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Exact Decomposition of the Algebraic Riccati Equation of
Deterministic Multimodeling Optimal Control Problems

Cyril Coumarbatch and Zoran Gajic

Abstract—In this paper we show how to exactly decompose the algebraic
Riccati equations of deterministic multimodeling in terms of one pure-slow
and two pure-fast algebraic Riccati equations. The algebraic Riccati
equations obtained are of reduced-order and nonsymmetric. However,
their ( ) perturbations (where = and , are small positive
singular perturbation parameters) are symmetric. The Newton method is
perfectly suited for solving the nonsymmetric reduced-order pure-slow
and pure-fast algebraic Riccati equations since excellent initial guesses
are available from their ( ) perturbed reduced-order symmetric
algebraic Riccati equations that can be solved rather easily. The proposed
decomposition scheme might facilitates new approaches to mutimodeling
control problems that are conceptually simpler and numerically more
efficient than the ones previously used.

Index Terms—Algebraic Riccati equation, linear systems, multimod-
eling, optimal control, singular perturbations.

I. INTRODUCTION

The concept of multimodeling was introduced to the control audi-
ence in [1]. Since then, the deterministic and stochastic multimod-
eling control and filtering problems have been studied by several re-
searchers [2]–[13]. The multimodeling problems arise in large scale
dynamic systems that have multiple decision makers and multiple in-
formation channels (structures). Large scale systems are composed of
several subsystems and characterized by the presence of slow and fast
dynamics and weak and strong interconnections among state variables.
It is known from [1] that theory of singular perturbations is very well
suited to capture the multimodeling structure of interconnected large
scale systems displaying slow and fast dynamics.

The optimal solution to deterministic linear-quadratic optimal multi-
model control problems requires the solution of the multiparameter sin-
gularly perturbed algebraic Riccati equation. In this paper we show how
to exactly decompose the corresponding algebraic Riccati equation in
terms of independent one pure-slow and two pure-fast, reduced-order,
algebraic Riccati equations.

The results obtained in this paper represent very powerful tools for
simplified derivations of the optimal multimodel control and strategies.
In that respect, the results of [2], [11] (see also [14], and [13] can be
obtained with perfect accuracy with only minor modifications. The ex-
tension to the Pareto multimodeling strategies of [1], [9] will require a
generalization of the results presented in this paper to the Pareto game
algebraic Riccati equation. The extension to the multimodeling team
problems [7] will require much more work along the lines considered
in this paper. The Nash multimodeling strategies of [3] and [5] can be
similarly studied under the assumption that the results of this paper can
be applied to the coupled Nash algebraic Riccati equations.

By using the results of this paper, the multimodeling strategies could
be implemented with perfect accuracy. It is known that all multimod-
eling results presently available in the literature are of the accuracy of
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O(�).1 Several examples done in [15]–[18] indicate that anO(�) accu-
racy is very often not sufficient. Hence, the development of the more
accurate techniques for singularly perturbed control systems is manda-
tory.

II. DECOMPOSITION OF THEREGULATOR ALGEBRAIC

RICCATI EQUATION

The multimodeling structure is defined by a linear dynamic system
that has one slow and two fast subsystems. The fast subsystems are
strongly connected to the slow subsystem and weakly connected (or
not connected) among themselves. Such large scale systems describe
dynamics of several real physical systems, for example, power systems
[1] and automobiles [13], [19]. The corresponding multimodeling rep-
resentation of [1] is defined by

_x0(t) =A00x0(t) +A01x1(t) +A02x2(t)

+B01u1(t) +B02u2(t)

�1 _x1(t) =A10x0(t) +A11x1(t) + �3A12x2(t)

+B11u1(t) + �3B12u2(t)

�2 _x2(t) =A20x0(t) + �3A21x1(t) + A22x2(t)

+ �3B21u1(t) +B22u2(t) (1)

where
x0 2 <

n slow state variables;
x1 2 <

n ; x2 2 <
n fast state variables;

u1 2 <
m ; u2 2 <

m control inputs.
�3 is a small weak coupling parameter, and�1 and�2 are small positive
singular perturbation parameters of the same order of magnitude, that
is 0 < k1 � (�2=�1) � k2 < 1. In order to simplify derivations,
without loss of generality, we assume that the fast state variables are
not connected among themselves, that is, we set the weak coupling
parameter�3 to zero.

