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Lyapunov Iterations for Optimal Control
of Jump Linear Systems at Steady State

Z. Gajic and 1. Borno

Abstract—In this paper we construct a sequence of Lyapunov algebraic
equations whose solutions converge to the solutions of the coupled
algebraic Riccati equations of the optimal control problem for jump linear
systems. The obtained solutions are positive semidefinite, stabilizing, and
unique. The proposed algorithm is extremely efficient from the numerical
point of view since it operates only on the reduced-order decoupled
Lyapunov equations. Several examples are included to demonstrate the
procedure.

I. INTRODUCTION

Systems of coupled Riccati equations occur in several classes of
optimal control problems such as jump linear control systems [1].
In this class of control problems, a set of strongly coupled Riccati
equations is to be solved to determine the optimal feedback gains.
A homotopy algorithm for solving systems of coupled differential
Riccati equations of jump linear systems is presented in [2]. This
method is computationally expensive and, hence, undesirable for solv-
ing algebraic equations of the corresponding steady-state problem.
In [10], a method based on successive approximations led to the
problem of solving a set of coupled differential Lyapunov equations.
It can be easily observed that at steady state the method of [10] is
in fact the Newton method for solving the corresponding algebraic
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equations. The Newton algorithm given in terms of the coupled
algebraic Lyapunov equations is also presented in [3]; however, while
it is known for fast convergence, it suffers from its strong dependence
on the proximity of the initial guess to the actual solution.

In this paper, we introduce a new algorithm for solving coupled
algebraic Riccati equations of jump linear systems that converges to
the optimal solution regardless of the proximity of the initial guess
to the actual solution in a relatively small number of iterations. In
addition, the algorithm is extremely efficient from the computational
point of view since it operates only on the reduced-order decoupled
algebraic Lyapunov equations.

II. PROBLEM FORMULATION
Consider a linear dynamic system described by

2(t) = A(r)z(t) + B(r)u(t), z(to) = Zo 1)

where z(t) is n-dimensional vector of the system states, u(t) is a
control input of dimension m, A and B are mode-dependent matrices
of appropriate dimensions, and r is a Markovian random process that
represents the mode of the system and takes on values in a discrete
set ¥ = {1,2,---, N}. The stationary transition probabilities of the
modes of the system are determined by the transition rate matrix
given by

w11 T2 TIN
w21 T22 T2N

= . . . . . 2)
N1 7TN2 TNN

The matrix II has the property that m;; > 0,7 # j and my; =

— " mij, [4]. The performance of system (1) is evaluated by the
J#

criterion

o0

J=E / [+ hams(e) + u (OR(r)u(®)] delto, 2(to), (to)

0

3)
where Q(r) > 0 and R(r) > 0 for every r. The optimal feedback
controls of (1)-(3) are given by [1]

uOPt(t): _RI:IBI{ka(t)$ k= 1927"'3N (4)

where the subscript k indicates that the system is in mode 7 = k,
that is

A(r = k) = Ak, B(r=k)= Bs
Qr=k=Q: Rr=Fk=R ®
and P;s, k=1,2,---,N, are the positive semidefinite stabilizing

solutions of a set of the coupled algebraic Riccati equations

AR P + PiAx — PiSk P + Qx

N
+ Z ijf)jzoyk:172a”'7-zv (6)
J=1,3#k

where

1 —
Ax = Ar + §7rkkI, Sk = BkRk IBZ. @)

Equations (6)—(7) are nonlinear algebraic equations. The existence
of positive semidefinite stabilizing solutions (stabilizable with respect
to Ay) of these equations is established in [10] (see also [1] and [8])
under the following assumption.
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Assumption 1: The triples (A:, Bi,/Qi), i = 1,2,,---,N are
stabilizable-detectable and

max
i=1,---,N
oo
Z;;f Amaz /e(Ai+BiI‘.'+%1rii1)Tt x e(A¢+Biri+%1fﬁI)!dt
0
<1 ®)

where I'; are arbitrary real matrices.

