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Exact Decomposition of the Algebraic Riccati Equation of O(¢).! Several examples done in [15]-[18] indicate that¥a) accu-
Deterministic Multimodeling Optimal Control Problems racy is very often not sufficient. Hence, the development of the more
accurate techniques for singularly perturbed control systems is manda-
Cyril Coumarbatch and Zoran Gajic tory.

Il. DECOMPOSITION OF THEREGULATOR ALGEBRAIC

Abstract—n this paper we show how to exactly decompose the algebraic
RICCATI EQUATION

Riccati equations of deterministic multimodeling in terms of one pure-slow

and two pure-fast algebraic Riccati equations. The algebraic Riccati  The myltimodeling structure is defined by a linear dynamic system
equations obtained are of reduced-order and nonsymmetric. However,

their O(e) perturbations (where ¢ = || || and e, , e, are small positive that has one slow and two fast subsystems. The fast subsystems are

singular perturbation parameters) are symmetric. The Newton method is  Strongly connected to the slow subsystem and weakly connected (or
perfectly suited for solving the nonsymmetric reduced-order pure-slow not connected) among themselves. Such large scale systems describe
and pure-fast algebraic Riccati equations since excellent initial guesses dynamics of several real physical systems, for example, power systems

are available from their O(e) perturbed reduced-order symmetric : : : : ~
algebraic Riccati equations that can be solved rather easily. The proposed [1] and automobiles [13], [19]. The corresponding multimodeling rep

decomposition scheme might facilitates new approaches to mutimodeling "esentation of [1] is defined by
control problems that are conceptually simpler and numerically more

efficient than the ones previously used. 2o (t) = Aoozo(t) + Aor121 (t) + Ao2wa(t)
Index Terms—Algebraic Riccati equation, linear systems, multimod- + Boiui (t) + Booua(t)
eling, optimal control, singular perturbations. 1@ (1) = Arozo(t) + Avra1 (1) + esAraza(t)
+ Briui(t) + €3 Bious(t)
|. INTRODUCTION €2y (1) = Avoo(t) + esAvra (1) + Avoa(¥)
The concept of multimodeling was introduced to the control audi- + e3Barui(t) + Baogua(t) 1)

ence in [1]. Since then, the deterministic and stochastic multimod-
eling control and filtering problems have been studied by several mhere
searchers [2]-[13]. The multimodeling problems arise in large scalezo € %"° slow state variables;
dynamic systems that have multiple decision makers and multiple in-1 € R"*, x2 € R"? fast state variables;
formation channels (structures). Large scale systems are composed ¢fi € B, u2 € ®2  control inputs.
several subsystems and characterized by the presence of slow andfasta small weak coupling parameter, andande. are small positive
dynamics and weak and strong interconnections among state varialf#gular perturbation parameters of the same order of magnitude, that
It is known from [1] that theory of singular perturbations is very welis 0 < k1 < (ea/e1) < k2 < co. In order to simplify derivations,
suited to capture the multimodeling structure of interconnected largéthout loss of generality, we assume that the fast state variables are
scale systems displaying slow and fast dynamics. not connected among themselves, that is, we set the weak coupling
The optimal solution to deterministic linear-quadratic optimal multiparametees to zero.
model control problems requires the solution of the multiparameter sin-In the deterministic optimal control of the above multimodeling
gularly perturbed algebraic Riccati equation. In this paper we show he#iucture, the quadratic performance criterion has to be minimized
to exactly decompose the corresponding algebraic Riccati equatiofPlhthe proper choice of the control variables(t) and u2(t). The
terms of independent one pure-slow and two pure-fast, reduced-ordkfformance criterion is given by
algebraic Riccati equations.
The results obtained in this paper represent very powerful tools for
simplified derivations of the optimal multimodel control and strategies.

