existence and uniqueness of the solution of (3.9)-(3.11) is
established in the following lemma (8] which is the dual of
Lemma 1.

Lemma 2: If A,, is nonsingular and the triples (A,, B,, D;)
and (A4, B,, D,) are stabilizable-detectable, then for sufficiently
small g (3.9)-(3.11) have a unique stabilizing solution which
pOssess a power series expansion at p = 0.

Previous attempts to simplify the optimal control exploiting
the two-time scale nature of the system are due to Haddad and
Kokotovic [10] and Teneketzis and Sandell [11]. A special case of
[10] was studied by Khalil [18]. In [10], an approximate control
law has been derived through slow—fast decompositions of the
singularly perturbed system. The control law is shown to be
near-optimal by showing, via involved study of J, that AJ/J is
0(p) where AJ is the increase in the performance criterion. In
[11], an approximate control law has been derived from the
optimal one (3.5)-(3.7) by, first, substituting # from (3.7) into
(3.5) and (3.6), second, formally setting p =0 in the left-hand
side of (3.6) and, finally, using the resulting algebraic equation to
eliminate %, from (3.5). It has been shown that the error,
between the state of the system under optimal control and the
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state of the system under the approximate control, converges to
zero, in the mean square sense, as p — 0. A common feature in
both approaches is that the decomposition of the Kalman filter
into slow-mode and fast-mode filters is achieved via formal
elimination of the fast variables from the slow equations. Because
of the formal nature of deriving approximations. there is no way
of modifying the approximate controls in order to get higher
order approximations.

Our approach toward simplifying the LQG regulator separates
the decomposition and approximation tasks. To decompose the
Kalman filter into slow-mode and fast-mode filters there is no
need to introduce any approximations. All that is needed is to
represent the Kalman filter in new coordinates where the filter
state variables cluster into n; slow variables and n, fast vari-
ables. We achieve this by using a decoupling state transformation
that was introduced by Chang [12] to block diagonalize singularly
perturbed systems. In fact because our system is time-invariant
we only need to use the special case of the transformation that
was introduced by Kokotovic [17] and which uses algebraic
equations rather than differential equations as in the general form
of Chang. The basic properties of the transformation are sum-
marized in the Appendix. Since the objective of the decomposi-
tion task is to decouple the slow and fast variables of the Kalman
filter, we have to examine the power spectra of the filter vari-
ables. To characterize the power spectra of the state variables of
the Kalman filter we view the filter as a system driven by the
innovation process, 1.,

31(1)= (A — BiF) &, (1) + (A4, — BiR) % (1) + Ke (1)
(3.24)
pio(1)= (A~ By F)51(2)+ (A — ByF) % (1) + Koo (1).
(3.25)

Since the innovation process v(z) is white noise the power
spectrum of X(¢) is determined by the homogeneous part of
(3.24), (3.25) which is a well-defined singularly perturbed system:
recall that, by Lemma 2, (A4,, — B, F>) is nonsingular at p= 0.
Therefore, we block diagonalize the homogeneous part of (3.24),
(3.25) using the transformation

%(1)

%,(1)

(1) _ Inl—u‘MlLl —pM,

?’2 ( 4 ) Ll 1, ny
where the matrices M; and L, satisfy equations similar to (A4)
and (A8) of the Appendix with (4,; — B, F)) replacing A4,;. The
optimal feedback control, expressed in the new coordinates, is
given by

} (3.26)

(1) =[(Ay — BiF)— (41, ~ B B) L (1)

+{K,— MK, —p ML K )v(t) 3.27)
pha(1) = [(Ap — By F)+uLi(4; — BiF)] (1)
+(Ky+pL K)o (1) (3.28)
v(1)=y(1)-(C - GL)n(r)
—[C +p(C = G L) My ]2 (2) (3:29)

u(ty=—-(F - BEL)n ()~ [FR+u(F - FKEL)M]n(1).
(3.30)

