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example, the point of the intersection of line (¢ = 4.0, r = 1l7) with
surface M corresponds to d = 1.1x and, hence, e = 0.1. Thus, system
(4) with A and B given by (15), 7 = 117. and D(#/¢) given by (13) with
= 4.0 and 7 = /e is asymptotically stable for any positive e =< 0.1.

V. CONCLUSIONS

This note presents a constructive tool for the stability analysis of
periodic linear time lag systems of the form (4). It shows that stability
properties of this class of systems are sensitive to small delays, and
thercfore caution should be exercised in applying vibrational and fast
periodic feedback controllers designed under the no delay assumption via
results of [2]-[4]. to systems with small delays.
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The Recursive Algorithm for the Optimal Static Output
Feedback Control Problem of Linear Singularly
Perturbed Systems

7. GAJIC. DJ. PETKOVSKI, anp N. HARKARA

Abstract—The recursive algorithm is developed for solving the alge-
braic equations comprising the solution of the optimal static output
feedback control problem of singularly perturbed linear systems. The
proposed algorithm is very efficient from the numerical point of view,
since only low-order systems are involved in algebraic calculations and the
required solution can be easily obtained up to an arbitrary order of
accuracy, that is, O(c*) where ¢ is a small perturbation parameter. The
real world example demonstrates the failure of O(¢) theory—used so far
in the study of this problem, and the necessity for the existence of 0(e)
theory.
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I. INTRODUCTION

In the early 1970’s, increasing attention was given to the problem of
designing output constrained regulators where a very limited number of
state measurements are available for control implementation (e.g., [1]-
[41). The optimal solution for this control problem is obtained in terms of
high-order nonlinear matrix algebraic equations. The convergence com-
plexities of the algorithms proposed for the solution of these equations
have hindered for quite a long time a wider application of this technique.
Recently, the convergence problem was solved in [5].

The output feedback control problem attracted the attention of the
researchers from the field of singular perturbations in the 1980°s [6]-
[10], [14]. It is well known that the singularly perturbed systems belong to
the class of systems with ill-conditioned dynamics which makes corres-
ponding numerical problems stiff. Thus, in addition to the high-order
nonlinear matrix algebraic equations, one is faced with the ill-defined
numerical problems also.

Motivated by the results of [11]-[13] and [5], we have developed the
well-defined recursive numerical technique for the solution of nonlinear
algebraic matrix equations associated with the output feedback control
problem of linear-quadratic singularly perturbed systems. Moreover, the
numerical slow-fast decomposition has been achieved so that only low-
order systems are involved in algebraic computations. It is shown that
each iteration step of the proposed algorithm improves the accuracy by an
order of magnitude, that is, the accuracy of O(e*) where ¢ is a small
perturbation parameter, can be obtained by performing only k iterations.
This represents a significant improvement since all results on the output
feedback control problems for the singularly perturbed systems have been
obtained so far with an accuracy of O(e) only.

The real world example, an industrially important reactor, which
demonstrates the efficiency of the proposed algorithm and the failure of
O(e) theory is included in the note.

1. OuTPUT FEEDBACK CONTROL FOR SINGULARLY PERTURBED
LINEAR SYSTEMS

Consider the singularly perturbed linear system [15]

Yi=Axi+ A+ Biu xi(to) =x10 Q)]
eXy=Asx) + Aaxr+ Byt X2(1g) = X20 2
y=Cix;+Cx, 3)

where x; € R™ and x, € R"2 are state vectors, ¥ € R™is a control
mput andy € R’ is a measured output. In the following, 4;, B;, and C;, i
=1,-+-,4,j = 1,2 are constant matrices of compatible dimensions; in
general, they are continuous functions of a small positive parameter e
[11). With (1)~(3), consider the performance criterion

+u7Ru} dt

with positive definite R and positive semidefinite Q. which has to be
minimized. In addition, the control input u(¢) is constrained to

T X\

Q C

X2

u()=Fy(1). )
The optimal constant output feedback gain F is given by (1]
F=R'BTKLCT(CLCT)"! (6)

where matrices K and L satisfy high-order nonlinear coupled algebraic
equations
(A—=BFC)L+L(A—BFC) +xox/=0 N

(A—BFC)'K+K(A—~BFC)+Q+CTF'RFC=0 (8)
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and newly defined matrices as

A A, B,
A=| 4 Ad|  B=|B: |, c=[C Gy, x= [ﬁ"] ©)
- 20
€ € €

Compatible with the nature of their solution, matrices K and L are

partitioned as follows:
K: [ ] ' L: [ ] .