In the deterministic optimal control of the above multimodeling
structure, the quadratic performance criterion has to be minimized
by the proper choice of the control variablesu1(t) andu2(t). The
performance criterion is given by

J =
1

2

+1

0

xT (t)Qx(t) + uT (t)Ru(t) dt

Q =QT � 0; R = RT > 0 (2)

where

x(t) =

x0(t)

x1(t)

x2(t)

; u(t) =
u1(t)

u2(t)
; R =

R1 0

0 R2

Q =

Q00 Q01 Q02

QT01 Q11 0

QT02 0 Q22

Q = qT q =
q01 q11 0

q02 0 q22

T
q01 q11 0

q02 0 q22

=

qT01q01 + qT02q02 qT01q11 qT02q22

qT11q01 qT11q11 0

qT22q02 0 qT22q22

: (3)

In the general multimodeling case, all zero-elements in matricesR and
Q can be replaced byO(�3) elements.

1O(� ) is defined byO(� ) < c� , wherec is a bounded constant andi is a
real number. In this paper� = k k.
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In the multimodeling problem one proceeds with constructing two
different models of (1), obtained by setting�1 = 0, which leads to
the first model for the first controller, and by setting�2 = 0, which
produces the second model for the second controller. The rationale for
this is the fact that each controller “sees” the slow dynamics of both
subsystems and only its own fast dynamics. Thus, the fast dynamics
of the other subsystem is approximated by an algebraic equation (the
corresponding�i is set to zero). The same approximation is done for
the performance criterion (2), hence two performance criteria are ob-
tained, which leads to multicriteria optimization problem. Depending
on the actual problem setup, very often described by differential games,
the two controllers find their own optimal strategies and apply such
strategies to the global system defined by (1). In such a way obtained,
the multimodeling strategy is well posed if the performance criterion
under the multimodeling strategy isO(�) close to the global optimal
control strategy obtained by performing direct optimization on the orig-
inal system and the original performance criterion.

In this paper, we propose a method for the exact decomposition of
the optimal control associated with (1) and (2) such that the optimal
solution is obtained in terms of three independent, reduced-order al-
gebraic Riccati equations, representing one slow and two fast subsys-
tems. The idea presented in this paper will allow the development of
new techniques for new setups and more efficient solutions of the cor-
responding multimodeling problems.

The optimal feedback solution to (1), (2) is given by

uopt(t) = �R
�1
B

T
Px(t) (4)

whereP is the positive semidefinite stabilizing solution of the algebraic
Riccati equation

A
T
P + PA+Q� PSP = 0; S = BR

�1
B

T (5)

with

A =

A00 A01 A02

1

�1
A10

1

�1
A11 0

1

�2
A20 0

1

�2
A22

; B =

B01 B02

1

�1
B11 0

0
1

�2
B22

P =

P00 �1P01 �2P02

�1P
T
01 �1P11

p
�1�2P12

�2P
T
02

p
�1�2P

T
12 �2P22

S =

S00
1

�1
S01

1

�2
S02

1

�1
ST
01

1

�2
1

S11 0

1

�2
ST
02 0

1

�2
2

S22

S00 =B01R
�1
B

T
01 +B02R

�1
B

T
02; S01 = B01R

�1
B

T
11

S02 =B02R
�1
B

T
22; Sii = BiiR

�1
B

T
ii ; i = 1; 2: (6)

The scaling of the matrixP is done according to nature of the solution
of (5) as discussed in [9], [10]. The required solution of the algebraic
Riccati (5) exists under the standard assumption [20].

Assumption 1:The triple(A; B; q) is stabilizable-detectable. Note
that the multimodeling optimal control problem is studied under the
following assumption [1].

Assumption 2:The triples(As; Bs; qs) and(Aii; Bii; qii), i =
1; 2, are stabilizable-detectable.