Equation (3.27) is a slow-mode filter whose state #; has a
frequency band of order one, while (3.28) is a fast-mode filter
whose state %, has a frequency band of order 1/p. Implementa-
tion of the optimal feedback control as given by (3.27)-(3.30)
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should lead to a reduction in the on-line computations. In partic-
ular, in implementing (3.27) and (3.28) using numerical integra-
tion routines, different integration step sizes can be used. It is
crucial that the decomposition of the Kalman filter is achieved
without sacrificing the nice analytical properties -of the system
because the matrices L, and M, are analytic in u. This makes
the approximation task, to be discussed next, a feasible one.

Approximate control laws are defined by perturbing the right-
hand side coefficients of (3.27)—(3.30). Specifically, the matrices
F\. F. K|, K5, M|, and L, are approximated by their N th-order
approximations F¥, FY, KJ¥, K¥, M|, and L}, respectively,
where an N th-order approximation of a matrix consists of the
leading N terms of the expansion of that matrix. The state
variables of the perturbed filter will be denoted by %} and Y. If
the filter (3.5), (3.6) in the optimal control law are initiated at
certain initial conditions %,(0) and %,(0), then the initial condi-
tions #7(0) and #3(0) should be taken as

1y(0) = (1, ~ pMILY) %,(0) — 1 M[*%2(0)
73 (0) = LY%,(0)+ 2(0).

(3.31)
(3.32)

The near-optimality of the proposed control law is established in
the following theorem.

Theorem 3: Suppose that the conditions of Lemma 1 and
Lemma 2 hold. Let x,(¢) and x,(¢) be the optimal trajectories
and J be the optimal value of the performance criterion. Let
%1(1), X.(1), and J be the corresponding quantities under the

Nih-order approximate control law and let AJ=J —J. Then

= o), (339
var(x,(1)— % (£))=0(p?"), (ast—>), (3.34)

and

var(xz(t)—)_cz(z))=0(p‘2.\i-1)’

Moreover, if #,(0) and %,(0) are chosen according to (3.31),
(3.32), then (3.34) and (3.35) hold for all 7> 0.

Proof of Theorem 3: The result of Section II is employed by
studying systems of equations driven by white noise. For the
optimal control consider the equations

(ast = ). (3.35)

m o m P
é K4 e w
1 1 e [ 1 (3.36)
kS M2 W
péy oy Ay || e %,

where e;=n,—%, and e, =7, — 1, are the estimation errors,
and 7,,7, are transformations of x;, x, using (3.26). The corre-
sponding equation for the approximate control is

AN

h'l T

é: N AN e @Y I w

3~ = ‘;_, ‘\ j\, + 0 o3
B Ay i || 15 By || wy

pe¥ ey

where ¢f'=7, ~ ) and Y =1, ~ 7}

n, — 75 are the estimation errors.
The matrices &,,, %, and &, # in (3.36) and (3.37), respec-

tively, are obtained in an obvious way. It can be verified that
o, =) =0(s") and B~ B =0(x")

so that condition (2.9) is satisfied. To apply Theorem 1 we should
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verify conditions (2.5) and (2.6), i.e., we should show that 7,,(0)
and [, (0)— ;,(0) 5, (0) 5, (0)] are Hurwitz matrices. It can
be shown that

A22 - B22F22

K,,C
M22(0)=[ 0 .

A22_ K22C2:|, (338)

A,-BF,  m
0 A, —KC |

(3.39)

Stability of %7,,(0) and [.7;,(0)— ., (0)%75"(0)54,(0)] results
from the stability properties (3.17), (3.19), (3.21), and (3.23). The
use of Theorem 1 proves (3.34) and (3.35). Theorem 2 leads to
(3.33) after verifying that when J and J are expressed as quadratic
forms in (#;, ¢;) and (37, e]), respectively, the matrices in J are
0(p™) perturbations of the matrices in J.

