1932

04
w Im(G(w))
02
0
D2
-04

0.6
08

25
Re(G(Gw))
Fig. 3. Popov plot for G(s).

criteria, for instance, the Popov criterion and the circle criterion. Our
result improves the one presented in [6], where the stability condition
was reduced to a large scale linear programming problem. Here, based
on the convexity properties of the functions and sets involved, it
was possible to propose an efficient algorithm which determines the
optimal multiplier, i.e., the one which guarantees the less conservative
result. It is based on the solution of a concave nonlinear programming
problem which avoids the necessity of including frequency samples
and approximates iteratively the optimal multiplier using a time
sample allocation policy.
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The Successive Approximation Procedure for
Finite-Time Optimal Control of Bilinear Systems

Zijad Aganovic and Zoran Gajic

Abstract—It is shown in this paper that the successive approximation
procedure simplifies computations of the optimal solution of a bilinear-
quadratic optimal control problem. On the contrary of the results of Hofer
and Tibken where the optimal solution has been obtained in terms of a
sequence of the differential Riccati equations, in the presented method
only solutions of a sequence of the differential Lyapunov equations are
required. A chemical reactor example is used to demonstrate the efficiency
of the new method.

I. INTRODUCTION

From the practical point of view there is a need for the application-
oriented controller design technique for bilinear systems. For a
bilinear system with a standard quadratic cost functional, with the
exception of the simplest cases, however, it is not possible to express
the optimal control in the feedback form. Most of the obtained results
rely on quadratic cost functionals modified by inclusions of additional
nonnegative state-dependent penalizing functions. An overview of
the available results can be found in [1]-[15]. The obtained optimal
controls have problems with global stabilization of the closed-loop
system and with physical meaning of the modified cost functionals.

A new line of thought has been the development of an approx-
imative procedure for the optimal control of bilinear systems [6].
The obtained algorithm is characterized by the explicit linear control
law. Since the procedure of the actual computation of the approximate
control is still numerically complicated, it is the purpose of this paper
to present a new iterative scheme that produces linear control law
which is simpler to compute than the one obtained in [6].

II. BILINEAR-QUADRATIC OPTIMAL CONTROL
Consider the optimal control problem of a bilinear system

&= Az + Bu+ {zN}u,

2(to) = wo, {zN} = Z;L‘]'N] )
j=1

where © € R"™ are the system state variables, u € R™ are
the control inputs, and A, B, and N; are constant matrices of
appropriate dimensions with N; € R"*™. The quadratic cost
functional associated with (1) is given by

t
T = Lalt)T Faliy) + %/ YT Qu+u R0 At @)

where Q and F are positive semidefinite symmetric n X n matrices
and R;s a positive definite symmetric m X m matrix.

The application of the minimum principle leads to the following
nonlinear two-point boundary value system

[Az]: — [(B+ {eN)R B+ {=N )7 pl:,

0
xi(to) = 2}

Z;

pi = —[Qal: + [ATpli — $p"{N:R™' (B + {zN})T
+(B+{zNHRT'N Yp,  pilts) = [Fa(ts)li O
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where [}, ¢ = 1,---,n, stands for the ith component of the
corresponding vector. Unfortunately, there is no analytical solution
to this nonlinear two-point boundary value problem. Therefore, there
is a need for finding the approximate methods for solving the optimal
control problem of bilinear systems.

The work of [6] introduces the iterative scheme that stays in close
proximity to the Riccati approach of the linear-quadratic optimization.
Namely, the state-costate system (3) is rewritten in the same form as
in the linear case

#= Az - BR™'BT p, z(to) = z°

p=-Qz—A"p, pt’)=Fa(t)) @

where newly introduced time-varying matrices /i, Q, BR™'BT are
represented by the expressions

Ajji= Ay = H(N;RT'BY + BRT'N])pli,  i,j=1,-,n

Qi = Qij—zp" (NiR™'NJ + N;R™*NT)p,

Lj=1,--,n

BR'BT.= (B+ {zN)R'(B+ {aN})T
- %({zN}R_lBT + BRI 2N)T). (5)

Using (5) and denoting the iteration index by k¥ = 0, 1,---, and
taking into account that
AW = ApP @), QW =QuM )
BWRTB®T = B® )R BT (2™ (1)) )

the iterative solution of the state-costate equation (4) can be obtained
as [6]

FEHD) = JRg(et1) _ B o1 BT (k1) (b41) 40y — o0
(72)

PETD = QW (k1) _ T k) G gy Fa* gy,

(7b)
The iteration steps in (7) are carried out by using the Riccati
formalism, that is

K& = Gl _ gl J) _ J(07T gl
+ A’(’H'l)B(’C)R*IB(‘C)TI{("?Jrl)3 K’(kJrl)(tf) =F

gD = [4®) - B0 Rt BT (b0 0ekD) - Uk gy = 40
®

Then, for each iteration step, the linear controller is obtained as [6].
u(k+1)(t) - __R>1B(k)TK(k+l)(t)z(k‘H)(t) ©)

where the gain matrix K('“'H)(t) has to be calculated iteratively
from the Riccati matrix differential equation (8). It was proven in
[6] that convergence of this iterative scheme is guaranteed under the
following assumption.