The matricesAs; Bs; qs are given by [1], [10]

As =A00 �A01A
�1

11 A10 � A02A
�1

22 A20

Bs = [B1s B2s ]; Bis = B0i � A0iA
�1

ii Bio;

i = 1; 2

Qs = q
T
s qs = q

T
1sq1s + q

T
2sq2s; qis = q0i � qiiA

�1

ii Ai0;

i = 1; 2:

In this paper, theAs; Bs; Qs matrices will be redefined later on as
a part of the proposed design methodology. Note that for sufficiently
small values of� = k�� k, Assumption 2 is equivalent to Assumption 1
[1].

The derivations that follow will require Assumption 2. Consider the
Hamiltonian matrix corresponding to (1) and (2)

_x(t)

_p(t)
= HHH

x(t)

p(t)
=

A �S
�Q �AT

x(t)

p(t)
(7)

wherep(t) represents the so-called co-state system variables compat-
ibly partitioned aspT (t) = [ pT0 (t) �1p

T
1 (t) �2p

T
2 (t) ]. Let E1 be

the permutation matrix defined by

E1 =

In 0 0 0 0 0

0 0 0 In 0 0

0 In 0 0 0 0

0 0 0 0
1

�1
In 0

0 0 In 0 0 0

0 0 0 0 0
1

�2
In

: (8)

The similarity transformationE1 applied to (7) produces

_x0
_p0
_x1
_p1
_x2
_p2

=E1

A �S
�Q �AT E

�1

1

x0

p0

x1

p1

x2

p2

=

T00 T01 T02
1

�1
T10

1

�1
T11 0

1

�2
T20 0

1

�2
T22

x0

p0

x1

p1

x2

p2

= T

x0

p0

x1

p1

x2

p2

(9)

where

T00 =
A00 �S00
�Q00 �AT

00

; T01 =
A01 �S01
�Q01 �AT

10

T02 =
A02 �S02
�Q02 �AT

20

; T10 =
A10 �ST

01

�QT
01 �AT

01

T11 =
A11 �S11
�Q11 �AT

11

; T12 = 0; T20 =
A20 �ST

02

�QT
02 �AT

02

T22 =
A22 �S22
�Q22 �AT

22

; T21 = 0: (10)

Note that the above transformation combines in pairs the slow state/co-
state and fast state/co-state variables such that (9) has the singularly
perturbed structure. It should be pointed out that due to the second
part of Assumption 2, the fast Hamiltonian matricesT11 andT22 are
nonsingular [20]. In addition, the first part of Assumption 2 implies that
the slow Hamiltonian matrix given by

Ts =
As �Ss
�Qs �AT

s

= T00 � T01T
�1

11 T10 � T02T
�1

22 T20 (11)
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is nonsingular. Note thatTs is obtained from (9) by extracting the slow
subsystem, that is, by multiplying the fast derivatives, respectively, by
�1 and�2 and setting them to zero. This expression also gives new def-
initions for matricesAs; Qs; Ss, with Ss = BsR

�1
s BT

s . The proce-
dure for obtaining independentlyRs can be found in [1]. For the pur-
pose of this paper we need onlySs. Due to the fact thatRs is invertible,
it follows that stabilizability of(As; Bs) is equivalent to stabilizability
of (As;

p
Ss).

The singularly perturbed system defined in (9) can be block-diago-
nalized by using the transformation derived in [21] as shown in (12)
at the bottom of the page. The corresponding inverse transformation is
shown in (13) at the bottom of the page.

In the above transformation the matricesHj ; Lj ; j = 1; 2; 3; sat-
isfy

0 =T11L1 � T10 � �1L1(T00 � T01L1 � T02L2 + T02L3L1)

0 =T22L2 � �L3T10 � T20 � �2L2(T00 � T02L2)

0 =T22L3 � �L3T11 � �2L2(T01 � T02L3)

0 = �H1T11 � �1H1L1(T01 � T02L3) + (T01 � T02L3)

+ �1(T00 � T01L1 � T02L2 + T02L3L1)H1

0 = �H2T22 + �T11H2 + �2L1(T01 � T02L3)H2

+ (L1 � �2H2L2)T02

0 = �H3T22 � �2H3L2T02 � �2(T01 � T02L3)H2 � T02

+ �2(T00 � T01L1 � T02L2 + T02L3L1)H3

0 < k1 � � =
�2

�1
� k2 <1: (14)

