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Parallel Reduced-Order Controllers for
Stochastic Linear Singularly Perturbed Discrete
Systems

Zoran Gajic and Xuemin Shen

Abstract—This note presents an approach to the decomposition and
approximation of linear quadratic Gaussian control problems for singu-
larly perturbed discrete systems at steady state. The global Kalman filter

Manuscript received May 22, 1989; revised October 10, 1989. Paper
recommended by Past Associate Editor, M. W. Spong.

The authors are with the Department of Electrical and Computer Engi-
neering, Rutgers University, Piscataway, NJ 08855-0909.

IEEE Log Number 9039314,

is decomposed into separate reduced-order local filters via the use of a
decoupling transformation. A near-optimal control law is derived by
approximating coefficients of the optimal control law. The proposed
method allows parallel processing of information and reduces both
off-line and on-line computational requirements. A real world example
demonstrates the efficiency of the proposed method.

1. INTRODUCTION

Linear singularly perturbed discrete systems have been studied in
a fast time-scale version [1]-[9] and slow time-scale version (e.g.,
[10], [11]). Discrete-time models of singularly perturbed linear
systems, similar to [10], [11], were studied by Mahmoud and his
co-workers [12]. Since the slow time-scale version presupposes the
asymptotic stability of the fast modes, it seems, that in the design
procedure of stabilizing feedback controllers, the fast time-scale
version is much more appropriate [6]. In this note, we will adopt the
structure of singularly perturbed discrete linear systems defined by
Litkouhi and Khalil [4]-[6], and study corresponding linear-
quadratic Gaussian (LQG) control problem.

The continuous-time LQG problem of singularly perturbed sys-
tems [14], [15] is solved in [16] by using the power series expansion
approach, and later in [17] by using the fixed-point theory. The
discrete-time LQG problem of a singularly perturbed system has not
been studied, despite the extensive study of the corresponding
deterministic counterpart [4]-[6]. We will resolve this problem by
using results recently obtained in [18]. The main equation of the
optimal linear control theory, the Riccati equation, has a quite
complicated form in the discrete-time domain. Partitioning this
equation, in the spirit of singular perturbation methodology, will
produce a lot of terms (partitioned inversion of a matrix sum) and
make the corresponding problem numerically inefficient, even though
the problem order reduction is achieved. By applying a bilinear
transformation [13], the solution of the discrete algebraic Riccati
equation of singularly perturbed systems is obtained in [18] by using
already known results for the corresponding continuous-time alge-
braic Riccati equation [17] (see the Appendix). The method pro-
duces the reduced-order near-optimal solution, up to an arbitrary
degree of accuracy O(e), where e is a small perturbation parame-
ter and k represents the number of iterations. This reduces the size
of required off-line computations and is very suitable for parallel
programming.

The importance of the existence of the O(e) theory for singu-
larly perturbed problems is indicated in [19], where the O(e) theory
fails to produce the required result, so that the existence of the
O(e*) theory is a necessary requirement.

The singularly perturbed structure of the global Kalman filter is
exploited in this note, such that it may be replaced by two lower
order local filters which will produce additional on-line savings in
required computations. This has been achieved via the use of a
decoupling transformation introduced in [20], which produces the
exact block diagonalization of the global Kalman filter. The approxi-
mate feedback control law is obtained by approximating coefficients
of the optimal local filters with an accuracy of O(e”). The order of
approximation of the optimal performance is O(e™). The order of
approximation of the optimal system trajectories is O(eV*'/?) in
the case of slow variables and O(e?™) in the case of fast variables.
All required coefficients of desired accuracy are obtained by using
the recursive reduced-order fixed-point type numerical techniques
[17], [18], and [21]. Obtained numerical algorithms converge to
required optimal coefficients with the rate of convergence of O(e).

A real world example, a fifth-order discrete model of a steam
power system [23], is included in the note, in order to demonstrate
the efficiency of the proposed method.