In a recent paper [5], it is shown that the algorithm proposed for the
numerical solution of (6)-(8), defined by

K, €K,
K] €K,

Ly L,

s (10)

choose F® such that A — BFOC is a stable matrix (1

(A~ BFOC)LUD 4 L6+ (4— BFOC)T 4 xyxT=0 (12)

(A *BF(‘)C)TK("”+K'””(A—BF(”C)+Q+CTF“’7RF(”C=O (13)
FUsD= R-IBTK D[ G DOT(CLUNCT) (14)

with/ = 1,2, - -, converges to a local minimum under the nonrestrictive
assumption. As a matter of fact, the updated value for F is defined in [51
as
F(\'f]):F(“+Ot(F(H”*F“)) (]5)
where o € (0, 1] is chosen at each iteration to ensure that the minimum is
not overshot, that is,
Jig=tr {K“*"xoqu}<J,»=tr {K“’x(,xoT}‘ (16)
It has been customary in the control literature on the output feedback to
assume that the initial conditions are uniformly distributed on the unit
sphere, that is,
X0Xg = Liny - an
Applying the slow-fast decomposition transform of Chang [15] to
problem (1)-(5) and finding the optimal gains for the slow and fast
subsystem is possible for the accuracy of O(e) only [8]-[9]. It represents a
well-posed problem, but there is no way to improve the approximation to
any desired order of accuracy, that is, O(c*). In this note, we will
achieve that goal through the numerical slow-fast decomposition of the
algebraic equations (11)—(15).
In order to simplify derivations, we introduce the notation

D, D, A\—-B\FC, A,-B\FC,
A—-BFC= E & = | As-B,FC, A,-B,FC, (18)
€ € € €
Q+CTFTRFC=| " %2 | _ Qi+ CIFTRFC, Q,+ CTFTRFC,
P QT+CIFTRFC, Qy+CIFTRFC,
19

with obvious definitions for D;’s and ¢;’s, i = 1, 2, 3, 4.
Partitioning (12)-(13) compatible to (9)-(10) and using (17)-(19) will
produce the following set of equations:

DYLYTD4 LG DT DOLEOT 4 L6 0D 4120 (20a)
LENDW 4 eDOLED 4 LE-0DOT 4 DL D=0 (20b)
LEIDD 4+ DPLG DA DOLY 4 LY+ DO 4 ef=0  (20c)

and
D([')Tk'111+l)+K(IHIiDtI/)+D(3/)"K(:H T4 K{*vDW+g0=0 (2la)
K(2r+l)DgD+ED(I,-)’KEMH+D(}:)TK(3,+I)+K(IHI)Dlzl)+q;lJ:0 (21b)
K¢ DO+ DOTKG 14+ eDP KD 4+ eK 0 DO+ q01=0  (2lc)
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where
DV=A,—BFOC, DV'=A,~BFIC,
D{)=A;—BFOC,, Di'=A,- B,F"C,
and
q'=Q+CTFORFOC,
q¥=0,+ CTFYTRFIC,

qV=Q;+ CTFOTRFOC,  j=1,2,3, ---

Since the matrix A — BFC has n; slow eigenvalues of O(1) and n,
fast eigenvalues of O(1/¢), then det (4 — BF“)C) is of O(1/¢"2), which
makes (12) and (13) numerically ill defined. However, the partitioned
forms of (12) and (13) given by (20) and (21), obtained after multiplying
equations for L, (K;) and L; (K;) by e, comprise the well-defined
numerical problems, but there are no available methods for their solution.
In the next section, we will derive the efficient numerical scheme for
solving (20) and (21). Even more, the slow-fast decomposition will be
achieved, and the required solutions will be obtained in terms of low-
order problems of dimensions 7, and n,—the original problems (20) and
(21) are of dimensions n, + n,.