Condition (8) is a consequence of the fixed point iterations [8],
[10] used to establish the existence and uniqueness of the solutions of
(6)~(7). It is “crucial...and its conservativeness is difficult to evaluate”
[1]. Note that in [11] the notion of stochastic stabilizability is intro-
duced to replace both condition (8) and deterministic stabilizability
of the pairs (A;, B;). It is important to notice that Assumption 1
guarantees the stabilizability of the matrices Ay by the optimal
closed-loop feedback gains. It is very natural to assume that the
optimal feedback controls stabilize the actual systems, [1], that is,
-to impose the additional assumption.

Assumption 2: The system matrices Ax, k = 1,2,---,N are
stabilizable by the optimal feedback controls (4).

III. MAIN RESULT

Assume that all conditions in Assumption 1 are satisfied, that is,
assume that the unique stabilizing P, > 0, k = 1,2,---, N exist.
We propose the following algorithm (in terms of decoupled algebraic
Lyapunov equations) for solving the set of coupled algebraic Riccati
equations (6)—(7).

Algorithm:

N\T . . .
(Ax = ScPP) PRI 4 I (Ak - 5:P0)
- _P,Ei)skplgi) _ QS)
with stabilizing P{” > 0,k =1,2,---, N ©

where

N
QY =Qr+ 3 me; P > 0.

J=1.j#k

(10)

Thus, the solution of the n x Nth order nonlinear coupled algebraic
Riccati equations will be obtained by performing iterations on N
decoupled linear algebraic Lyapunov equations each of order n.
Note that by (7) and Assumption 1, the triples (A, Bk, VQx) are
stabilizable-detectable. In the following it will be shown that each
sequence of solutions of (9)—(10) is nested between two sequences

KO <PO <PO Vi, vk 1)

with {K,E”} monotonically converging to Pr from below, that is

Kv;(CO)SK'I(cl)S""ng’ k=1,2,"',N (12)

and the sequence {P,S")} monotonically converging to Px from
above, that is

PO >pPM >... > Pp. (13)
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Proof of Convergence

Lower Bounds: Consider the following sequences of the standard
algebraic Riccati equations

AEK,?‘_H) + K—,(ci+l)Ak _ K’(ci+l)SkK’(ci+l) + Qii) =0

N
O=Q+ S myKY, with K =0, Vk. (14)
J=1,5#k
Note that by Assumption 1 the unique positive semidefinite stabilizing
solutions of (14) exist for each iteration index ¢. For ¢ = 0, we have

ATE®D + KV A - KVS KD +Qu=0, k=1,2,---,N.
(15)
By Assumption 1 the required positive semidefinite stabilizing so-
lutions Px,k = 1,2,---, N of (6) exist. Using the known results
on comparison of the solutions for the standard algebraic Riccati

equations, (for example, [6]-[7]), it follows from (6) and (15) that

N
Qe<Qu+ Y. myP=> P> KD
j=1,j#k

(16)

For : = 1, we have
ATED + KD Ak - KPScK® + Qi
N
+ Z 7I'ij§1) =0,
j=1,5#k

and since by (16)

k=12,---,N (17)

N N
Ok + E i K < Qi+ Z ks Pj

(18)
J=1,5#k i=1,j#k
it follows that P, > K ,(f). Also, due to the fact that
N
Q<Q+ > mKY (19

i=1,5#k

we have K ,(f) >K ,(Cl). Continuing the same procedure, we get from
(14) monotonically nondecreasing sequences of positive semidefinite
matrices bounded above by the solutions of (6), that is, by Pk

0=K9<KM<K®<...<P, k=12,---,N. (20

These sequences are convergent and their limit points are Py, k =
1,2,---, N [8]-[9].

Remark: Note that the recursive scheme (14), given in terms of the
standard Riccati equations, can be used also for numerical solution
of (7).