A special case of interest is the case when g is small enough
that O(u) suboptimality is acceptable. In this case a simplified
first-order near-optimal control law is defined by neglecting all
O(p) coefficients on the right-hand side of (3.27)—(3.30). This
results, after some algebraic manipulations, in

(1) = (4, - B.E)n () +] K,(1~ CAR'K )

&fu(o)_ ‘5{12(0)”2_21(0)”21(0) = [

+B:F22(A22_Bzez)ilez]”(t) (3.40)

pi2 (1) = (A — By Fyp) i (1) + Kop0(1) (3.41)
o(1) = ()= (G — N.F)ny (1) - Cyina (1) (3.42)
u(t)=— Fn(1)— By, (1) (3.43)

where N, = — C,A3;'B,. Similar to the proof of Theorem 3, it can
be verified that the use of the control law (3.40)—(3.43) is near-
optimal, Theorem 4, which is given without proof, summarizes
this conclusion.
Theorem 4: If the conditions of Lemmas 1 and 2 are satisfied,
then )
AJ

=L~ o(w), (3.44)
var (x, ()= % (1)) = 0(p?), (3.45)

and
var(x, (1) =%, (1)) = 0(n) (3.46)

where (3.45) and (3.46) hold at steady state for any choice of
#,(0) and %,(0), and hold for all 1> 0 if %,(0) and %,(0) are
chosen as #,(0) = %;(0) and #,(0) = %;(0)+ An'(A45 —
B, F)3,(0).

To derive the near-optimal control law (3.40)—(3.43) one need
not consider the overall LQG problem. Rather, two lower order
LQG problems defined by Haddad and Kokotovic [10] are solved
under the conditions of Lemmas 1 and 2. The first one is a slow
LQG problem defined by

x,00)=4A,x (1) + Bu,(1)+Gw, (1), (3.47)
_}'(f) = C:x:(t)+ Nsu:(t)+ stl(t)-l_ WZ(I)’ (348)
J,= lim 1
lg—= — 0 [1 - tO
=

-E{ftl[xSTDSTDSxS +2xTE’D,u, + ulR u, dz‘]}

s7Ss
o

(3.49)
and its optimal solution is given by
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(3.50)
where the slow filter for any given u satisfies

%,(1) = A%, () + Bau()+ K[ y(1) = Nu(1) - G, (1) ].

(3.51)

The second problem is a fast LQG problem defined by
pi ()= Apx;(1)+ Bu (1) + Gyw (1) (3.52)
¥ (1) =Cyxs (1) +wy (1) (3.53)

. 1 X
J;= lim E{ xJDID,x, + ulRu dt}
f - 1~ 1 -/ro[ et A f]
Hh—x
(3.54)
and its optimal solution is given by
(1) =— Pk, (1) (3.55)

!L-’;f/(’) = Ay (1) + Byug(1)+ Kzz(}’f(’)_ Cz-i'/(f))-
(3.56)

Once F,, K,, Fy,,and K,, are computed, the simplified first-order
near-optimal control law (3.40)—(3.43) can be implemented. The
resemblance with [10] goes far beyond just computing the coeffi-
cients. In [10] a near-optimal control law is taken as

u(ty=u,+u;=—FEx (1) Fpk(1). (3.57)
Comparing (3.57) to (3.43) shows that we should expect %, and
%, to be equivalent, in some sense, to #); and #,. In [10] the fast
filter (3.56) is implemented by taking y, as y, = y — C.X, + N F &,
so that the fast filter can be written as

l“;"/(f)=(Azz‘Bzez)if(’)+Kzzl’ (3.58)

where

v(2)=y(1)=Cx () + NEX (1) - G&(1).  (3.59)
Comparing (3.58), (3.59) to (3.41), (3.42) shows that the two fast
filters are indeed equivalent. To see the equivalence of the slow
filters we rewrite (3.51) as

;Cs(t) = (As - B:F;)is(t)_ BSFZZi-f(t)
+ K [o(8)+ N, Fppi (1) +Cx,(1)] . (3.60)

Following the arguments of [10] one can say that, as an input to
the slow filter (3.60), %,(7) can be approximated by

5‘/(’)="(Azz“’Bzez)_lezl"(’)- (3.61)
If the formal expression (3.61) is substituted in (3.60), it can be
shown that % (1) satisfies the same slow filter equation (3.40) as
#1,(¢) with v as the deriving term. This shows that the simplified
first-order near-optimal control (3.40)-(3.43) is indeed equivalent
to the near-optimal control of Haddad and Kokotovic [10].