Even though the above algebraic equations are nonlinear, it can be no-
ticed that all nonlinear terms are multiplied by the small singular pertur-
bation parameters. Hence, anO(�) perturbation of (14) produces aset
of decoupled linear algebraic equations. Solutions of this set of linear
algebraic equations represent excellent initial conditions for the fixed
point algorithm to be used for solving (14) sinceLj = L

(0)
j + O(�),

Hj = H
(0)
j +O(�), j = 1; 2; 3. AnO(�) perturbation of (14) is given

by

0 =T11L
(0)
1 � T10 ) L

(0)
1 = T

�1
11 T10

0 =T22L
(0)
2 � �L

(0)
3 T10 � T20 ) L

(0)
2 = T

�1
22 T20

0 =T22L
(0)
3 � �L

(0)
3 T11 ) L

(0)
3 = 0

0 = �H
(0)
1 T11 + (T01 � T02L

(0)
3 )) H

(0)
1 = T01T

�1
11

0 = �H
(0)
2 T22 + �T11H

(0)
2 + L

(0)
1 T02

0 = �H
(0)
3 T22 � T02 ) H

(0)
3 = �T02T�122 : (15)

It can be seen that these linear algebraic equations can be solved rather
easily due to their decoupled structure and the fact that the Hamiltonian

matricesT11 andT22 are nonsingular, which is the consequence of As-
sumption 2. Note that the equations forL

(0)
3 andH(0)

2 are the Sylvester
linear algebraic equations. The unique solutions of these equation exist
under the following assumption [22].

Assumption 3:The Hamiltonian matricesT22 and�T11 have no
eigenvalues in common.

Due to the above assumption, the existence ofL
(0)
1 ; L

(0)
2 ; L

(0)
3

is not uniform with respect to�. Since the unique solutions for
L
(0)
1 ; L

(0)
2 ; L

(0)
3 exist under Assumption 3, then by the Implicit

Function Theorem [23], the unique solutionsL1; L2; L3 exist for
sufficiently small values of�. The fixed point algorithm for solving
(14) is given by

T11L
(i+1)
1

= T10 + �1L
(i)
1 T00 � T01L

(i)
1 � T02L

(i)
2 + T02L

(i)
3 L

(i)
1

T22L
(i+1)
2 � �L

(i+1)
3 T10

= T20 + �2L
(i)
2 T00 � T02L

(i)
2

T22L
(i+1)
3 � �L

(i+1)
3 T11

= �2L
(i)
2 T01 � T02L

(i)
3

H
(i+1)
1 T11

= ��1H(i)
1 L

(i)
1 T01 � T02L

(i)
3 + T01 � T02L

(i)
3

+ �1 T00 � T01L
(i)
1 � T02L

(i)
2 + T02L

(i)
3 L

(i)
1 H

(i)
1

H
(i+1)
2 T22 � �T11H

(i+1)
2 � L

(i+1)
1 T02

= �2L
(i)
1 T01 � T02L

(i)
3 H

(i)
2 � �2H

(i)
2 L

(i)
2 T02

H
(i+1)
3 T22

= ��2H(i)
3 L

(i)
2 T02 � �2 T01 � T02L

(i)
3 H

(i)
2 � T02

+ �2 T00 � T01L
(i)
1 � T02L

(i)
2 + T02L

(i)
3 L

(i)
1 H

(i)
3 : (16)

Theorem 1: Under Assumptions 2 and 3, the fixed point algorithm
(16) converges to the solutions of (15) with the rate of convergence of
O(�), that is

L
(i+1)
j � L

(i)
j =O(�); j = 1; 2; 3; i = 0; 1; 2; � � �

H
(i+1)
j �H

(i)
j =O(�); j = 1; 2; 3; i = 0; 1; 2; � � �

(17)

Lj � L
(i)
j =O(�i+1); j = 1; 2; 3; i = 0; 1; 2; � � �

Hj �H
(i)
j =O(�i+1); j = 1; 2; 3; i = 0; 1; 2; � � � :

(18)

K =

In � �1H1L1 + �1�2H1H2L2 + �2H3L2 ��1H1 + �1�2H1H2L3 + �2H3L2 �2(H3 + �1H1H2)

L1 � �2H2L2 In � �2H2L3 ��2H2

L2 L3 In

(12)

K
�1 =

In �1H1 ��2H3

�L1 In � �1H1L1 �2(H2 +H3L1)

�L2 + L1L3 �1H1(L1L3 � L2)� L3 In + �2(H3L3 �H2L3 �H3L3L1)

(13)
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Proof: The proof of this theorem is rather lengthy. It can be found
in [24].

