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Technical Notes and Correspondence

The Recursive Reduced-Order Numerical Solution of the
Singularly Perturbed Matrix Differential Riccati
Equation

T. GRODT AND Z. GAJIC

Abstract—Under stabilizability-observability conditions imposed on a
singularly perturbed system, an efficient numerical method for solving
the corresponding matrix differential Riccati equation is obtained in
terms of the reduced-order problems. The order reduction is achieved via
the use of the Chang transformation applied to the Hamiltonian matrix of
a singularly perturbed linear-quadratic control problem. In addition, an
efficient numerical recursive algorithm with the quadratic rate of
convergence is developed for solving algebraic equations comprising the
Chang transformation.

1. INTRODUCTION

A differential Riccati equation of a singularly perturbed system [1] is
given by

—-P(t)=P()A+ATP()+ Q- P()SP(t), P(T)=F )
where
A A, 0 o
_ _ 1 2
A= Ay A, ,Q~|:Q;. Q;]’QZO
€ €
z
s =2
F,  €eF;
S=BR-'B"= 1l r=| 7
Z_T S, [fF;' eF; » R>0
e €

are n X n constant matrices and e is a small positive parameter. The
presence of a small parameter € makes this problem numerically ill-
defined, producing a so-called stiff numerical problem (huge slope at
terminal time) [2]. In order to overcome this difficulty a Taylor series
expansion approach, with respect toa small parameter €, has been taken in
[3] leading to a family of well-defined reduced-order problems. However,
the Taylor series expansion method is not recursive in its application.
When one is interested in a high degree of accuracy, or when € is not very
small, the size of computations required can be considerable. In such
cases, the advantage of using the series expansion method (the important
theoretical tool) is questionable from the numerical point of view, and
sometimes (see Example 2) that method is almost not applicable.

In this note we will exploit the known Hamiltonian form of the solution
of the Riccati equation [4] and a nonsingular transformation due to Chang
[5] in order to obtain an efficient recursive numerical method for solving
(1). The Chang transformation is used to block diagonalize the Hamilto-
nian, so that the required solution is obtained in terms of reduced-order
problems. In addition, an efficient Newton type algorithm (with the
quadratic rate of convergence, that is, 0(e?*)—where k is a number of
iterations) is developed for solving algebraic equations comprising the
Chang transformation.
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II. HAMILTONIAN METHOD FOR SOLVING THE SINGULARLY
PERTURBED MATRIX RICCATI DIFFERENTIAL EQUATION

The solution of (1) can be sought in the form
P@®)=M()N"'(t) @
where matrices M(7) and N(¢) satisfy a system of linear equations [4]

M(t)y= -ATM()-QN(), M(T)=F 3)

N(t)= - SM(t)+AN(), N(T)=1I 0))

and N(?) is assumed to be nonsingular for v, ¢ < T. This approach is
considered as the most efficient numerical method for the solution of the
differential Riccati equation [6], where the invertibility problem of N(¢) is
solved by performing a reinitialization along the path 1, < t < T
whenever N(¢) is close to being singular.

Knowing the nature of the solution of (1), which is properly scaled as

(11, 13}
[P0 PO] [ R R
P)= [ , P(T)=F= I:eFZT er] )

ePI(1) eP3(t)

where dim Py, = ny X n;, dim P3 = np X my, ny + ny = n (n,-slow
variables, n,-fast variables, [1]) we introduce compatible partitions of

M(¢t) and N(¢) matrices
_ | M) N9
» NO= [N;(t) M(r)] - ©

_| M@® Mz(t)w
MO= [M;(t) M0
The invertibility of N(¢) for every ¢, t, = t < T, plays an important role
in the proposed method. The condition under which N(?) is an invertible
matrix is stated in the following lemma.

Lemma: If the triple (A, B, VQ) is stabilizable-observable, then the
matrix N(¢), with N(T) = [ is invertible for any £ € (%, 7).