II. LINEAR QUADRATIC GAUSSIAN CONTROL OF DISCRETE
SINGULARLY PERTURBED SYSTEMS AT THE STEADY STATE

Consider the singularly perturbed discrete linear stochastic system
represented in the fast time-scale by [4]-[6], [18], [25]
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x(n+1) = (I+eA;)x,(n) + e x(n)
+ eB,u(n) + eG,w(n) (la)
x,(n+ 1) = Ay x,(n) + Apx,(n) + Byu(n) + Gyw(n)
(1b)
y(n) = Cxy(n) + Cyx,(n) + v(n) 2

with the performance criterion

J= E{ nél) [27(n)z(n) + u"(n) Ru(n)] } , R>0 (3)

where x;€R", i =1, 2, comprise slow and fast state vectors,
respectively, ¥ € R™ is the control input, yeR’ is the observed
output, we R” and veR' are independent zero-mean stationary
white Gaussian noise mutually uncorrelated processes with intensi-
ties W > 0 and V > 0, respectively, and z€ R® is the controlled
output given by

z(n) = Dyx,(n) + Dy x,(n). (4)
All matrices are bounded functions of a small positive parameter e

[17] having appropriate dimensions.
The optimal control law is given by [22]

u(n) = —F%(n) (5)

with
£(n+ 1) = A%(n) + Bu(n) + K[ y(n) - C&(n)] (6)
where
I+eA,, €A, [eB,]
= , B= , C=[C, C
Ay Azz] B, & ]

K= [f‘], F=[F, F].
2
Regulator gain F and filter gain K are obtained from
F=(R+BTPB) 'BTPA (7)
K = AQCT(V + cQC™) (8)

where P and Q are positive semidefinite stabilizing solutions of the
discrete-time algebraic regulator and filter Riccati equations, respec-
tively, given by

P =D'D + ATPA — ATPB(R + B'PB) 'B'PA  (9)
Q = AQAT —AQCT(V + €OCT) ™ 'cQAT + GWGT (10)
where

eG
D=[D, D,], Gz[G;}.

Due to the singularly perturbed structure of the problem matrices,
the required solutions P and Q in the fast time-scale version have
the form
Py /e

Py

Pl2
P22

€Qn €Qp
s = . 11
[EQ1T2 On ] ( )

In order to obtain required solutions of (9), (10) in terms of the
reduced-order problems and overcome the complicated partitioned
form of the discrete-time algebraic Riccati equation, we have used
the method developed in [18] (based on a bilinear transformation
[13]), to transform the discrete algebraic Riccati equations (9), (10)
into continuous-time algebraic Riccati equations (see the Appendix).

Getting approximate solutions for P and Q in terms of reduced-
order problems will produce savings in off-line computations. How-

P=

ever, in the case of stochastic systems, where an additional dynami-
cal system—filter—has to be built, one is particularly interested in
the reduction of on-line computations. This will be achieved by
using a decoupling transformation introduced in {20]. The Kalman
filter (6) is viewed as a system driven by the innovation process
[16]. However, one might study the filter form when it is driven by
both measurement and control. The filter form under consideration
is obtained from (6) as

R(n+1)=(I+¢eA, — B F)%(n)
+ (A, — BiF,)%,(n) + eKp(n) (12.a)
2, (n+1) = (Ay — BF))%,(n)
+( Ay — By F,) %,(n) + Kyv(n)  (12.b)
with the innovation process
v(n) = y(n) - C,%,(n) — C,2,(n). (13)

The nonsingular state transformation of [20] will block diagonal-
ize (12). That transformation is given by
x(n
=T| () } (14)
%,(n)

[ﬁl(n)] _ [1, - ¢HL —eHH)?,(n)

i (n) L Lo {[%(n)
with
1, eH
T '=
-L I,—eLH

where matrices L and H satisfy equations
eLa,, + (I — ap)L + ay, —ela, L =0 (15)
H(I-ay - elay) +e(ay —apLl)H+a, =0 (16)
with
ay; = Ay, - BF,
ay = Ay — BF,,

ayp = A, — B)F,
ay = Ay — BF,.

The optimal feedback control, expressed in the new coordinates,
has the form
(17)

u(n) = =fiii(n) — fr5,(n)
with
(18.a)
(18.b)

A(n +1) = ayiiy(n) + eByp(n)
fo(n + 1) = ayiy(n) + Byv(n)
where
fi=F -FL, f,=F,+¢F, -FL)H
a=1+e(a; —apl),
B, =K, - H(K, + ¢LK)),

oy =ay +elay
B, =K, +elK,.
The innovation process » is now given by
v(n) = y(n) — diiy(n) — dyiiy(n) (19)
where
d=C, -eCL, dy=C,+¢(C, -C,L)H.