IV. A NUMERICAL EXAMPLE

In order to demonstrate the numerical behavior of the near-
optimum design of singularly perturbed LQG regulators, we
present results for an LQG controller of an F-8 aircraft which
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was considered in [11). The system model is given by

| [-1357x102 -322 -463 0 &
£1_] 12x107* 0 1214 0 3
£ —1.212x107% 0 -1.214 1 &5
£, 57%107* 0 -901 06696 1| &4
—-0.433 —46.3
0.1394 1214 |
| 01304 |¥T| —1214 ™ (4.1)
—~0.1577 -9.01
&
_fo o o 1}lé&|,
y—[l 0 0 0] e, +w, (4.2)
€4

where the white noise processes w; and w, are independent and
have intensities ¥; = 3.15x10~* and ¥, = diag[6.859x 107 %,40].
The performance criterion is

. 1
lim
fp— — e tf_ IO
>

J=

Efr;’[o.mgf +3260( &3 + £2 + u?)] 1.

(4.3)

The reader is referred to [11] for discussion of the modeling
aspects and the choice of J.

The open-loop eigenvalues are —0.94+ 72.98 and —0.0075+
j0.076 which shows clearly the two-time-scale property of the
system. The choice of state variables adopted in [11] led nicely to
a formulation in which the first two variables are slow variables.
A logical choice of the parameter g is p = 0.025 which is roughly
the ratio of the magnitude of the slow eigenvalues to the magni-
tude of the fast eigenvalues. The singularly perturbed nature of
this system becomes more evident [i.e., the right-hand side coeffi-
cients of the last two rows of the state equations are of O(1/p),
and those of the first two rows are 0(1)] by scaling the variables
as follows: § = diag(1,500,15000.5000) &, & =1000u. %, =100w,.
#=diag(100,1)y and w. = diag(100,1)w,. Introducing p artifi-
cially by multiplying the left-hand sides of the last two state
equations by p and the right-hand sides by 0.025. the system
takes the singularly perturbed form (3.1)-(3.4) with
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4. = | —001357 —0.0644} 4 =[—0.003087 o]
UL 006 0 T 0.040467 0]
4. = | —0.045375 0] 4 =[—0.03035 0.075 ]
L 007125 0]t T 1 -0075083  -0.01674 ]
B '—0.000433] B.— [ —0.052275]

! 00697 |° 72 0.019712 §"

_[-0.463 _[ —45525

“={ 607 ] G [—11.262499]’

_[o o _fo 0.02] _ -3
q B 0]. G, [0 o ] R=326x10
r_Jo1 0 0 0

D“_o 0 0 0]‘

pr=[0 0 381x10°° 0 ]

- lo o 0 11.42x107°

V=315 V,=diag{6.859,40}.