S T
J== / |:T (H)Qx(t) +u (f)Ru(f)] dt
2 0
In that respect, the results of [2], [11] (see also [14], and [13] can be Q

=Q">0,R=R">0 )
obtained with perfect accuracy with only minor modifications. The ex-
tension to the Pareto multimodeling strategies of [1], [9] will require ¥here
generalization of the results presented in this paper to the Pareto game M 2o(t)
algebraic Riccati equation. The extension to the multimodeling team .4y — | ., (¢ wlt) = ui(t) R= 0
2 equ . . ety = |t |, wty=| "o 0 R
problems [7] will require much more work along the lines considered es(t) u2(t) 2

in this paper. The Nash multimodeling strategies of [3] and [5] can be
similarly studied under the assumption that the results of this paper can
be applied to the coupled Nash algebraic Riccati equations.

-QOU QUI 6202
Q=|Qh Qu 0

pE
By using the results of this paper, the multimodeling strategies could Qo2 0 Qa2 .
be implemented with perfect accuracy. It is known that all multimod- O=q'qg= qo1 qu1 0 go1 qu O
eling results presently available in the literature are of the accuracy of 14 goz 0 go2 goz 0 go22
[qo1d01 + Q02002 qo1011 qo2d22
: : . = a11qo a1 0 . (3)
Manuscript received December 16, 1998; revised September 9, 1999. Rec- T T
ommended by Associate Editor, G. Gu. L 422902 0 422422
C. Coumarbatch is with the Department of Mathematics, Rutgers University, . i i
New Brunswick, NJ 08903 USA (e-mail: cec@math.rutgers.edu). In the general multimodeling case, all zero-elements in matficasd
Z. Gajic is with the Department of Electrical and Computer Engineering) can be replaced b§(e;) elements.
Rutgers University, Piscataway, NJ 08854-8058 USA (e-mail: gajic@ece.rut-
gers.edu). 10(¢*) is defined byO(e*) < ce?, wheree is a bounded constant ands a

Publisher Item Identifier S 0018-9286(00)04087-3. real number. In this paper= ||<}]|.

0018-9286/00$10.00 © 2000 IEEE



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 45, NO. 4, APRIL 2000 791

In the multimodeling problem one proceeds with constructing two The matricesd., B, ¢. are given by [1], [10]
different models of (1), obtained by setting = 0, which leads to

) , ) -1 A A=l
the first model for the first controller, and by setting = 0, which As =Aoo — Aot Apy Ao — Aoa Ay, Aso

produces the second model for the second controller. The rationale for B, =[Bi, Bs.], Bi. = Bo; — Ao, A}, Bi,

this is the fact that each controller “sees” the slow dynamics of both i—1.2

subsystems and only its own fast dynamics. Thus, the fast dynamics Y . v = a0 A=A

of the other subsystem is approximated by an algebraic equation (the “¢* — 4= 45 = d1s1s T 425425, Gis = 00 = Gisii 240,
t=1, 2.

corresponding; is set to zero). The same approximation is done for
the performance criterion (2), hence two performance criteria are q

tained, which leads to multicriteria optimization problem. Dependin art of the proposed desian methodoloay. Note that for sufficient
on the actual problem setup, very often described by differential gam J prop < gn m 0logy. . y
snrﬁall values ot = ||t1 ||, Assumption 2 is equivalent to Assumption 1

the two controllers find their own optimal strategies and apply sui5
strategies to the global system defined by (1). In such a way obtained,
the multimodeling strategy is well posed if the performance (:riteriolqa
under the multimodeling strategy @(¢) close to the global optimal
control strategy obtained by performing direct optimization on the orig- 2(t)] It z(t)] _ A =5 x(t)
inal system and the original performance criterion. {p(ﬂ} - {p(ﬂ} - {_Q _AT} {p(ﬂ}

In this paper, we propose a method for the exact decomposition of )
the optimal control associated with (1) and (2) such that the optim&fherer(t) represegts the so-,lgalled co}state systﬁm variables compat-
solution is obtained in terms of three independent, reduced-order i8Iy partitioned a™ (¢) = [po () epi (t) exps (1)]. Let By be
gebraic Riccati equations, representing one slow and two fast subd{(& Permutation matrix defined by
tems. The idea presented in this paper will allow the development of

R-this paper, thed,, B,, @, matrices will be redefined later on as

he derivations that follow will require Assumption 2. Consider the
miltonian matrix corresponding to (1) and (2)