Proof: By using the dichotomy transformation introduced in [7],

M K P M

HEHIH
M| _ | (kK-P' —(K-P)'P M g
Nl | -(k-P)' I+(K-P)~'P N ®

where P and K are unique positive definite and negative definite solutions
of the algebraic Riccati equation corresponding to (2), the system (3), @
can be transformed in

FCA G

with terminal conditions

M(T)=(K-P)"'(F-P)
N(T)=I+(K-P)"\(F-P)=I+M(T).

It is known that (4 — SK) is an unstable matrix and that matrix (A —
SP) is stable [7]. The solution of (9) is given by

M@py=eA~SK=TI}(T)

N(e)y=eA=SP-DR(T). (10)
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Using (7)-(10) it can be easily shown that
N(t)y=eA=SPU=T)[[  (J— SP-KN-T)( g _ P)-1(P~ F)N(T),

that is

N(@)y=o(t-T)N(T) an
with obvious definition of ¢(¢ — T'). Since ¢(¢ — T') plays the role of the
transition matrix of N(¢), and by very well-known facts is nonsingular,
the regularity of N(¢) is determined by N(7') only. Thus, having chosen
N(T') as an identity will assure the nonsingularity of N(¢) for any ¢ < T,
and prove the given lemma.

Partitioning (3) and (4), according to (6), will reveal a decoupled
structure, that is, equations for M;, M3, Ny, and N; are independent of
equations for M,, My, N,, and N, and vice versa. Introducing a notation

_ | M | M _ | M, | M.
o[ ] o[ ] w ] o-[]
_AT _Ql _AT _Q
T= ' = 3T
l [—Sl Al] ’ TZ [_Z Az]
T;—[—AZT -Ql], TF[—AI —Q;]
-zT A, -8 A

and after doing some algebra, we get two systems of singularly perturbed
matrix equations

13)

U=T\U+T,V .
_ .
FT
U(T)= E], wn=r2 (14)
I 0
- | .
V=T U+T,V
X=TX+T,Y
[ <F: [ 7, ]
X(T)= Eﬂ, ="} (15)
0 I
eY=T,X+T,Y.

Note that these two systems have exactly the same form and they differ in
terminal conditions only. From this point we will proceed by applying the
Chang transform to (14) and (15). This transformation is defined by [5]

J= I-e¢eHL —eH
B L I

(16)
and
I= [—IL I—G:II,H] 1n
where L and H satisfy
T.L~Ty—el(T,~ T,L)=0 (18)
—~H(Ty+eLTy)+ Ty+e(Ty - T,L)H=0 19)
applied to (15) and (16) will produce
O=(T,-T,L)0, O(T)=(-eHLYU(T)~eHV(T) 20)
eV=(Ti+eLTy)V, V(T)=LU(T)+V(T) ey
X=(1,-T,L)X, X(T)=U-eHL)X(T)—eHY(T)  (22)
eVP=(To+eLTy) P, P(T)=LX(T)+Y(T). 23)
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Solutions of (20)-(23) are given by

O(ty=eM-DLe-Dg(T) (24)
V(t)zel/e(T‘r(»eLTz)(tAT) I7(T) (25)
X(@t)=eT1-T2LN-T)I Z(T) (26)
}‘}(t):el/e(T4+eLT2)(l—T) Y(T) 27

so that in the original coordinates we have
U@)=e T~ 2DU-D(T) + e HeV«Ta+LTIU-TIp(T)  (28)

V()= —Le\TIi=T2D-DO(T) + (I— e LH ) eV (Ta+ LT -T) P(T)

(29)

X()=eTi-T2DC-T) R(T) + e HeV/eTa+ LT ~T) P(T) (30)
Y(t)= - LeTt~ 2D =D R(T) 4 (- eLH)eV/«Ta+ LT -T) p(T),