An algorithm for solving theL-equations by using the Newton
method, with the solutions of (15) playing the role of the initial
conditions, is also developed in [24].

By applying the transformationK to (9), the system is transformed
into the new coordinates with completely decoupled slow and fast dy-
namics

_�01(t)

_�02(t)

�1 _�11(t)

�1 _�12(t)

�2 _�21(t)

�2 _�22(t)

=

D0 0 0

0 D1 0

0 0 D2

�01(t)

�02(t)

�11(t)

�12(t)

�21(t)

�22(t)

(19)

with

D0 =T00 � T01L1 � T02L2 + T02L3L1
�
=

a1 a2

a3 a4

D1 =T11 + �1L1(T01 � T02L3)
�
=

b1 b2

b3 b4

D2 =T22 + �2L2T02
�
=

c1 c2

c3 c4
: (20)

In (19)�01, �11, �21 represent the state variables and�02, �12, �22 are
the co-state variables. At steady state the state and co-state variables
are related by

�02(t) =Ps�01(t)

�12(t) =Pf1�11(t)

�22(t) =Pf2�21(t) (21)

wherePs; Pf1; Pf2 satisfy the independent, reduced-order, pure-slow
and pure-fast, algebraic Riccati equations. The algebraic Riccati equa-
tions are derived from (19)–(21) as

Psa1 � a4Ps � a3 + Psa2Ps =0

Pf1b1 � b4Pf1 � b3 + Pf1b2Pf1 =0

Pf2c1 � c4Pf2 � c3 + Pf2c2Pf2 =0: (22)

The pure-slow and pure-fast algebraic Riccati equations obtained are
nonsymmetric. However, theirO(�) perturbations are symmetric ones,
that is

Ps = P0 +O(�); Pf1 = P1 +O(�); Pf2 = P2 +O(�) (23)

with

P0As +A
T
s P0 +Qs � P0SsP0 =0

P1A11 +A
T
11P1 +Q11 � P1S11P1 =0

P2A22 +A
T
22P2 +Q22 � P2S22P2 =0 (24)

where matricesAs; Qs; Ss are defined in (11). The second and
third statements in (23) follow directly by examining coefficients
bj ; cj ; j = 1; 2; 3; 4. Namely, the coefficients of the corresponding
algebraic Riccati equations in (22) and (24) areO(�) apart, that is

b1 b2

b3 b4
=D11 = T11 +O(�) =

A11 �S11

�Q11 �AT
11

+O(�)

c1 c2

c3 c4
=D22 = T22 +O(�) =

A22 �S22

�Q22 �AT
22

+O(�):

The first statement in (23) is based on the fact that from (20) we have

a1 a2

a3 a4
= T00 � T01L

(0)
1 � T02L

(0)
2 + T02L

(0)
3 L

(0)
1 +O(�):

Since from (15)L(0)
1 = T�111 T10, L(0)

2 = T�122 T20, L(0)
3 = 0, we get

a1 a2

a3 a4
= T00 � T01T

�1
11 T10 � T02T

�1
22 T20 +O(�)

which by (11) implies

a1 a2

a3 a4
=

As �Ss

�Qs �AT
s

+O(�):

The unique positive semidefinite stabilizing solutions of the alge-
braic Riccati equations defined in (24) exist under Assumption 2. Then,
in view of (23) and by the Implicit Function Theorem the unique so-
lutions of the algebraic Riccati (22) exist. These solutions can be ob-
tained by using the Newton method since (24) produce excellent initial
guesses. It is known that the Newton method converges quadratically
and that for good initial guesses it requires only four to five iterations.
The Newton method for solving the nonsymmetric algebraic Riccati
(22) is given by