III. THE RECURSIVE ALGORITHM FOR THE OPTIMAL QUTPUT
FEEDBACK CONTROL PROBLEM OF SINGULARLY PERTURBED LINEAR
SYSTEMS

Equation (21) is a standard Lyapunov equation of singularly perturbed
linear systems. It is a special case of the more general Lyapunov equation
studied in [12] and [13]. Its zero-order solution is obtained by setting ¢ =
0 in (21), which after some algebra produces

KUrODW 4+ DOTR G 4 G TG =0 (22a)
K{ DO+ DOTK 04 g0 (22¢)
K= —(K{-0D9+ DYTKG 4 gy po~! (22b)

where

DY =Dy~ DYDY 'pu
0 1 4 3

— i -1 gD =
GP=GP-GPDY 'DY,  GU=Vg¥, p=1, 3.
Note that there is no need to calculate the square root of q4"s. The
expression for G{’ is used in (22a) ;)nly to simplify notation, but not for
real calculations since g\’ = GY' GO, g = G(l”TG‘,", and q{’ =

T s ) 3
G{" G{). The zero-order solution

Ktlml)

K

Ku+h= 2
nT +1)

eK§* DT eKY

is O(e) close to the required one K¢*). We can relate them through the
error term E:

(23)

eE=Kvth_ KU1

(24)
or by using a compatible partition:

eE,  €E, |
[ o] | o

Clearly, the O(e*) approximation of E will produce the O(e**!)
approximation of the sought solution K¢*", which is why we are
interested in finding a convenient form for the error equation and an
appropriate algorithm for its solution. It is shown in [12] and [13] that the
error equation is given by

K(]HUAK(IH]) ‘(Ktzl‘”’K[g““)
6(1(‘2“”*’('2””)7- E(K(}l#l)f’(\.‘u I))

DOTE +E DO+ DY ET+ E,DV=0 (26a)

EyDY+eD{ Ex+ DOTKY 4 DOTE =0 (26b)
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E;DV+ DOTE+DOTKY* D+ KG+ 0 DO+ ¢(DOTE, + ETDP) =0
(26¢)
and that the following algorithm
DOTEG+D 4 EU~0 DO = DOT(K+Y 4 ¢ EY)DY ™' DY
roor :
+DOTDOT(KG D+ e EP)TDY  (27a)

OT g T, . :
DOTEY+N 4 EY+D DO = — DOT(KG+D 4 ¢ EY) — (K U+ 0+ e EY)TDY

(27b)

EY* V=~ DO EY*D L EY+0 DO 4+ DOT(K{D 4+ e EY) DY~
Jj=412,3, - (270
with initial conditions chosen as E® = 0, EY = 0, and E{) = 0

converges to the required solution E with the rate of convergence of O(e),
that is,
[E-ED) =0,

J=1,2,3, - (28)

That implies

”K(””—(K“”)+EE“))H=O(€J), J=1,2,3, -, (29)
Note that the complete slow-fast decomposition is achieved, that is, the
solution of the Lyapunov equation (21) of order n; + n, is obtained in
terms of two low-order Lyapunov equations, the slow one (27a) of order
ny, and the fast one (27b) of order n,.

Equation (20) is not a standard Lyapunov equation of singularly
perturbed systems due to the fact that the initial conditions satisfy (17). In
the following, we will apply the methodology of [11]-[13] to (20) subject
to (17), and derive the recursive algorithm for its solution in terms of
reduced order problems.

Setting ¢ = 0 in (20) will produce, after some algebra, the zero-order
approximation of (20) as

LEDOT+ DOLY+ D+ [=0 (302)
Li*v= —é+npHTpo-T (30b)
LY DO T+ DOLE Y+ L DO+ DOLY+ D=0, (30¢)

Even though the complete slow-fast decomposition is not achieved
[contrary to (22)], these equations can be solved in terms of reduced order
problems in a sequential manner, namely, first solve (30a), then (30b),
and finally solve (30c).