@)

r 1, 0 0 0 0 0 17
new techniques for new setups and more efficient solutions of the cor- 00 0 0 I, 0 0
responding multimodeling problems. 0o 1 0 00 0 0
The optimal feedback solution to (1), (2) is given by B - " 1 8
=10 0 0 0 —I, 0 (®)
€
wopt(t) = =R~ BT Pa(t) ) I, ' 0
1
whereP is the positive semidefinite stabilizing solution of the algebraic - € -
Riccati equation The similarity transformatio®’; applied to (7) produces
AP+ PA+Q-PSP=0, S=BR'B" (5 o o)
Po DPo
. & A -
with ’r.n _E { 51} gt |
D1 -Q -4 p1
r Aoo Ao1 Aoz B, By o X
— lAlO l‘411 0 _ lB11 0 pz p2
*4 - €1 € ] B= €1 -
1 1 1 o o
— A 0 — Ao 0 — Bas 1T00 1T01 To2 Po Do
€2 €2 €2 _ | =T —Tn 0 R L 9)
I Poo €1 Pos €2 Poa 611 €t 1 n P
—-T 0 — T
P=|aPh aPn  JaePo e e 21" 2
T T -P2 p2
_62P02 \/61621—’12 EQP‘_ZQ
where
r 1 1 - :
SOO :SOI :502 T _ AAOO _SOO T _ |: AO] _501 :|
1 2 00 = T | 01 = T
11 | Qoo —Ago | —Qo1 —Afy
S = ;5({1 6—2511 0 T [ Aoz —So2 | T |: Ao _SOTl:|
02 — T 5 10 = T T
) ‘ [ —Qoz  —Al ] -Q —Ad
—Sg; 0 —‘522 [ 4411 —511 | |: Azo —S(P)FZ :|
L e é Ty = , Tia=0, Tuy= ,
15T 15T 1 nT ! __QH _AlTl ] " 0 . L?z —A(Tz
Soo = Bo1R™ "By, + Bo2 R~ " Bgys, So1 = BuuR™ "By, T — [ Ass  —Su3 ] T 10
So» =BosR 'Bi,, Si=BiR 'Bl, i=12. (6) T =Qe —AL] T (10)

. - . . Note that the above transformation combines in pairs the slow state/co-

The scaling of the matri® is done according to nature of the solution . .

h . . . state and fast state/co-state variables such that (9) has the singularly

of (5) as discussed in [9], [10]. The required solution of the algebraic .

; - ) . pérturbed structure. It should be pointed out that due to the second
Riccati (5) exists under the standard assumption [20].

Assumption 1: The triple( A, B, q) is stabilizable-detectable. Note part of Assumption 2, the fast Hamiltonian matridés and 3. are

that the multimodeling optimal control problem is studied under tt{%()enzigsvuluaa:r[nzi(li]c.)rl]ri]aidrilztorir; tr}seflr:s; partof Assumption 2 implies that
following assumption [1]. g y

Assumption 2:The triples(As, Bs, ¢s) and(A;i, Bii, ¢ii), i = A, =S,

— v _ —1 _ ’ —1 .
1, 2, are stabilizable-detectable. I. = {—Qs _442} =Too = TonThy Tho — TooTyy Too (1)
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is nonsingular. Note th&t; is obtained from (9) by extracting the slowmatricesl1; andZ:; are nonsingular, which is the consequence of As-

subsystem, that is, by multiplying the fast derivatives, respectively, Bymption 2. Note that the equations Iéf’) andHéO) are the Sylvester

€1 ande; and setting them to zero. This expression also gives new défiear algebraic equations. The unique solutions of these equation exist

initions for matricesd,, Q., Ss, with S, = B,R;*BT. The proce- under the following assumption [22].

dure for obtaining independently, can be found in [1]. For the pur- ~ Assumption 3: The Hamiltonian matrice§:: anda7i; have no

pose of this paper we need orfly. Due to the fact thaR, is invertible, eigenvalues in common.