Now we show that the sequences of positive semidefinite matrices
generated by the proposed algorithm, {P,Si) , are bounded from
below by the sequences of positive semidefinite matrices generated
by solving (14), that is, by {K,(;')}. From (9)~(10) and (14) we get

(A - ScBP)" (P - (V)
+ (P - K{*) (A - SuPP) =
- i Tkj (P}i) - K;i))

J=Lj#k
_ (Pls.') _ K;(:H))Sk (Plii) _ K](ce+1))
k=1,2,---,N; i=1,2,3,---. @n

Since K =0 and P{” >0, Vk = P{¥ — K >0, it follows
that the right-hand side of (21) is negative semidefinite for ¢ = 0 so
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that we have P,Sl) - K,gl) > 0, Vk. To establish that the matrices
A - Sk P,g') are stable for every k£ and i, we apply the stability

proof technique from [6, pp. 1326-1327] to our problem. Rewrite
(21) in the form

(Ak _ SkPIE.‘H))T (P‘Si+1) _ K}(Ci+l))
+ (PIS.'+1) _ K)(:'H)) (Ak _ SkP£i+1)) —
- $ ()

J=1,5#k
_ (P;Eiﬂ) _ K,(:H))Sk (P’E.'+1) _ K’(Ci+1))
_ (PIE.'+1) _ PIEs))Sk (P£i+1) _ P,gi))’
k=12,---,N; 1=1,2,3,---. (22)

The required stability proof technique from [6] is done by contradic-
tion. Let us assume that the matrices Ax — SkP,EO) are stable, but

the matrix Ax — SkP,El) is unstable for some k. Then, there exists
an eigenvalue A such that

3k such that (Ak - skP,§1>)z =2z, #0, Re{A} >0. (23)
Using (23) in (22) we get
22" Re{\} (P - K" ) = —" M{"a,
M,(cl) > 0, for some k. (24)

Since the left-hand side of (24) is positive semidefinite, the equality
in (24) is valid only for z7 M{"z = 0. From (22) we have

"Mz =2"[(P" - PV)5:(P® - P)

+ (P - k) su (P - k1Y)

+ i (PO - )z

i=1,i#k

(25)

which implies

7 (P,ﬁ” - P”)s: (P,E" - P,EO)):c = 0,5 > 0, for some k

(26)
or

Sk (P,gl) - P,EO))J: = 0, for some k.

Thus, we have obtained

@n

(Ak - skP,§°>)z = (Ak - 5eP{" ) = Az, # 0, for some k
(28)

which is a contradiction due to the initial assumption that the matrices
Ay — 5k P,EO) are stable for Vk so there is no such a k such that any
of the matrices Ay — Sk P,El) is unstable. We have already established
from (21) that P,Sl) - K ,(cl) > 0,Vk. Using this fact in (22) we see
that the right-hand side of this equation is negative semidefinite, that
is, —zT M®z < 0. Repeating steps (23)~(27) for i = 1, it follows
that Ax — SkP,SZ) are stable matrices for Vk. Continuing the same
procedure for ¢ = 2,3,---, we conclude that

Ak—SkP,ﬁi) stable = PIE‘“) _ Kl(ci+1) >0

= Ak — Sk PU'HY stable Vi, Vk. (29)
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Thus, the sequences {P,Ei)} are bounded from below by the

sequences { K| ,(c‘) ,Vk, Vi.
Upper Bounds: In the following we establish that the sequences
P,E') have the upper bounds, that is, the sequences {P,E’)} >

P,gi) exist. In addition, these sequences (representing the upper
bounds) monotonically converge from above to the required solutions
of (6). Subtracting (6) from (9) we get

(Ak _ Skplg.‘))T (P,Ei+1) _ Pk)
+ (p;"+1> - Pk) (Ak - Skp,g")) =

N
- Z ij(P}i)—.Pj)

J=L,i#k

- (PO - P)Sk(PO - P). k=12, N (30)
If for some iteration index ¢ we have that
PO — P >0, for Vj 31

which can be obtained by choosing PJ(O) > P;,Vj, then the right-
hand side of (30) is negative semidefinite so that

P(tD > Py, Vk=1,2,--,N,  Vi=12---.  (32)