P
(i+1)
s a1 + a2P

(i)
s � a4 � P

(i)
s a2 P

(i+1)
s

= a3 + P
(i)
s a2P

(i)
s ; P

(0)
s = P0

P
(i+1)
f1 b1 + b2P

(i)
f1 � b4 � P

(i)
f1 b2 P

(i+1)
f1

= b3 + P
(i)
f1 b2P

(i)
f1 ; P

(0)
f1 = P1

P
(i+1)
f2 c1 + c2P

(i)
f2 � c4 � P

(i)
f2 c2 P

(i+1)
f2

= c3 + P
(i)
f2 c2P

(i)
f2 ; P

(0)
f2 = P2; i = 0; 1; 2; � � � : (25)

In the following we establish the relation between the new and orig-
inal coordinates and the relation between the solution of the global al-
gebraic Riccati (5) and the solutions of the pure-slow and pure-fast,
reduced-order, independent, algebraic Riccati equations (22).

The relationship between the original and new coordinates can be
established as follows. Define the permutation matrix as

E2 =

In 0 0 0 0 0

0 0 0 In 0 0

0 In 0 0 0 0

0 0 0 0 In 0

0 0 In 0 0 0

0 0 0 0 0 In

: (26)

Then, the new state/co-state variables are related to the old ones by

�01(t)

�02(t)

�11(t)

�12(t)

�21(t)

�22(t)

=E
T
2 KE1

x(t)

p(t)
= �

x(t)

p(t)

=
�1 �2

�3 �4

x(t)

p(t)
: (27)

In order to establish the relationship between the solutions of the
global and local Riccati equations, we first observe that due to the fact
thatp(t) = Px(t), it follows from (27) that

�01(t)

�11(t)

�21(t)

= (�1 +�2P )x(t)

�02(t)

�12(t)

�22(t)

= (�3 +�4P )x(t): (28)
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Since

�02(t)

�12(t)

�22(t)

=

Ps 0 0

0 P1f 0

0 0 P2f

�01(t)

�11(t)

�21(t)

(29)

the last two formulas imply

Ps 0 0

0 P1f 0

0 0 P2f

= (�3 +�4P )(�1 +�2P )
�1

: (30)

It is shown in [24] that the matrix inversion in (30) exists for small
values of singular perturbation parameters. Similarly, we can express
P in terms ofPs; Pf1; Pf2

P = 
3 +
4

Ps 0 0

0 Pf1 0

0 0 Pf2

� 
1 +
2

Ps 0 0

0 Pf1 0

0 0 Pf2

�1

(31)

where


 =

1 
2


3 
4

= ��1: (32)

Invertibility of the matrices in (30) and (31) is established for small
values of singular perturbation parameters in [24]. Invertibility of ma-
trix � can be easily shown.

The efficiency of the proposed technique is demonstrated in [24] on a
power system example whose model is presented in [1]. In addition, the
results of this paper are extended in [24] to the Kalman filtering mul-
timodeling structure. Those results are successfully applied to a pas-
senger car under unevenness of the road disturbances model of [19] in
the context of the singularly perturbed multiparameter Kalman filtering
problem [24].

Remark: This paper uses the same technique (the block diagonal-
ization of the Hamiltonian matrix [17] as the paper [25]. However,
the problem considered in this paper is more challenging. The
method of [25] is based on the Chang transformation in [26] and
its application to the state-costate equations of the linear-quadratic
optimal control problem. If we intend to apply the Chang trans-
formation to the state-costate equations of this paper we will
first have to simplify the problem and assume that it is a single
parameter singular perturbation problem, that is�1 = �2 = �. The
Chang transformation will completely decouple the slow subsystem
from the fast subsystems, but the fast subsystems will be coupled
despite the fact that originally they are coupled only indirectly
through the slow subsystem. This is obvious from the application
of the nonsingular state transformation (Chang) to (9), which will
replace zero matrices in (9) by nonzero elements. This will cause
coupling between the fast state-costate variables in (19). Having
obtained coupled state-costate variables in (19) produces coupled
fast algebraic Riccati equations in (22). That is why in this paper
we have used a much more complex transformation of [21] that
in addition of extracting independent slow state-costate variables

also completely decouplesfast state-costate variables of the fast
subsystems corresponding to the time scales induced by param-
eters �1 and �2. Hence, the proposed method produces further
simplifications and introduces full parallelism and decomposition
among three subsystems.
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