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A New Filtering Method for Linear
Singularly Perturbed Systems

Z. Gajic and M. T. Lim

Abstract—In this paper we present a new method which allows complete
decomposition of the optimal global Kalman filter for linear singularly
pertarbed systems into pure-slow and pure-fast local optimal filters
both driven by the system measurements. The method is based on the
exact decomposition of the global singularly perturbed algebraic Riccati
equation into pure-slow and pure-fast local algebraic Riccati equations.
An F-8 aircraft example demonstrates the proposed method.

1. FILTERING FOR SINGULARLY PERTURBED LINEAR SYSTEMS

Filtering problem of linear singularly perturbed continuous-time
systems has been well documented in the control theory literature
[1]1-[7]. In [1]-[3] the suboptimal slow and fast Kalman filters were
constructed producing an O(e) accuracy for the estimates of the state
trajectories, where a small positive singular perturbation parameter
¢ represents the separation between slow and fast phenomena. In
[4]-[7] both the slow and fast (local) Kalman filters were obtained
with an arbitrary order of accuracy, that is O(e*), where k stands
for either the number of terms of the Taylor series [4] or the number
of the fixed-point iterations [5] used to calculate coefficients of the
corresponding filters. It is important to point out that the local slow
and fast filters in [4]-[5] are driven by the innovation process so
that the additional communication channels are required to form
the innovation process. In the newly proposed scheme, these filters
will be driven by the system measurements only. In addition, the
optimal filter gains will be completely determined in terms of the
exact pure-slow and exact pure-fast reduced-order algebraic Riccati
equations.

Consider the linear continuous-time invariant singularly perturbed
system

1 = A1zt + Aszs + Grw:
ety = Asz1 + Aqxe + Gown (1)

with the corresponding measurements
y = Cizy + Caxa + w2 2)

where ;1 € R"® and z; € R"? are state vectors, wy € R and
we € R' are zero-mean stationary, white Gaussian noise stochastic
processes with intensities W1 > 0 and W2 > 0, respectively, and
y € R' are the system measurements. In the following 4;, G;, C;,
1 =1,2,3,4, 5 = 1, 2, are constant matrices. We assume that
the system under consideration has the standard singularly perturbed
form, [10], that is, the following assumption is satisfied.

Assumption 1: The fast subsystem matrix A4 is nonsingular.

The optimal Kalman filter, corresponding to (1)~(2), driven by the
innovation process is given by

&1 = A1d1 + Asito + Ko
G-%’Z = A3Z1 + Aads + Kov
v=y—Cié — Coo 3)
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where the optimal filter gains K; and K are obtained from [4]

‘IX’] = (Ple + PZC;I’)Wz_lv
Ky = (ePYCT + PCTYW;! @)

with matrices Pi, P, and P; representing the positive semidefinite
stabilizing solution of the filter algebraic Riccati equation

AP+ PAT - PSP+ GW.GF =0 )

where

(6

s=c'wy'c, P= [Pl P }

Py %Pa

For the decomposition and approximation of the singularly per-
turbed Kalman filter (3) the Chang transformation [9] has been used

in [4]-[5]
M| _ [I—eHL —eH ||
Rl TR o

where L and H satisfy algebraic equations

AsL — As — €L(A) — AsL) =0

—HAy4+ Ao —eHLAs + 6(441 - AzL)H =0. 8)
The Chang transformation applied to (3) produces

By = (Ay — As LYy + (K, — HK2 — eHLE) v

€hy = (As + eLAs)fs + (Ks + eLK1)v. )
In the new coordinates the innovation process is given by

v=y - (Cl bt CzL)f]] - [Cz + G(Cl - CzL)H]ﬁz (10)
In [4]-[5], the approximate reduced-order filters of (9)—(10) were
defined as well.

Equation (8) is solvable and produces the unique solutions under
Assumption 1. Equation (5) produces the unique stabilizing solutions
under the following assumption.

Assumption 2: The subsystem matrices in the algebraic Riccati
equation (5)—(6) satisfy the standard stabilizability-detectability con-
ditions, [4]-[7].

II. A NEwW METHOD FOR FILTER DECOMPOSITION

In the decomposition procedure from the previous section, the slow
and fast filters (9) require some additional communication channels
necessary to form the innovation process (10); see Fig. 1. Here, we
propose a new decomposition scheme such that the slow and fast
filters are completely decoupled and both of them are driven by the
system measurements. The new method is based on the pure-slow
pure-fast decomposition technique for solving the regulator algebraic
Riccati equation of singularly perturbed systems [8]. We give an
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Fig. 1. (a) New filtering method; (b) old filtering method.

additional interpretation of the results of [8] which will be used in
this paper.
Consider the linear-quadratic optimal control problem of (1), that is

1 = A121 + Az + Biu

€ty = Asxy + Asxo + Bou
e \T (&

1= [7(E) o)+
0 ) o

where the control vector, v € R™, has to be chosen such that the

performance criterion, J, is minimized. The very well-known solution
to this problem is given by

dt, @>0, R>0 (11)

u=—-R'BTP.z = —Fiz; — Faa» 12)
where P, is the positive semidefinite solution of the regulator
algebraic Riccati equation

ATP.+P,A+Q-P.ZP. =0 13)

with

_ @ @2 _ —1 T

B= [B‘], P = {P” (14)

%2 ePE

EPZT
5P3r ’

The optimal regulator gains F1 and F5 are given by

F, = R°Y(BIP, + BT PL),

F, = R (eBf P, + BY Ps,). (15)

The results of interest that we need, which can be deduced from [8]
are given in the form of the following lemma.