3D

Partitioning (28)-(31).according to (12) will produce all components of

matrices M(¢) and N(¢), that is
. [0 | _ [ %0
20 | _ 1) | _
_Mm]‘[&m]‘””

mo | _[uvo]_

[Mm_‘[wm]‘wm

Lo | [ e

¢ M) =[”m]=wo <M =[xm]‘n0
Va0 : %o | =

No) : Nitt)

so that the required solution of (1) is given by

mp[um mm][wn&m]{
eVi(t) eYi (D) V(t) Ya(@)

Thus, in order to get the numerical solution of (1), that is P(¢), which has
dimensions n X n = (1, + n) X (n; X ny), we have to solve two simple
algebraic equations (18) and (19) of dimensions of (2n, X 2n;) and (2n,
X 2m,), respectively. The existing numerical algorithms for solving (18)
and (19) can be found in [8] and [9]. Then, two exponential forms exp
[(Ty — ToLY¢ — T)] and exp [1/e(Ty + eLT))(t — T)], have to be
transformed in the matrix forms by using some of the well-known
approaches [10]. Finally, the inversion of the matrix N(f) has to be
performed.

(32)

III. NEWTON METHOD FOR SOLVING ALGEBRAIC EQUATIONS
COMPOSING THE CHANG TRANSFORMATION

The algebraic equations (18), which are weakly nonlinear equations
and (19), a linear Lyapunov type equation, play the crucial role in the
developed method and a yery important role in the linear theory of
singular perturbations [1]. The existing methods for solving (18) and (19)
are recursive type algorithms with a rate of convergence of 0(e*), where k
represents the number of iterations [8], [9]. In this section a new method
for solving (18) and (19) with a quadratic rate of convergence, that is
O(ezk), will be developed. This method is based on the Newton type
recursive scheme. It is a very well-known fact that the Newton method
converges quadratically in the neighborhood of the sought solution and
that its main problem is in the choice of the initial guess. For the algebraic
equation (18) the initial guess is easily obtained with the accuracy of 0(e),
by setting e = 0 in that equation, that is

LO=T 'T;=L+0(e). 33)
Thus, the Newton sequence will be 0(e2), 0(e?), 0(e®), - - -, O(ezk) close to
the exact solution, respectively, in each iteration.

The Newton type algorithm of (18), can be constructed by setting L ¢+
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= L® + ALY and neglecting O(AL)? terms. This will produce a
Lyapunov type equation of the form

D(“"L(.+1)+L(i+nD“) =Q

2

(34
where
DV =Ti+eLOT, Dy = —e(Ti=ToL™)

QW=Ty+eLWT,LY,  i=0,1,2, "
with the initial condition given by (33).

Having found the solution of (18), up to the required degree of
accuracy, one can get the solution of (19) by solving directly a Lyapunov
equation of the form

HODY 4 DYHO =T, 35)
which implies H?® = H + 0(e?).

Note that the existence of the solutions of (18) and (19) are guaranteed
by the nonsingularity of 7. The sufficient condition for the convergence
of the algorithm (34) is given by [11]

[ALO| <[ QO =|Ts+eLOTLLY (36)
which is almost always satisfied, except for some special cases, for
example, T3 = 0 and T, = 0, which correspond to a system already in a
block diagonal form.

One has to point out, that contrary to previously used algorithms for
solving (18), (19), (8], 9], which require recursive solution of linear
equations, in the proposed method one is faced with the recursive solution
of Lyapunov equations. Thus, for the price of speeding up the
convergence from 0(e¥) to O(e 2 slightly more computations have to be
performed per iteration. However, the size of computations required is of
the same order, that is of 0(n3) for both the solution of the Lyapunov and
solution of linear equations, so that the comparison of the rate of
convergence of these two algorithms plays the dominant role. In order to
demonstrate the efficiency of the proposed algorithm, we have run a fifth-
order example. Matrices Ty, T, T3, and T, are chosen randomly
(standard deviation equal to 1, and mean value equal to zero) such that 7,
is the invertible matrix. The simulation results for different values of a
small parameter are given in Table L. It can be seen that the Newton
method is much more powerful than the successive approximation
recursive scheme [8], 19]. In Table II we have shown the propagation of
the error per iteration when ¢ = 0.2 for the Newton method.