it follows that stabilizability of 4., B.) is equivalent to stabilizability = Due to the above assumption, the existenceLbe), Lgo)./ Lgo)

of (4,, V/S,). is not uniform with respect tav. Since the unique solutions for
The singularly perturbed system defined in (9) can be block-diaga!”, L, L{”) exist under Assumption 3, then by the Implicit

nalized by using the transformation derived in [21] as shown in (1Bunction Theorem [23], the unique solutiohs, L., L3 exist for

at the bottom of the page. The corresponding inverse transformatiosisficiently small values ot. The fixed point algorithm for solving

shown in (13) at the bottom of the page. (14) is given by
In the above transformation the matricls, L;, j = 1, 2, 3, sat- R
. T L(’+1)
isfy 11by
=T+ €1L(1i) (Too - T01L(1i) — Tongi) + Tongi)L(li))
0="T11Ly —Tw — e L1(Too — Tor Ly — Toa Lo + Toa L3 Ly) N Y
0=Tx2Ls — aLsTio — T20 — €2La(Too — To2Lo) T22L(2L+1) - Q/LgH_UTm
0 :ngLg - LIL3T11 - GQLQ(T(H - Tong) = TZD + €2Lgl) (TOO - TOZL'(;))
0= -HT\, — ElHlLl(T()l - T02L3) + ('To1 - T02L3) TQQLgH_l) _ aLgi+1)T11

+ e1(Too — Tor L1 — Too Lo + Too Ls L1 )H,y

= L (T01 - TOQLF;))
0= — HyToo + aTi1Hy + €2 L1 (Tor — TooLs) Ho

(i+1)
(L= e o) Too R o o
0= — H3T% — eaH3zLoToo — €2(To1 — ToaLs)Hy — Toz =-al L (Tm — To2Ly ) + (Tm — To2Ls )
+ e2(Too — Tor Ly — Toz Ly + Too Ls Ly ) Hy ta (T00 — T L — Too LY + Tongi)Lg")) Y
€2 [, ¢ . - .
O<hso= g < k2 <oo. (14) Hg(lJrl)TzQ — aTtuJﬂ) — LSZJrl)Toz

Even though the above algebraic equations are nonlinear, it can be no- = engi) (Tm - Tongi)) Hﬁ“ - EzHéi)Lgi)Toz
ticed that all nonlinear terms are multiplied by the small singular pertur-

(i+1)
bation parameters. Hence, @je) perturbation of (14) producessat Hy™ T o ‘ _
of decoupled linear algebraic equatiarolutions of this set of linear = —eHV LV Ty — e (Tm - T02L§Z)> H — Ty,
algebraic equations represent excellent initial conditions for the fixed () ) ) 1 () )
point algorithm to be used for solving (14) sinfg = L\ + O(e), + e (Too —Tor Ly —Too Ly + Too Ly Ly ) H;”. (16)
= () s ; e i
gi =H;"+0(e),j = 1. 2. 3. AnO(c) perturbation of (14) is given 010 1- Under Assumptions 2 and 3, the fixed point algorithm
y (16) converges to the solutions of (15) with the rate of convergence of
0 :TnL(lO) — T = L(lo) =T, Tho O(e), that is
0 :Tzngo) - aLgO)Tm —Thy = Léo) = TZT;TZO HLEHD — Lgi) =0(e), 7j=12,3:=0,1,2,---

0=TwnLl — a1, = LI =0

_ H,(-i-H) _ H,(,i)
0= - HOT), + (Toy — Tou L) = H = T, 7" H J I

=0(e), j=1,2,3i=01,2 -

17
0= — HQ(O)TQQ + (JfT]]HQ(O) + LSO)TOQ ) . ( )
) — vl = ’ ) — 371 = “ee
0= HOTL, - Ty = HO = —TyyT5l, (15) |- L0 =0, j=tzsi=0.12
gl it+1 . Cr— ...
It can be seen that these linear algebraic equations can be solved rather HH, ;7| =0, J=123i=012,---.
easily due to their decoupled structure and the fact that the Hamiltonian (18)