1953
Lemma 1: Consider the optimal closed-loop linear system
&1 = (A1 — BiF1)a + (A2 — B1 )y
Eiz = (A3 - BzFl)ml + (A4 - B2F2).€E2 (]6)
then there exists a nonsingular transformation T
és Z1
=T 17
&)= @
such that
& = (a1 + as Pro)és
€€y = (b1 + b2 Pry)és 18)

where P, and P,y are the unique solutions of the exact pure-slow
and pure-fast completely decoupled algebraic Riccati equations

0=Psa; —a4Prs — a3 + Prsax P

0= Prfbl Ab4PTf —b3—|-Prfb2Prf. (19)

Matrices a;, b;, i = 1, 2, 3, 4, can be found in [8]. In this paper
we will give their expressions for the corresponding filter pure-slow
and pure-fast algebraic Riccati equations to be defined later. The

nonsingular transformation T is given by
T = (0, + O, 7). (20)

Even more, the global solution P, can be obtained from the reduced-
order exact pure-slow and pure-fast algebraic Riccati equations, that

1S
0 P, 0\’
PrfD<Ql+Qz[ 0 PrfD - @D

Known matrices Q;, i = 1, 2, 3, 4, and II,, II> are given in terms
of the solutions of the Chang decoupling equations [8].

P = (93 0 [i

A

The desired slow-fast decomposition of the Kalman filter (3) will

be obtained by producing a dual lemma to Lemma 1. Consider

the optimal closed-loop Kalman filter (3) driven by the system
measurements, that is

& = (A1 — K1Cy)&1 + (A2 — K1C2)#2 + Ky

edy = (A3 — K2C1)d1 + (Aa — KoCo)ds + Koy (22)

with the optimal filter gains K; and K> calculated from (4)—(6).
By duality between the optimal filter and regulator, the filter Riccati
equation (5) can be solved by using the same decomposition method
for solving (13) with

A— AT, Q-GeGwGT, F'=kK

Z=BR'BT - 5=CTw;C. (23)

By invoking results from [8], and using duality, the following
matrices have to be formed (see also [5])

o[ AT —cfw;en
e _—G1W1G{ —A ’
e[| A -CiW, 10, |
N Een eYel] -4, )
| A -Cfwy e
T -GG -4 ]
[ 4f —Cfw; e, ]
Ty = GGl L . (24)
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Note that on the contrary to the results from [8] where the state-costate
variables have to be partitioned as z = [x{mg]T and p = [p{epg ]T,
in the case of the dual filter variables, we have to use the following
partitions z = [z ez} ]” and p = [pfpI]”. Since matrices T1, T3,
T3, Ty correspond to the system matrices of a singularly perturbed
linear system, the slow-fast decomposition is achieved by using the
Chang decoupling equations

T4M—T3—EM(T1 —TQM):O

—N(Ts+ eMTe) + To + (T = TLM)N =0.  (25)

By using the permutation matrices dual to those from [8], (note E;
is different than the corresponding one from [8])

I, O 0 0]
_ 10 0 I.. O
Ei=1y Iz g 0 P
0 0 0 I |
Inn O 0 0 ]
10 0 I. O
Ee=16 1, o 26)
0 0 0 In]
we can define
My O] _ pr[I—eNM —eN
II = |:1.[3 H4:| = E, M I E;. 27
Then, the desired transformation is given by
T, = (0; + T2 P). (28)
The transformation Ty applied to the filter variables as
s -7 | &1
=T . 29
=] <>
produces
[n] T {Al - K,C1 Ar - KiCo
7'7{ =1, Az—KoCy Ay—KyCq

A TK
.17 [Z } +157 {ﬁ;]y (30)

7 <
such that the complete closed-loop decomposition is achieved, that is
i, = (a1 + asP)Tihe + Koy
ey = (bs +baPp) ity + K. @31

The matrices in (31) are given by

az a4 b3 4

K| _ s [K
5] =]

€ €

[ o] =@-man, [ 2]=@ram @

OZPsal —(I.4PS—0,3 +Psa2P3

0 = Pgby — ba Py — b3 + Psbo Py. (33)

A method for solving nonsymmetric Riccati equations (33) can be
found in [8]. It is important to point out that the matrix P in (28)
can be obtained in terms of P, and Py by using formula (21) with

P.s=P,, Py=PFf (34)
and 0y, o, Q3, Q4 obtained from
_ Ql Qz _ -1 I eN -7
= {93 QJ =B [—M I—eMN]E2 Y