Example 1:

T,
-2.014 -0.058 0.499 0.585 1.372
1.366  —0.805 0.320 0.548 0.950
-0.952 0.747 0984 —1.816 —1.563
—1.241 0.758 —1.126 0497 -0.131
0.663 —0.021 —0.640 —0.296 1.375
Ty
-1.496 —0.666 0.699 1.262 -0.731
1.343 0.563 0.812 -1.300 -0.616
—0.521 -0.962 -0.141 -1.159 0.939
1.071  —0.943 0.017 0.696 1.295
1397 —1.436 0.843  —1.488 0.524

IV. NUMERICAL SOLUTION OF THE SINGULARLY PERTURBED MATRIX
DIFFERENTIAL RICCATI EQUATION

The Hamiltonian method developed in Section II will be used for the
numerical solution of the singularly perturbed matrix differential Riccati
equation. Since the matrices M(f) and N () contain unstable modes of the
Hamiltonian also [4], then even though a product M(¢) and N~ I(¢) tends
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TABLE 1
DEPENDENCE OF THE NUMBER OF ITERATIONS ON ¢
number of required

iterations such that
IILml) L@ o < 1077

‘ Newton Successive
method approximations

0.3 6 *

0.2 5 *

0.1 4 *

0.04 4 19

0.02 4 11

0.01 3 7

0.001 2 4

*

does not converge

TABLE 11
PROPAGATION OF THE ERROR PER ITERATION FOR A CONSTANT VALUE
OF ¢ FOR THE NEWTON METHOD

e€=0.2 . .
+1
ram R A
0
1 2.40745 x 10
2 7.80653 x 107+
© 3 4.21800 x 107°
4 0.88748 x 1074
5 0.17808 x 1075

to a constant as ¢ — oo, the inversion of the nonsingular matrix N(Z),
which coritains huge elements, will hurt the accuracy.

The reinitialization version of the Hamiltonian approach, which leads
to the known Kalinan-Englar method [4], is considered as the most
efficient numerical method for the solution of the general matrix
differential Riccati equation [6]. The reinitialization technique applied to
the results of Section I will modify formulas (3), (14), and (15),
respectively, in

M(kAty=P(kA?)

UkAf) = [P'(’;A’)] . V(kAD)= [PZT(’(;A’)] 38)

37

X(kAf)= [EP ’((f“)] . Y(kAf)= [P ’(’;A’)] 39

T,
-1.796 —-0.009 —0.840 1.819 0.794
0.158 0.467 1324 -0.123 0.629
—0.433 0.248 —1.181 —1.426 0.297
—1.599 0269 -0.133 -0.845 -0.769
1.967 —0.565 0.776 1.419 -0.450
T,
~1.367 -0.885 —-0.506 -—1.174 1.435
0.133 1.319 1.244 0.892 -1.221
—0.296 1.333 1.002 -0.927 —0.79%4
0.780 1.358 0.607 -0.511 0.671
—0.999 0914 -1.320 -0.556 —1.135