Defining the error as

LEV LU= M= M, M,
MT M,

L(H!)_L(l+l| L(H—l)_L(H»l)
_ 1 1 2 2 (31)
(lel+l)7L(zl+1))T Lg|+l)*L(31+l)
and subtracting (30) from (20), we get the error equation as
M, D¥T+ DM, + DYMT+M; DY =0 (32a)

MyDOT 4 eDOMy+ DPLED+ DOLE+D 1+ eDOM; + MDY =0 (32b)
MDY+ DOM, + DO M+ MIDPT +1=0. (32¢)

Note that (32b) is a weakly linear Lyapunov equation. At this point, we
will ignore that fact and solve it with respect to M, as follows:

My= —[DO(LE D+ eMy) + DP(LY D+ eMy)+ M DYIDO 7. (33)
Using (33) in (32a) yields

M DOT+ DOM,~ DYDY Hy— H, DYDY =0 (34)
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where
Hy=D{O(LY™V+ €M)+ DLV + M)
=D§')L(2“”+D(2')Lg”“. (35)

Thus, the weakly coupled and hierarchical structure of (32) can be
exploited by proposing the following recursive scheme, which leads to the
two low-order completely decoupled Lyapunov equations

MyODOTL DOMY+—DODO HPT - HYIDO DO =0 (36a)

MY*D= —[HO+ MDY DY T (36b)

MY ODOT L DOMY+D+ DOMY D+ MYV DO H1=0  (360)

where

HUY= DO(LY*D 4+ M)+ DO(LY ' +eM) (37)
withj = 0, 1,2, 3, - - -, with initial conditions chosen as M‘® = 0, M{"
= 0,and MY = 0.

The following theorem summarizes the features of the proposed
scheme [17].

Theorem: The algorithm (36) converges, for sufficiently small values
of €, to the exact solution of the error terms, and thus to the solution
LY+ D, with the rate of convergence of O(e), that is,

|M—MD|=0G)),  k=1,2,3.

IV. NUMERICAL EXAMPLE

In order to demonstrate the efficiency of the proposed algorithm and the
failure of the O(e) theory, we have run a fifth-order real world example,
and industrially important reactor [16]. Matrices A, B, C, Q, and R arc
given in [16]. The eigenvalues of the matrix A are —2.8, ~7.7, —74,
—82, —129. Thus, we have two slow and three fast variables. The small
parameter e is chosen as € = 0.1, which is roughly the ratio of 7.7 and 74.

The theory of singularly perturbed optimal output fecdback problems is
derived so far for the O(¢) approximation. Using the O(e) approximation
of the equations comprising the solution of the optimal output feedback.
namely, of (22) and (30), will fail to produce the desired approximation
for this example. Even more, the algorithm does not converge to the near
optimum solution for extremely small values of the parameter « such as
0.001. The cause of the trouble is the inversion of the quantity CLC'. Its
determinant for the optimal value of L is very small, that is, 0.9736 x
10~#, and thus, this problem is very sensitive to O(e) perturbations, which
can be seen from Table I.

The results from Table I strongly support the necessity for the existence
of the recursive schemes which can produce any desired accuracy. that
is, the development of the O(e*) theory.

In Table II, we have presented results for the criterion J“’u{( and the gain
error for the global algorithm [5], and the corresponding quantities for the
proposed reduced order recursive algorithm. The initial value for the gain
FO is obtained from [4]. It can be seen that the initial guess is quite good,
but the global algorithm converges very slowly to the optimal solution. As
far as the criterion is concerned, it takes 28 iterations to achieve an
accuracy of up to five decimal digits where J,, = 0.28573. On the other
hand, the trajectories of the approximate system after 30 iterations are still
far apart from the optimal trajectories since the approximate gain is only
O(10-?) close to the optimal one. Thus, this algorithm demands a lot of
iterations in order to achieve high accuracy. This fact justifies even more
the necessity for the existence of algorithms which will reduce computa-
tional requirements. In the proposed algorithm, only low-order Lyapunov
equations are involved in algebraic computations. Even more, at the very
beginning, they can be solved with reduced accuracy (j = 1 or 2), and
once we approach the optimum, the accuracy can be increased to the
desired one. The third column of Table 1I is obtained for j = 2 fori < 16,
and j = 6 for i > 16. The second and fifth columns of Table II are
obtained for j = 6 for all i’s. The parameter « is chosen as a = 0.5 since
the global algorithm does not converge for o = 0.6.
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TABLE 1
. dget @Mt get (. cTy det (0T get @Mch
j=6 j=1
0.5 0.86846 x 107 | 0.14432 x 107> | 0.38943 x 10°° | 0.24392 x 10720
0.1 0.12749 x 1073 " » 0.57491 x 1077
0.01 | 0.14244 x 1073 " " 0.31742 x 1077
0.001 | 0.14413 x 1073 " " 0.24904 x 106
TABLE 11
§:8;§ Jéii’)t a(;; Ja(;:’ HFé;l: " Fopella HFa(riz; " Fopella
j=6 3=2,i516 3=6