Componentwise results for £, £, K¥, K, L", and M"
approximations, for N =1,2.3, and corresponding values of the
performance criterion are shown in Table I. Shown also are the
simplified first-order approximation and optimal sclutions. The

TABLE I
AN F-8 AIRCRAFT LQG CONTROLLER EXAMPLE: u = 0.025
SIMPLIFIED | FIRST SECOND THIRD OPTIMAL
o -0.435272 ~0.435152 -0.435318 -0.435326
12 1.092964 1.100612 1.10987¢ 1.109888
Fa -3.019812 ~0.016716 -0.016588 -0.016576
Fap -0.002611 0.611633 0.011866 0.011873
Kiq 9.231563 0.218580 0.219336 | 0.219508
. 0.9300C0 0.902134 0.003925 0.004145
Ky -3.035830 ~3.038278 -3.040135 ' -3.0£0065
K12 0.009006 -0.027972 -0.028639 -0.028690
Ko 2.276873 2.278865 2.280193 2.280667
Ky 0.900000 0.031129 0.049665 0.049344
Kp 5.632790 5.634822 5.632759 5.632612
Kz 0.000000 0.069634 0.026851 0.047050
L -0.574315 ~0.604521 -0.60539C -0.605345
L2 -0.416417 ~0.436575 -0.436673 i -0.436679
L -1.150816 -1.163621 -1.164267 | -1.164268
L, 0.538667 0.607638 c.608495 | 0.608514
y 0.008400 0.017795 €.01785% 0.017854
"y 0.037518 0.031582 C.031527 0.031515
M -0.111529 -0.111386 6111803 -0.111810
' -9.508085 ~0.512595 -C.512817 -0.512825
{
{

J 25.066690 | 25.141589 25.066652 25.066596 25.066595
Pl 37900 | 2.99u07 2.278x107" aig® |

rate of convergence of the coefficients and AJ/J towards the
optimal solution can be noticed. In this example the simplified
first-order approximation behaves better than the first-order one.
But, in general, it could be the other way around.

In order to illustrate the numerical behavior of the near-opti-
mum solution as g — 0, p is varied over the range [0.0025,0.2]
and the percentage relative error in J is given in Table II. while
doing that all the matrices 4;,, B,. G,, C;. D;, and R are kept
fixed. i.e., only the sotution for u = 0.025 is meaningful as far as
the F-8 aircraft controller is concerned. Table II verifies that
AJ*/J isindeed O(u™) as p — 0.

V. DiscussIONs

The significance of the near-optimal control laws and Theo-
rems 3 and 4 that have been derived in Section III is extending to
the LQG problem the approximation procedures of the LQ
problem. The Nth-order near-optimal control extends a corre-
sponding result due to Yackel and Kokotovic [5] while the
simplified first-order near-optimal control extends the composite
control result of Chow and Kokotovic [8]. There are, however,
important differences between approximating LQ and approxi-
mating LQG solutions. These differences are summarized in
Table III and explained here in some detail. The first difference
is not related to the approximation scheme, rather to the problem
definition itself. While in the LQ problem the optimal value of J
is 0(1), in the LQG problem the optimal value of J is, in general,
0(1/p), which results from having a white noise input multiplied
by 1/pn. The LQG problem definition may be altered to avoid
0(1/p) optimal value of J; more about this point later. The
second difference has to do with using Nth-order approxima-
tions. In the LQ problem it has been shown ([3]: see also [19))
that the use of Nth-order approximations in feedback coeffi-
cients results in 2 Nth-order approximation in J. ie., (AJ/J) =
0(u*Y). In the LQG problem, Theorem 3 assured only that
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TABLEII
BEHAVIOR OF RELATIVE ERROR AS 1 — O
2 W RLC
M 3 3 3 % 3 %
-6 -6
0.0025 0.002977 <10 <10
0.005 0.011914 <1078 <1076
0.01 0.0477 3.2x10°° <107®
0.025 0.299179 2.278x1074 ax107
0.05 1.207573 5.3206x10"3 1.436x107*
0.1 5.000657 0.134547 0.01153
0.2 24.299446 8.717748 4,455874
TABLE III
CoMPARISON BETWEEN LQ AND LQG
19 106
1 | optimal value J Lo P
I
L ;
s 2 N-th order approximation —3 = 0(.2N) —3 = 0(..") !
: : ~
3 Simplified 2 2 .
) f}rxt]o:‘ger approximation 37 0.7 % 0
. Closeness of compufite_ ‘ X - )—(] < 0() x - )—(] - 0(w)
| control response (x;, %3} % - ;2 - 0(.) xp - 0(>1/2)
to optimal response (x], "2)
i
Closeness of composite XX T 0(:1)
5 control response (X, %) xy = {xg - Ay Not asympotically
to stow and fast responses (Agy - B Ix ) close
= 0(.)
6 Reduced control —j = 0{s) Not near-optimal