where k represents the number of steps and Af is an integration step. This
will introduce slight modifications in formulas (20)-(31), namely, instead
of the final time T, a discrete time kKAt has to be used. These changes can
be implemented very easily from the programming point of view.
Example 2: The recursive solution of the differential matrix Riccati
equation of singularly perturbed systems is demonstrated on the seventh-
order model of the synchronous machine connected to an infinite bus [8].
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TABLE III
SIMULATION RESULTS FOR THE ELEMENT P, ,(f)
time = €| 0.1 0.5 1.0
(exactil 1 0699 | 6.6483 | 9.6600
(12) M " "
Rt '
(11) M "
pl 9.6599
(10) "
pil 1.9698 9.6601
p {9 1.9700 | 6.6484 | 9.6598
p(8 1.969 | 6.6482 | 9.6602
Pl . : .
p{? 1.9703 | 6.6487 | 9.6603
3 . . )
2 {® 1.9694 | 6.6471 | 9.6572
©
p! 1.9703 | 6.6500 | 9.6671
o () N
et 9720 | 6.6496 | 9.6477
p{3 1.9537 | 6.6488 | 9.6901
el2 . . .
p{2 2.0603 | 6.6520 | 9.5417
e 2 ) . .
(D 1.9847 | 6.7926 | 9.8624
p{9) 1.9742 | 7.0256 [10.4610
The system matrix A is given by
—0.58 0 0
0 ~1. 0
0 0 —5.
A= 0 0 0
-0.14 0 0.14
0 0 0
—173. 66.7 ~116

Remaining matrices are chosenas Q = I, F = 0, S,, S,, and Z have all
entries equal to 1. The eigenvalues of 4 are —8.53 + j8.22, —3.93, —
0.362 + j0.56, —0.86 + j8.37. Two fast and five slow variables are
separated by the choice of the small singular perturbation parameter ¢ =
0.4 (roughly the ratio of 3.93 and 8.53). Simulation results for the element
Py\(2) are given in Table III. It can be seen that in order to get the
accuracy of four decimal digits it takes 12 iterations (the successive
approximation method was used for solving algebraic equations compos-
ing the Chang transformation—in order to be able to compare the
proposed recursive scheme to the power series expansion method, since
both methods are producing the same order of accuracy). This result is
expected since 0(0.4'%) = 10-3. That means if the power series expansion
method had been used, in order to get the same accuracy, it would have
required 12 terms, that is [3]

TR _
P 9= P+ PP ()} +0(e), 7=
m=0 :

where
P@ P
Pmn= )T pm
m m
P () eP()
(m) (m)
—— P (1) eP, (D
Py = mT (my
esz (1) P, ('r)
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It is shown in [3, pp. 21, formula 32] that the right-hand sides of
differential equations for P(”(r), P(”(r) and P‘“(-r) contain, respec-
tively, 7, 23, and 22 terms, each con51st1ng of a product of two or three
matrices. Thus, the size of computations required for only an 0(e?)
accuracy is already enormous. The complexity of the right-hand side of
differential equations for P{")(7) grows extremely quickly with the
increase of m so that this nice theoreucal method is not convenient for the
practical computations. For an O(e '?) accuracy, the right-hand sides of the
differential equations for the power series expansion method will contain
hundreds or even thousands of terms, and Example 2 cannot be efficiently
solved by using that method.

All simulation results of this note are obtained by using the software
package L-A-S for the computer aided control system design [12].

V. CONCLUSIONS

The recursive method for the numerical solution of the singularly
perturbed Riccati differential equation proposed in this note is very
important in two cases: a) e is not very small; b) high order of accuracy is
required. The first case represents one of the main problems in the
modern numerical analysis of the singularly perturbed problems. It was
pointed by P. Hemker [13] that ‘‘numerical analysis of singular
perturbation problems mainly concentrates on the following question:
how to find a numerical approximation to the solution for small as well as
intermediate values of e, where no short asymptotic expansion is
available. Or, more general, how to construct a single numerical method
that can be applied both in the case of extremely small € and for larger
values of e, when one wouldn’t consider the problem as singularly
perturbed any longer.”’ Results reported in this note resolve that problem
in the case of the singularly perturbed Riccati differential equation.

-0.27 0 0.2 0

0 0 1. 0

2.1 0 0 0

0 337 0 0
-0.2 -0.28 0 0

0 0 0.08 2.
40.9 0 -66.7 -16.7
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