i 3=6,i>16

1 |0.30487 | 0.30488 | 0.30427 2.1520 2.1480

2 [o0.28733]0.28738 | 0.28879 0.1635 0.1684

4 |o0.28615 ] 0.28619 | 0.28745 0.1296 0.1328

6 |0.28595]0.28599 | 0.28710 0.1093 0.1120

8 | 5.28588 | 0.2850: | 0.22601 0.0a12 0.0936

10 | 0.28583 | 0.28586 | 0.2867¢ 0.0764 0.0783

12 | 0.28580 | 0.28583 | 0.28664 0.0638 0.0654

14 | 0.28578 | 0.28580 | 0.28654 0.0533 0.0550

16 [ 0.28577 | 0.28578 | 0.28646 0.0446 0.0456

18 [ 0.28575 | 0.28577 | 0.28584 0.0373 0.0380

20 | 0.28575 | 0.28576 | 0.28581 0.0311 0.0317

22 | 0.28574 | 0.28576 | 0.28579 0.0260 0.0256

24 | 0.28574 | 0.28575 | 0.28577 0.0217 0.0219

26 | 0.28574 | 0.28575 | 0.28577 0.0181 0.0181

28 | 0.28573 | 0.28575 | 0.28576 0.0150 0.0149

30 ] 0.28573 | 0.28575 | 0.28575 0.0125 0.0122

IV. CONCLUSION

The reduced order numerical technique is obtained for the solution of
the nonlinear algebraic equations of the output feedback control problem
of singularly perturbed systems. It brings a considerable reduction in the
size of required computations and makes the given problem numerically
well defined. In addition, having obtained the reduced order problems, it
can be easier to find a good initial guess F© and to handle the problem of
nonuniqueness of the solution of (6)-(8)—they represent the necessary
conditions only. A similar type of numerical technique can be developed
for the other class of small parameter systems—the weakly coupled
systems. Study in that direction is underway.
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On Optimal Control Law Implementations for
Exponential Performance Index

W. W. WILLMAN

Abstract—An alternate implementation is established, under certain
conditions, for a previously obtained solution to the linear-exponential-
Gaussian stochastic optimal control problem. This other implementation
allows the current control to be specified without using future values of
the measurement process parameters, which are often unavailable in
practice.

1. INTRODUCTION

Bensoussan and van Schuppen [1] have established a finite-dimensional
solution for a type of linear-exponential-Gaussian optimal control
problem, variants of which had been treated earlier by Jacobson [2],
Speyer et al. [3], and Whittle {4]. But this solution, unlike the familiar
one for the linear-quadratic-Gaussian case, depends on the use of future
values of the measurement process parameters to specify the current
control. which limits its value for applications. It is shown here that this
dependence can be eliminated. at lcast within certain limits, by using a
construction due to Speyer [5].

II. A ““LINEAR-EXPONENTIAL-GAUSSIAN"" PROBLEM

The stochastic optimal control problem in question is over the time
interval T = [0, #], with the linear dynamics

dx=(Fx+ Bu)dt+ Gdw; x(0) ~ normal (u,, Py),

linear measurement process

dy=Hxdt+R'*db; y(0)=0,
and exponential cost functional (to be minimized by the choice of control
law generating u from past y values)

J=E {pexp % x*(l.)Mx(t,)+El(x*Qx+u*Nu)dt

'
0
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