Even more, the sequences of matrices {P,EH'X)} obtained from
the corresponding algebraic Lyapunov equations are monotonically
convergent with P representing their limit points. To show this, first

observe from (9)—(10) that the following holds
. T . .
(Ak _ SkP,ﬁ'“)) (P;E'+2) _ P,ﬁ'“))

+ (Plgi+2) _ P’EH-I)) (Ak _ SkPIEi+1)) _

i Tk (P](‘) - Pj(i+l))
J=1,5#k
+ (PS) _ P]&H—l))sk (Plgi) _ PIE.'+1))

k=1,2,---,N;i=12,3,---. 33)

If in addition we impose

PO —PM >0, vj (4)

then P,E‘J"?) - P,Ei+l) < 0,Vi,Vk so that monotonicity is obtained,
that is

PO > PV >...>pit) > pitD > g (39)

Sequences (35) are convergent [6]-[9]. Thus, the crucial point is
condition (34). Consider now the sequences of positive semidefinite
matrices generated by the proposed algorithm (9)«(10) with the
stabilizing matrices P,SO) taken “arbitrarily large” such that condition
(31) is satisfied. This can be always achieved by the stabilizability
assumption. The required sequences are given by

3 T_—4_ — AN r
(Ak - 5, P piFY 4 piFy (Ak - 5P
= POSPPY - QP P® > P, k=12-.N (36)

where
QSJ) =Qx+ Z ﬂij}') > 0.
j=1,j#k

€0

Note that the sequences {P,Ei) and ﬂP,E")} are obtained from the
same algorithm (9)—(10), and they only differ in the initial points
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P” < P It can be easily shown by subtracting (36)—(37)
from (9)(10) that for any 0 < P,EO) < P,§°> the sequences
{P,si)} are dominated by the sequences P,E‘) , that is, the latter
sequences represent the upper bounds for the former ones so that the

corresponding inequalities (11) are satisfied. The sequences obtained
from (36)—(37) must also satisfy condition (34). For i = 0, we get

from (36)
T
(Ax - 5. P) (P - B
+ (P - PO (A - 5.P0)
= PV5: P®) — P Ay
~ AXP” - @,

k=1,2,---,N.

(38)

Condition (34) will be satisfied if the right-hand side of (38) is
positive semidefinite. It is shown in the Appendix in Lemma 1
that the right-hand side of (38) is positive semidefinite for P >
P, so that both conditions (31) and (34) are satisfied. Of course
the algorithm (36)—(37) will converge to the desired solutions of

(6)(7), but very large values of P,EO) might slow the convergence
process. Thus, the sequences obtained from (36) have only theoretical

importance to establish the upper bounds for the sequences {P,E‘)}
since 0 < P® < PO, vk imply 0 < P < PO, vi,Vk. We
use the sequences {P,E')} for the actual computations. Note that the

sequences {P,gi)} are nested between two sets of sequences
{K,ﬁ‘)} < {P,ﬁ‘)} < {P,Ei)}, Vi, V.

Since both sequences {K,@} and {P,Ei)} converge to the required
solutions of (6) so do the sequences {P,Ei) },Vk. Initial conditions

for {P,E”},Vk can be chosen as arbitrary positive semidefinite
stabilizing matrices, P > 0.

IV. NUMERICAL EXAMPLE
Example 1: The following example was considered in [2]

Ay = diag(~2.5,-3,-2), B, = diag(\/().—S, 1, 1),
Q1 = diag(25,1,11)

Ap = diag(—-2.5,5,5), By = diag(\/fﬁ, 1,«/@),
Q2 = diag(37.5,704, 34.5)

A1 = diag(2,-3,-2), Bz = diag(m, 1, 1),
Qs = diag(10,16,21)

Ri=Ri=Ry=1,

P11 = =3, p12 = 0.5, p13 = 2.5,

P22 = P33 = P21 = p23 = p31 = p32 = 0.