I.,—eHiLi+ereoH  HoLy + e2H3 Ly —erHy +ereaHi HoLsz + e2H3 Lo e2(Hz + e Hi H»)

I{I Ll —EQHQLQ I,Ll —€2H2L3 —E‘_ZHQ (12)
LQ LS Inz
I, et Hy —e2Hy
I(_1 = —L1 [nl - FlHlL'I FZ(H2 + H;;Ll) (13)

—Lo+LiLys e H{(LiLs— Ly) — Lsg I., 4+ e2(HsLs — HoLs — HsLsL+)
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Proof: The proof of this theorem is rather lengthy. It can be foun@ince from (15)L” = T Tho, L = T;;' Tho, L = 0, we get
in [24].
An algor_ithm for solying theL-equatiops by using the Newton {”’1 5"2} = Too = Toi T53 " Tho = Too T3 Tao + O(e)
method, with the solutions of (15) playing the role of the initial as a4
conditions, is also developed in [24].

By applying the transformatio” to (9), the system is transformedWhICh by (11) implies

into the new coordinates with completely decoupled slow and fast dy- a1 as A, =S,
namics |:ﬂr3 GJ - {—Qs —44 + 0.
o1 (t) no1(t) . . e I .
Hos (1) Hoa (1) T_he unique pos!tlve ser_nldef_lnlte stab_lllzmg solutions o_f the alge-
. Dy, 0 0 braic Riccati equations defined in (24) exist under Assumption 2. Then,
i () _ 0 D, 0 i (t) (19) in view of (23) and by the Implicit Function Theorem the unique so-
€1z () 0o 0 D, mz(t) lutions of the algebraic Riccati (22) exist. These solutions can be ob-
earj21(t) ) 121 (t) tained by using the Newton method since (24) produce excellent initial
€27)22(1) 122(t) guesses. It is known that the Newton method converges quadratically

with and that for good initial guesses it requires only four to five iterations.
The Newton method for solving the nonsymmetric algebraic Riccati

Do =Too — Tor Ly — TosLo + ThoLs Ly 2 |:a1 a2:| (22) is given by
as aq
A D1 b (i+1) (Y _ o» (i+1)
Dy =T + e Li(Tor — To2Ls) 2 P (01 tas b ) ( -5 ) P
: b3 b4 . () (0)
N =a3+ PP, PV =P
=T LT, 2= | 72 i i i i
D2 —TZZ =+ FzL_gT()Z |:p% (’4:| . (20) P( +1) (bl 4 bZP()) _ (b4 _ Pj(l)bl) Pf('1+1)
In (19) 701, 711, 721 represent the state variables ajpg, 112, 122 are = bs + PV, P, Py =r
the co-state variables. At steady state the state and co-state varlab}:g&H (Cl 4 Pt )) _ (q _ P(i)L'z) pli+D
are related by ’ ’ ’ 12
_ () (0 _ . 5 ...
7]02(t) :P37/01(t) = C3 + Pf? C')PfQ N Pf2 = Pz, 1= 0, 1, 27 . (25)
n12(t) = Prinii(t) In the following we establish the relation between the new and orig-
n22(t) = Prana1 (1) (21) inal coordinates and the relation between the solution of the global al-

_ _ gebraic Riccati (5) and the solutions of the pure-slow and pure-fast,
wherePs, Pr1, Py, satisfy the independent, reduced-order, pure-slovéduced-order, independent, algebraic Riccati equations (22).
and pure-fast, algebraic Riccati equations. The algebraic Riccati equafhe relationship between the original and new coordinates can be

tions are derived from (19)—(21) as established as follows. Define the permutation matrix as
Psay — a4 Py —az 4+ Pax P, =0 InO 0 0 0 0 0
Priby — by Py — by + Ppiba P =0 0 0 0 L., O 0
Pyaci — caPra — ¢34+ Praco Pya =0. (22) , _ |0 Iy 0 0 0 0
Ex 0 0 0 0 I, o] (26)
The pure-slow and pure-fast algebraic Riccati equations obtained are 0 0 I, O 0 0
nonsymmetric. However, theid(¢) perturbations are symmetric ones, o o0 o0 o0 o0 I
that is "