(AJ/J)=0(g"). The next three differences compare the sim-
plified first-order near-optimal control law of the L.QG problem
to the composite control law of the LQ problem [8]. First, the use
of the composite control in the LQ problem results in (AJ/J) =
0(p?), versus (AJ/J)=0(p) in the LQG problem. Second, if x;
and x, are the states of the system under optimal control, and X,
and X, are the states under near-optimal control, then in the LQ
problem x; — X, =0(p) and x, ~ X, =0(n), while in the LQG
problem x; — % =0(g) and x, — %, = 0(¢!/?) in mean-square
sense. Third, and that is an important difference, in the case of
LQ problem it has been shown that X, and X, are asymptotically
close to x; and x; — Ay'(A — B F,)x, where x, and x, are the
optimal trajectories of the slow and fast optimal control problems
[8]. There is no corresponding result in the LQG problem, i.e., X,
is not asymptotically close to x; [the solution of the slow optimal
control problem (3.47)-(3.49)]. To see this notice that the
asymptotic behavior of #; or x, is determined by the matrix
[#,(0)— 1, (0) #5; 1(0) 5, (0)] [which is given by (3.39)]. If a
corresponding matrix for the optimal closed-loop slow problem is
written down it will be exactly the same as (3.39) except that the
upper right block 7, is, in general, not equal to that of [ «#;,(0)

539

— ;5 (0) 755 1(0) %, (0)]. The fact that the on-diagonal blocks
are the same and the matrix is block triangular has been em-
ployed in the proof of Theorem 5 to conclude the stability of
[, (0)— 53, (0) 53 1 (0) #5;(0)] from the properties of the opti-
mal slow solution. However, closeness of x; and x, is not true in
general. It is interesting to mention that the same observation was
made by O’Reilly [20] while studying deterministic output feed-
back of singularly perturbed systems using controller-observer
compensators which is the deterministic version of the LQG
problem. Finally, the last difference is in the use of reduced
controls. In the LQ problem it is known [8] that an approximate
control law derived by solving only the slow optimal control
problem, ie., u=— F.x, is near-optimal with (AJ/J)= 0(p).
This fact justifies using the stow reduced-order model as a basis
for solving the LQ problem. In the LQG problem a similar
reduced control will not be near-optimal. This results from the
fact that in the LQG problem the value of J as u—0 is
determined by both the slow and fast variables. In fact, when
J=0(1/p), it is determined mainly by the fast variables. So,
optimization of the fast variables is necessary to achieve near
optimality. There are, however, special cases when the reduced
control is near-optimal, e.g., when D, =0 [10] or G, =0 [18].
Among the six differences discussed above, the last two are
important because they show features of the LQ problem that are
not extendable to the LQG problem.

As we have pointed out, the classical formulation of the LQG
problem which has been adopted in this paper leads to an
optimal value of J which is 0(1/y). We have shown that despite
this fact meaningful approximations can be defined and used to
approximate the optimal value of J. The problem of divergent
performance criteria can be avoided by altering the problem
formulation. Khalil, Haddad, and Blankenship [21] studied an
alternative LQG problem formulation in which various scaling
parameters have been introduced in such a way that the value of
J remains finite as p — 0. For example, the coefficient of the
white noise input in the singularly perturbed equations (3.2) is
taken as p°G,, a>1/2, instead of G, in the classical formula-
tion. Such modifications guarantee that J will be well-defined as
p— 0, and they are extremely useful in dealing with nonlinear
problems [22]. They have also been used in stochastic Nash
games [23]. The modified LQG problem has been treated in [21]
using the slow—fast decomposition approach of [10]. Naturally,
the approxiamtion procedures of this paper can be applied to the
modified LQG problem and the fundamental results of Section
I1, about approximations of singularly perturbed systems driven
by white noise, will play the same essential role they have played
in this paper. So far, there has not been an adequate comparative
study of the modified LQG problem formulation versus the
classical one. More work is needed in that direction.