Using the initial conditions obtained from the decoupled Riccati
algebraic equations (like in (15)] it took only five iterations for
the proposed Lyapunov iterations algorithm (9)—(10) to achieve
the accuracy of O(107'%). Taking the initial guesses as P* =
100f3,k = 1,2,3 we got the accuracy of O(107'°) after 10
iterations.
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TABLE 1
ERROR PROPAGATION
Iteration Error
1 9.6000 x 1072
3 33579 x 10~*
5 3.2379 x 106
7 3.5113 x 10-3
10 42811 x 10711
12 49626 x 10~12
14 4.5259 x 10~18

Example 2: Consider the following fourth-order jump linear con-
trol problem

[—2.1051 —1.1648  0.9347 0.5194 ]
4, — |—0.0807 —2.8049  0.3835 0.8310
'Z 106914 105940 -36.8199 3.8560 |°
| 1.0692 13.4230 22.1185 —13.1801
[—2.6430 —-1.2497 0.5269 0.6539 ]
A, — | 707910 —2.8570  0.0920 0.4160
27 1210357 22.8659 —26.4655 —1.7214
[27.3096  7.8736  —3.8604 —29.5345 |
[0.7564 0.3653
0.9910 0.2470
Bi= 198255 B2 = 175336 |’
| 7.2266 6.5152
1010
0 000
QI—QQ— 1 0 1 0 9
0 000
-2 2
H‘[l.s —1.5]’ Bi=R=1.

The following solutions have been obtained with the accuracy of
O(107'%) after 14 iterations

[0.2408
0.0705
0.0393

0.0182

[0.5026
0.1343
0.0518

0.0097

0.0182]
0.0064
0.0025
0.0016 |

0.0097 ]
0.0026
0.0002
0.0003 |

0.0705
0.0308
0.0085
0.0064

0.1343
0.0485
0.0138
0.0026

0.0393
0.0085
0.0157
0.0025

0.0518
0.0138
0.0193
0.0002

P =

P, =

The initial conditions for this problem were obtained by using solu-
tions of the decoupled algebraic Riccati equations. Error propagation
is given in Table I, where the error is defined as

)

mas ([ (P2, P ) | s (P17, P27)

All simulation results in this paper are obtained by using MATLAB.

V. CONCLUSION

Assuming that the positive semidefinite stabilizing solutions, P,
of the coupled algebraic Riccati equations of jump linear systems
exist, they can be found in terms of decoupled algebraic Lyapunov
equations by using the proposed algorithm (9)-(10).
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APPENDIX
Lemma I: There exist P° > P,k =1,2,---, N, where Py are
unique positive semidefinite stabilizing solutions of (6)—(7), such that

®(P”) =P 5. P - ATP
N
- P,gO)Ak — Q- E ijl)}o) >0,

J=1,5#k

k=1,2,---,N. 39

Proof: Let P{” = P + X) with X; > 0, then

ER(Plgo)) =%(Pk) + PeSi Xk + XSk P + XS X
N
— AT Xt — Xk Ar — T Xy — Z ki X;. (40)
3=1,5#k

Using the fact that R(Px) = 0 we rewrite (40) as

N
%(P,EO)) +Zﬂ"ijj - XiSiXi =

=1

—(Ak — SkPi)" Xi — Xe(Ak — Sk Pr).  (41)
Since X > 0 and Ay — Sj P are stable matrices Vk by Assumption

2, it follows that the left-hand side of the Lyapunov equations (41)
must be positive semidefinite, that is

N
§R(P,£°)) + jzl‘ll'ijj — XxSe Xy 2 0. (42)

Choosing X = .1752 = ... = Xy = .-+ = Xn and using the fact
that mex = — Y, gy, it follows that
j=1,j#k
%(P,EO)) > XS Xk > 0 3)
which completes the proof of Lemma 1.
REFERENCES
[1] M. Mariton, Jump Linear Systems in Automatic Control. New York:

Marcel Dekker, 1990. .

[2] M. Mariton and P. Bertrand, “A homotopy algorithm for solving
coupled Riccati equations,” Optimal Contr. Applica. Methods, vol. 6,
pp- 351-357, 1985.