Then, the new state/co-state variables are related to the old ones by
P. =P +0(e), Ppi=P +0(), Pra=P+0(e) (23)

. no1 (t)
with no2 (1)
PoA, + AL Py 4+ Q, — PSP, =0 )| _prpep, {:v(t)} _ {w(t)}
PiAi + AL P 4+ Qi — PSP =0 mz(t) p(t) p(t)
PyAgs + AQ P+ Q22 — P2S22 P, =0 (24) Zgl 52
where matricesA,, Q,, S; are defined in (11). The second and [y I [a(t) 27
third statements in (23) follow directly by examining coefficients s I | p(t) (1)
bjscjoj = 1,2, 3, 4. Namely, the coefficients of the correspondlng ) . ) .
global and local Riccati equations, we first observe that due to the fact
{bl bz:| — Dy = Ti1 +0(e) = { Any _5?} +0(e) thatp(t) = Px(t), it follows from (27) that
by ba —Qun —Ap; ()
C1 €2 Aoy =S5y no1(t
O 2] mmmaro0=| g T ] +ow. () | = (I + Pyt
1)
The first statement in (23) is based on the fact that from (20) we have ZZ;E )
{a‘l a‘z} = Tyo — T L — Ty L + Ty L L + Oe). mat) | = (I + M P)at). (28)
as a4 722(t)
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also completely decouplefast state-costate variables of the fast

subsystems corresponding to the time scales induced by param-
eters ¢; and e;. Hence, the proposed method produces further

No2 (f) P_g 0 0 7701(t)
ma(t) =0 Py 0 i1 (t) (29)
122 (1) 0 0 Pyl Lna(t)

the last two formulas imply

P, 0 0 (1]

0 Py 0 | =(4+1P)(I +1P)"" (30)

0 0 Py [2]
It is shown in [24] that the matrix inversion in (30) exists for small (3]

values of singular perturbation parameters. Similarly, we can expres?‘”
P in terms of P,, Ps1, Pss

[5]
P 0 0 [6]
P=Q+Q |0 Py 0

0 0 Pya 7]
P. 0 0 -t (8]

Q4+ |0 Py 0 (31)

0 0 P

’ [9]
where [10]
o ) [11]

Q_{Qs QJ_H . (32)

Invertibility of the matrices in (30) and (31) is established for small [12]
values of singular perturbation parameters in [24]. Invertibility of ma-j13)
trix IT can be easily shown.

The efficiency of the proposed technique is demonstrated in[24] on a
power system example whose model is presented in [1]. In addition, thig?!
results of this paper are extended in [24] to the Kalman filtering mul-[15]
timodeling structure. Those results are successfully applied to a pas-
senger car under unevenness of the road disturbances model of [19] in
the context of the singularly perturbed multiparameter Kalman filtering
problem [24].

Remark: This paper uses the same technique (the block diagonaf47]
ization of the Hamiltonian matrix [17] as the paper [25]. However,
the problem considered in this paper is more challenging. Thél8]
method of [25] is based on the Chang transformation in [26] and
its application to the state-costate equations of the Iinear-quadrat'ﬁgl
optimal control problem. If we intend to apply the Chang trans-
formation to the state-costate equations of this paper we will
first have to simplify the problem and assume that it is a single[zol
parameter singular perturbation problem, thatis= e; = €. The [21]
Chang transformation will completely decouple the slow subsystem
from the fast subsystems, but the fast subsystems will be coupled
despite the fact that originally they are coupled only indirectly [22]
through the slow subsystem. This is obvious from the applicatiorIB]
of the nonsingular state transformation (Chang) to (9), which will
replace zero matrices in (9) by nonzero elements. This will causga4)
coupling between the fast state-costate variables in (19). Having
obtained coupled state-costate variables in (19) produces (:ouplé%6
fast algebraic Riccati equations in (22). That is why in this paper
we have used a much more complex transformation of [21] thajg)
in addition of extracting independent slow state-costate variables

[16]

simplifications and introduces full parallelism and decomposition
among three subsystems.
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