Approximate control law is defined by perturbing coefficients F;,
K;(i=1,2), L, and H with O(¢*), k=1, 2,---, in other
words, by using kth approximations for these coefficients, where k
stands for the required order of accuracy

u(n) = —fO31°(n) = £3589 (n) (20)
with
AP+ 1) = af3(n) + B0 ()

An + 1) = ag5(n) + B )

(21.2)
(21.b)
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where
v (n) = »(n) — a5 (n) - a3 (n)

(22)

and K k K k
JP=fi+0(e"), dP =d;+ 0(e")

B =B, + O(e*), o =a,+0(F)  i=1,2.

The cost under the approximate control is obtained by using
standard routines [22].

The near optimality of the proposed approximate control law (20)
is established in the following theorem [18].

Theorem 1: Let x, and x, be the optimal trajectories and J be
the optimal value of the performance criterion. Let x{¥, x{¥, and
J¥ be the corresponding quantities under the approximate control
law «©) given by (20). Under the conditions stated in Assumption 1
(see the Appendix) the following holds:

T — J® = 0(=ek) (23.2)
var {x; — x{P} = O(e2¥+1) (23.b)
var {x, — x{P} = O(e?*)  k=0,1,2,---. (23.c)

The proof of this theorem is rather lengthy and is omitted.
However, the proof follows the ideas of Theorems 1 and 2 [16]. In
addition, due to the discrete nature of the problem, the proof of our
Theorem 1 utilizes the bilinear transformation [24] which trans-
forms the discrete Lyapunov equation into the continuous one and
compares it to the corresponding equation under the optimal control
law. This has been discussed in [18].

II. NUMERICAL EXAMPLE

A real world physical example (a fifth-order discrete model of a
steam power system [23]) demonstrates the efficiency of the pro-
posed method. The problem matrices A and B are given by

0.9150 0.0510 0.0380 0.0150 0.0380
—-0.0300 0.8890 —0.0005 0.0460 0.1110

A =] -0.0060 0.4680 0.2470 0.0140 0.0480
-0.7150 -0.0220 -0.0211 0.2400 —0.0240
—0.1480 —-0.0030 —0.0040 0.0900 0.0260

BT =[0.0098 0.1220 0.0360 0.5620 0.1150].
Remaining matrices are chosen as

_[1t 1 00 0
0[00111

It is assumed that G = B, and that white noise intensity matrices
are given by )

] DD = diag {5,5,5,5,5} R=1.

W=50, V,=50, V,=50.

It is shown in [23] that this model has the singularly perturbed form
with n, =2, n, = 3, and e = 0.264. Simulation results are pre-
sented in Table I.

It can be seen from Table I that we have quite rapid convergence
to the optimal solution. This table justifies the result of Theorem 1,
that J¥ — JP' = O(e¥). Note that (0.264)5 = 3 x 1074,

IV. CoNcLUSION

The near-optimum (up to any desired accuracy) steady-state regu-
lators are obtained for stochastic linear singularly perturbed discrete
systems. The proposed method considerably reduces the size of
required off-line and on-line computations by introducing full paral-
lelism in the design procedure.

APPENDIX

.Under a bilinear transformation defined in [13], the algebraic
discrete Riccati equation (9) is transformed into the continuous one

A:Pc+PcAc+ Qc-PcScPc=0? Sc=BcRchBcT (Al)

TABLE I _
APPROXIMATE VALUES FOR CRITERION
K g(k) g(k) _ yopt
0 13.4918 0.229x1071
1 13.4825 0.136x1071
2 13.4700 0.110x1072
3 13.4695 0.600x1073
4 13.4690 1.000x10™%
5 13.4689 < 1074
optimal 13.4689

such that P = P, It has been shown that (A.1) preserves the
structure of singularly perturbed systems [18], namely

0(e) O(e) 0(¢) Q=[0(1) o(1)
o(1) o) o(1)|” =° |o() o()
(a2

> c

c

)

so that the reduced-order recursive algorithm developed in [17] can
be used for solving (A.1). The solution converges with the rate of
convergence of O(e) under the following assumption [18].

Assumption 1: The slow and fast subsystems are stabilizable-de-
tectable and the fast subsystem matrix has no eigenvalues located at
-1.

By the duality property between the filter and regulator Riccati
equations, the same algorithm can be used for the solution of (10).

More about the use of a bilinear transformation in a singularly
perturbed linear-quadratic control problem can be found in [25].
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Noninteracting Control of 2-D Systems
Ettore Fornasini and Giovanni Marchesini

Abstract—Necessary and sufficient conditions for the existence of a
decoupling bicausal precompensator for multivariable 2-D systems are
derived in state space and frequency domains. In general, the decoupling
problem for 2-D systems can be solved by feedback compensators if
suitable injectivity assumptions are introduced on the input-state matri-
ces. The structure of dynamic compensators is derived for this case and
the 2-D decoupling problem with stability is solved.