A lemma dual to Lemma 1 can be now formulated.
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Lemma 2: Given the closed-loop optimal Kalman filter (22) of a
linear singularly perturbed system. Then there exists a nonsingular
transformation matrix (28), which completely decouples (22) into
pure-slow and pure-fast local filters (31) both driven by the system
measurements. Even more, the decoupling transformation (28) and
the filter coefficients given in (32) can be obtained in terms of the
exact pure-slow and pure-fast reduced-order completely decoupled
Riccati equations (33). A

We can now define the corresponding approximations (in the spirit
of the theory of singular perturbations, [4]-[6]) of the pure-slow and
pure-fast filters as

o (k N -
172 ) (agk) +agk)Ps(k))Tn£k) + A,gk)y

= (k N -
e = 07 4 889 PENT () 4 K9y (36)
where
a(k) agk) (k) (k) pr(k)
{ t (k)} = (I -, M™)
az’  ay
(B ) e
O —
PP =P+ 0(4), PP =Pr+0("),
M® = M4 0()
K _r [E®
L’§’°> S L e 37)

Note that in the expression for bgk) we can use M*~! and
Ték_l) since these matrices are multiplied by e so that we get
b = % + O().

A comparison between the new filtering method and the one
already known for linear singularly perturbed systems is given
in Fig. 1. It can be seen that the new filtering method allows
complete decomposition and parallelism between pure-slow and pure-
fast filters.

III. AN F-8 AIRCRAFT EXAMPLE

To demonstrate the proposed method we solve the same aircraft
example as the one done in [4]-[5]. The problem matrices are given

by [5]

4, _ [0-278386  —0.965256

1= 10.089833 —0.290700 |’

4, — [F0-074210  0.016017 |

>~ | 0.012815 —0.001398 |’

Ay = [—0.001815  0.005873 ]

® = | 0.002850 —0.009223 |’

A, = [0-030344  0.075024 |

* 7 |-0.075092 —0.016777 |’
o0 o Cy = 0 0.00500
YT 1 -3.236)° 777 [-0.003152 0.01302

Gy = {—46.62696}’ Go = [—18.210002}

7.858776 —45.049998
e = 0.025.

Wi = 0.000315, W, = diag[0.000686 40],
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We have obtained completely decoupled filters driven by the mea-
surements y as

-0.2023 ™ T | ~0.0958 0.0000

. [0.2755
s = 10,0903

—-0.9558] R {—0.2561 0.0018]?’,

—-1.2151

= {»2.9733

11831 1. [9.1085 0.0028
-5.1789 | T 1225077 0.0039 |V
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Strong Stabilizability of Systems with Multiaffine
Uncertainties and Numerator Denominator Coupling

Ganapathy Chockalingam and Soura Dasgupta

Abstract—This paper considers a set of proper transfer functions whose
numerator and der polynomial coefficients display dependent
multiaffine parametric uncertainties. It is shown that provided no mem-
ber transfer function has positive real pole-zero cancellations, all members
satisfy the parity interlacing property iff all corner members do the same.
Notice that while this implies that each member is strongly stabilizable,
it does not imply the existence of a single stable controller that stabilizes
the whole set. The paper also shows that whenever the numerator and
denominator polynomials lie in dependent polytopes, the task of verifying
the absence of positive real pole-zero cancellations can be accomplished
by checking the edges.

I. INTRODUCTION

An important question in Linear Systems Theory concerns the
conditions under which a plant is strongly stabilizable, i.e., can be
stabilized through a stable proper compensator [1], [2]. It is known
[11, [2], that proper plants are strongly stabilizable iff: a) they have
no unstable pole-zero cancellations and b) they obey the so-called
parity interlacing property (pip) defined below.

Definition 1.1: A rational transfer function obeys pip if between
every two positive real zeros (including those at infinity) of this
transfer function, there are an even number of positive real poles
(multiplicity included).

This paper concerns the verification of pip for a family of proper
transfer functions. The significance of this problem to adaptive and
robust control has been discussed in [3]. One of the questions posed
and answered in [3] concerns a family of strictly proper transfer
functions whose numerator and denominator lie in independent
polytopes. Under the assumption that each member of the family is
free from unstable pole-zero cancellations, [3] shows that the family
is pip invariant, i.e., all its members are pip iff the ratio of each
numerator corner with each denominator corner is pip. At the same
time, [3] also demonstrates through a counterexample that this corner
result fails to extend to the biproper case.

The present paper considers the same question as that addressed in
[3], but with respect to a parameterization that enjoys a much wider
range of applicability than what is considered in [3]. Specifically, we
consider here the family of transfer functions defined in (1.1)—(1.4)

T(s, K) = {t(s, k) = 28 E) ke K (s, k) € P(s, K),

(s, k)
a(s, K) € Q(s, k)}, R
P(s, K) = {p(s, E)=s"+ Xn:pi(k)s"_iWk € K}, (1.2)
=1
Q(s, K) = {q(s, B)=s" 4+ qi(k)s" T |Vk € 1{} (1.3)
=1
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