Approximation methods for the estimation problem when u = 0
can be obtained in a way similar to those of the control problem.
In fact setting the regulator gain F equal to zero in the Kalman
filter equations of Section III results in the near-optimal Kalman
filter in the open-loop case. Assuming that A, and A,, are
Hurwitz matrices theorems similar to Theorems 3 and 4 can be
proved to assure that ¥, and %,, the approximate estimates, are
near-optimal in the sense that var(; — ;)= 0(g") and var(%,
— %,)=0(p~9/?) for Nth-order approximations.

Finally, we conclude our discussions by reexamining the de-
coupling transformation which was used to restructure the Kal-
man filter in Section III. There we used a transformation of the
form

T=[I—pML —pM 1)

L 1

with the specific choices L = L; and M = M,. Since the purpose
of the transformation is to represent the Kalman filter in new
coordinates where the slow and fast variables are decoupled, one
might principally examine many transformations which could
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achieve this goal. For example, appropriately selected modal
transformations would certainly decouple slow and fast variables.
However, we restricted our attention to the class of transforma-
tions represented by (5.1) in which L and M are analytic in p at
g =0. The transformation (5.1) is well-defined and well-condi-
tioned as p — 0, its inverse is readily available in terms of L and
M, and its vse results in a transformed Kalman filter whose
coefficients are analytic in p which is crucial for obtaining
approximations. The use of any transformation outside this class
has to be preceded by examining the analytical and numerical
properties of the transformation for small p, which is beyond the
goal of our research. Within the class of transformations repre-
sented by (5.1) there is arbitrariness concerning the choice of the
matrices L and M. Aside from the choice L; and M,; which was
adopted in Section III to block diagonalize (4 — BF) one might
consider several other choices. For example L and M might be
chosen to block diagonalize the open-loop state matrix 4 or the
matrix (4 — KC) which is the homogeneous part of the Kalman
filter if it is viewed as a system driven by both the control input u
and the observed output y. They might even be chosen as zeros
meaning that the Kalman filter is represented in the original
coordinates.® With such arbitrariness in choosing L and M we
need to get some insight in the effect of using the transformation
(5.1) on the decoupling of the state variables of the Kalman filter.
If

a A (ﬁl
n= r

n2)=Tx

is the state vector of the transformed Kalman filter, then the
power spectrum of 4 can be determined by studying the equation

W=T(A—- BF)T 'f+ TKuv.

Since the innovation process v is white noise, the power spectrum
of # is determined by the transfer matrix

W(s)=T(sI—A+BF) 'K 2 (

|

Wi(s)
w2 (s)
W] < C”l x 1 ,
To compute the resolvent matrix (s/ — 4+ BF)~ ', the transfor-
mation (3.26) is used to block diagonalize (A — BF), resolvent
matrices of the on-diagonal blocks are computed and then the
inverse transformation of (3.26) is applied to recover (s{ — A+
BF)™!'. Multiplying (s — A+ BF)~! from the right by K and
from the left by T, where T is any member in the class of
transformations defined by (5.1), we get
Wi(s)=(I—pML+ ML)\ (s)(K,—pM, LK, - M\K>)
+u(M, - M—puMLM, + u ML, M,)
Ty (us Ky + pL,Ky)
Wy(s)=(L—- LT\ (s)(Ky—pM L K, ~ M K,)
+(I+pLM, — p L M) (ps) (K2 + LK) (5.3)

(5.2)

where

*In our discussion here the matrices 4, B, C, F, and K represent
overall system matrices, i.e..