1. INTRODUCTION

Since the late sixties, the decoupling problem constitutes one of
the most attractive research topics in multivariable 1-D systems
theory. Besides several appealing consequences in the applications,
the interest in this field relies on the analytical tools that have been
introduced in developing the underlying theory. The decoupling
schemes considered in the literature have different characteristics.
These include the topology of the interconnections (based on the use
of precompensators, feedback compensators, or compound strate-
gies), the dynamical characteristics of the subsystems that enter in
the interconnections, the use of state-space or input-output models
and, finally, the algebraic structures (fields, rings) which provide
the framework where the systems are defined [1]-[5]. In most
applications, we are required to solve at the same time the decou-
pling and the stabilization problems. In these cases, state or output
feedbacks have to be considered and only those schemes that include
dynamic compensators become relevant to the solution.
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2-D systems provide input-output and state-space models repre-
senting physical processes which depend on two independent vari-
ables. In some cases, one of these variables is time and the other
represents a spatial dimension (as in the study of some classes of
distributed parameter systems and delay differential systems), while
for other problems, such as image processing, none of the indepen-
dent variables can be sought of as time. Typically, they apply to
two-dimensional data processing in several fields, such as seismol-
ogy, X-ray image enhancement, image deblurring, digital picture
processing, etc. Also, 2-D systems constitute a natural framework
for modeling multivariable networks, large scale systems obtained
by interconnecting many subsytems and, in general, physical pro-
cesses where both space and time have to be taken into account [6],
[71.

Recently, the feedback control theory of 2-D systems attracted the
interest of research people and a great deal of attention has been
devoted to problems related to stabilization and characterization of
closed-loop characteristic polynomials [8]-[11]. Moreover, the sys-
tematic application of 2-D polynomial matrices techniques allowed
us to extend the original single-input single-output analysis to in-
clude multivariable 2-D systems.

In this note, we aim to analyze how 2-D compensators apply to
noninteracting control of multivariable 2-D systems and to find
necessary and sufficient conditions for the existence of a feedback
law that makes the closed-loop transfer matrix diagonal and nonsin-
gular. We shall tackle this problem using MFD’s in two variables,
applied to input-output and state-space models. It is worthwhile to
remark that several equivalent strategies, based on bicausal precom-
pensators, static precompensators and compensators, static precom-
pensators and dynamic compensators can be implemented in gener-
ating noninteracting controls for 1-D systems. As we shall see, in
the case of 2-D systems these strategies are not equivalent, since
they allow decoupling of different classes of systems.

The state equation of a multivariable 2-D system T = (A, A,,
B,, B,, C, D) having m inputs and m outputs is given by

x(h+ 1, k+1) = Ax(h+1,k) + Ay x(h, k + 1)
+Biu(h+1,k) + Byu(h, k + 1)
y(h, k) = Cx(h, k) + Du(h, k) (1.1)

where u and y are the m-dimensional vectors of input and output
values, x is an n-dimensional local state vector, and A,, A,, B,
B,, C, D are matrices of appropriate dimensions. In the following,
we shall adopt the standard convention that a scalar sequence {s(#,
k)} with nonnegative indexes h, k is associated with a formal
power series Zs(h, k)zlhzé‘ having nonnegative powers in z, and
Z,. According to this convention, a proper (strictly proper) rational
function can be represented as a quotient p(z,, z,)/q(z,;, 2,) of
coprime polynomials with ¢(0, 0) # 0 (g0, 0) # 0 and p(0,
0) = 0).

Therefore, the transfer matrix of X is the m X m rational matrix

W(z,,2,) =C(I- Az - A2Z2)~1(3121 +B,z,)+D

(1.2)

whose entries are proper rational functions in two variables. The
system (1.1) is called strictly proper if D = 0 and bicausal if D
is an invertible matrix. It is immediate to see that T is strictly
proper if W(0, 0) = 0 and bicausal if W(0, 0) is an invertible
matrix.

Because of the structure of 2-D systems, a number of different
state feedback schemes is allowed. The simplest of these is repre-
sented by the static control law

u(h, k) = Kx(h, k), (1.3)
Comparing to static state feedback in 1-D theory, the possibilities

of modifying the dynamical behavior by applying (1.3) are much
poorer [12].

KeR™*",
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