3] A.Salama and V. Gourishankar, “A computational algorithm for solving
a system of coupled algebraic matrix Riccati equations,” IEEE Trans.
Comput., vol. C-23, pp. 100-102, 1974.

[4] P. Varaiya and Kumar, Stochastic Systems: Estimation, Identification,
and Adaptive Control. Englewood Cliffs, NJ: Prentice-Hall, 1986.

[5]1 D. Kleinman, “On an iterative technique for Riccati equation computa-
tion, IEEE Trans. Automat. Contr., vol. AC-13, pp. 114-115, 1968.

[6] I Gohberg, P. Lancaster, and L. Rodman, “On Hermitian solutions of
the symmetric algebraic Riccati equation,” SIAM J. Contr. Optim., vol.
24, pp. 1323-1334, 1986.

{71 A. Ran and R. Vreugdenhil, “Existence and comparison theorems for
algebraic Riccati equations for continuous- and discrete-time systems,”
Linear Algebra Applica., vol. 99, pp. 63-83, 1988.

[8] W. Wonham, “On a matrix Riccati equation of stochastic control,” SIAM
J. Contr. Optim., vol. 6, pp. 681-697, 1968.

[9] L. Kantorovich and G. Akilov, Functional Analysis in Normed Spaces.
New York: Macmillan, 1964.

[10] W. Wonham, “Random difference equations in control theory,”
pp. 131-212, in Probabilistic Methods in Applied Mathematics, A.
Bharucha-Reid, Ed. New York: Academic, 1971.

1975

{11] Y. Ji and H. Chizeck, “Controllability, stabilizability, and continuous-
time Markovian jump linear quadratic control,” IEEE Trans. Automat.
Contr., vol. 35, pp. 777-788, 1990.

Fast Time-Varying Phasor Analysis in the Balanced
Three-Phase Large Electric Power System

Vaithianathan Venkatasubramanian,
Heinz Schittler, and John Zaborszky

Abstract—Traditional phasor representation of sinusoidal signals, the
standard analytical tool for power system stability analysis, is limited
by the quasistationary assumption on the speeds of the phasor states.
This paper provides a rigorous formulation of a time-varying phasor
representation for the balanced three-phase large power system with
no restrictions on the speeds. Power balance equations become a set
of differential eguations in the phasor dynamic states and singularly
perturbed behavior of the resulting dynamics is explored.

I. INTRODUCTION

Phasors were introduced around the turn of the century to facilitate
computations and analysis of power systems in stationary operation.
It is a mathematical transformation, which eliminates the 60 Hz
“carrier,” the only time-varying element in the stationary case. This
can be viewed as a form of demodulation. In the 1920’s it was found
that the assumption of stationarity can be relaxed to an approximation,
the “quasistationary” assumption, which allows voltages, currents,
or power to vary “slowly.” By fortunate coincidence, angular rotor
swings in the power system (which are typically slower than 1/2 or
1/3 Hz) provide a quasistationary environment found experimentally
to have quite satisfactory accuracy for computation of “transient
stability” (limits have been mathematically analyzed recently [1], [2]).
Such transient swings were the basic concern, the principal problem
area, of fast power system dynamics until about the 1970’s. More
recently faster phenomena connected with voltage stability are often
outside the “quasistationary range,” a fact which leads to questionable
results when ignored. It is then necessary to properly define a
“time-varying phasor” concept as a mathematical transformation and
establish its properties such as the phasor calculus and the validity
of the phasor power-flow equations (reactive power, real power,
etc.). This is done in this note. It needs to be emphasized that
the conventional 7 circuit representation used in this note itself
imposes validity limitations (although at a higher speed level) on
time variations. The ultimate, precise distributed parameter phasors
have now been introduced, and they make it possible to evaluate and
upgrade the equivalent 7 or RLC approximation [3].

Earlier approaches (e.g., [4]) use physical reasoning and intuitive
deduction to try to reach a general time-dependent phasor concept.
Under the assumption that the system (including the transmission
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