N

F=(F, F) and K=(

An
An/n

A ) B=( 1
An/n)” By/p
K, )
Ka/p )

). C=(C, G).

W, e anxl
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Ty (s)={sI—(A;— BF,)+ (4, - Ble)Lll-l

and

L(us)= [#51_ (A= ByFy)—pLy (A~ B F)] g
Examining expressions (5.2) and (5.3) shows that all transforma-
tions of the form (5.1) share two properties. First, the fast
variable %. has a slow bias. Second, the fast component in W|(s)
is multiplied by g, hence, for sufficiently small p, %, is predomi-
nantly slow. This shows that, for sufficiently small g, implemen-
tation of the slow equation of the Kalman filter can be done
using an integration step size much larger than that used for
integrating the fast equation. Examination of (5.2) and (5.3)
shows also that there is one choice of L and M that results in
perfect decoupling of the slow and fast variables and that is the
choice L= L, and M = M, which was adopted in Section III. Of
course the final word on the choice of the appropriate coordi-
nates for representing the Kalman filter is problem dependent
and implementation factors which are not considered here (e.g.,
physical constraints, hardware architectures, etc.) will aifect the
choice. It is clear, however, that from the decoupling viewpoint
the transformation used in Section III is the best. The important
point we want to make here is that for any other transformation
of the form (5.1) the results of Section III are generic in nature,
that is, approximation schemes can be defined by truncating
expansions of F, F,, K. K,, L, and M exactly as it was done
in Section III, and theorems similar to Theorems 3 and 4 can be
proved.

VI. CONCLUSIONS

A new approach to simplifying LQG optimal control for
singularly perturbed systems has been outlined. The new ap-
proach alleviates the difficulties of the previous approaches, is
conceptually simple, and retains the physically motivated struc-
ture of the composite control of [10].

APPENDIX
BLOCK DIAGONALIZATION OF SINGULARLY
PERTURBED SYSTEMS

Consider the linear time-invariant singularly perturbed system
X (1) =Apx (1) + Apx, (1) + Byu(e)
piy (1) = Anx (1)+ Apx;(2)+ Byu(r)

(A1)
(A2)

where the matrices 4;; and B, are analytic functions of g, and
det[ A.,(0)] # 0. The state transformation

Yr=x3+ Lx), (A3)
where L is chosen to satisfy
0=ApL— Ay —pL(A;—A4,L), (A4)

transforms the system (Al), (A2) into
(1) = (A~ ApL)x (1) + Ay (1)+ Bu(r) (AS)
pia(1)= (A +pLAn)y(1)+ (B, +plB)u(r) (A6)

which is a lower block triangular matirix. Now, the state transfor-
mation
=X pMy,, (A7)

where M is chosen to satisfy
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0=— MAy + Ay — pMLA, + p(A4y — A L)M, (A8)
transforms the system (AS), (A6) into

(1) = (A — Ap L)y (2)+ (B, — MB, — pMLBy)u(1t)
(A9)

p3y (1) =(Ap+pLAyp) (1) + (B, +plB)u(r)  (ALO)
which is a block diagonal matrix. The existence of L and M
satisfying (A4) and (AS8) is established in two steps. First, at
=0, the nonsingularity of A4,,(0) guarantees that L(0) and
M(0) exist and are given by

L(O) = [Azz (O)] 71A21(0):
M(0) = 41, (0)[ 4,,(0)] .

Second, applying the implicit function theorem and using again
the nonsingularity of A4,,(0), it can be shown that there exists
u* > 0 such that Vi € (0, p*), there exist L(p) and M(p) satisfy-
ing (A4) and (A8). Moreover, L(pu) and M(p) are analytic
functions of p. The overall transformation is given by

(A11)
(AL2)

- T e
Y2 L I X2
whose inverse is well-defined and is given by

x| _| 1 pM n

[xz] [-L I—plM [yz]’ (a14)
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