Assumption 1: The control penalty matrix R is large enough.
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III. SUCCESSIVE APPROXIMATION APPROACH

The method of successive approximations is the main tool in
solving the functional equation of dynamic programming [7]-[9]. It
has been used in several control theory papers, for example [10]-[15].
This method can be used as a very powerful decomposition tech-
nique which simplifies computations. The monotonicity of successive
approximations can be easily established as shown in [7, p. 171].
Proving the convergence, however, is a much more complex task. In
the work of Mil’shtein [15], an approximate convergent method for
synthesis of the optimal control system is investigated. The approach
is based on a combination of the ideas of Lyapunov’s second method
and Bellman’s method of successive approximations. Convergent
suboptimal control sequences were also obtained in [10]-[11] and
[13]-[14].

The first step in developing a new optimization algorithm is based
on the application of the method of successive approximations to the
approximative procedure presented in [6]. The idea is to use only one
iteration of the successive approximation iterations at each step of the
optimization procedure of [6]. As a consequence of this we will have
to solve only one differential Lyapunov equation at each iteration
step [16]. The convergence proof of the new iterative scheme will be
given in the next section. Here, we present the algorithm only.

Equations defined in (7) correspond to the following linear-
quadratic finite-time time-varying control problem

2D — J(R) 4 (k+1) + B(k)u(k‘i'l)’ x(k+1)(t0) = 2 (10)

TR = 20T ) P40 1)
ty N )
+%/ (@7 GR G L (DT By gy
to

The one-step application of the successive approximation technique
to (10)—(11), results in the algorithm [16]

FH) = (40 _ B R BT pio (e 408 (k).
2 (46) = 2° (12)

PlHD 4 plet) g0 4 qT pltD) L o) — g plktD gy —
(13)

where

AW = A0 _ B p=1 BET ple) _ (0 _ §k) p(k)

Q(k) — Q~(’C) + P(k)B(k)R-lB(k)TP(k) — Q(k) + PR 5(F) pk)

) (14)
For the first iteration step k = 0, the matrices A BOR—1BOT,
and Q(© are calculated by using the solution of

#® = (4~ BR'B"P)2®, 2O(t) =42°

PO+ POU+ATPO L Q=0, POH=F (5

which corresponds to the linear part # = Az + Bu of the bilinear
system (1).

Thus, the one-step application of the successive approximations
requires the iterative solution of the time-varying differential Lya-
punov equations, unlike [6] where the solution of the differential
time-varying Riccati equations is required at each iteration.

The approximate control law is stabilizable and given by

u®) (2F+Dy = LRt BT plet (D)

It is important to notice that in the proposed scheme we have
to solve only one Lyapunov differential equation at each iteration.
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Namely, after obtaining the solution of the first Lyapunov differential
equation we update all coefficients and go to the next iteration with
respect to k. In that respect, the proposed method is a combination of
the successive approximations and the scheme developed by Hofer
and Tibken. In the next step, we have to prove the convergence of
the proposed method. The proof is along the lines of [6] taking into
account the specific features of the successive approximations.

IV. PROOF OF CONVERGENCE

In the first part of this proof the expressions for the differences of
25 (8) — 2® (¢) and PEHD (1) — P (¢) will be derived.

From (12) and (14) it can be obtained
d . : 5
(Tt(w(kﬂ) — 20y = AW (D _ Ry g (4 k) _ B0y

(16)

By using the variation of constants method for solving differential
equations and the definition the system transition matrix

%¢(k+1> — AW GHD gk () T
2FHD (1) = 6*H (1) an
the expression for the difference 20D — 2(8) can be written as
2D () — 2 (t)
= ¢<k+1>(t)/t¢<k“>”(s)(A““)(s) — A* V()6 (5) 20 ds.
’ (13)
Similarly, from (13)—(14), it can be shown that

d
dt

+Q(k) _ Q(k—l) +P(k)(A(k) _ A(k—l))

(AP — AT P = o (19)
so that the corresponding difference is
P(k+1)(t) _ P(k)(t)

k=T o [ )T k k=1
=T [T 10 ) - @4

to

+ PO (5)(AW (5) = A%V (5)) 4 (4 () =A%V (s)
P ()8 () st o). 20)

Taking the norm of both sides of (18) and (20), we get

Ly
||x(k+l)(t) _ x(k)(t)” < / Cm”A(k)(S) - A(k_l)(s,)“ ds

to

140 - PR < [ A0 ) - A0
to

+ 8201Q% (5) = Q¥ ()|} ds @)

where a, 31, B2 are obtained by straightforward calculation from
(18) and (20). For example «; is given by

ar = 2] [6*F 1" () 6D ()l 22)

The next step is to estimate the norms of [| A (¢) — AED )]
and [|Q®) (¢) — QD (1)]| in terms of ||« (¢) — 2= (¢)|| and
(1P () — Pt=1) (t)||. From (14) the following norm estimates can
be obtained
1A% — 4®D) < JAY — ABD 415 = SV PO

+ISS TIPS - PV 23)

4 (pltn) _ ployy o (pk+1) _ pliy g(8) 4 g7 (plht) _ plk)y
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10— QI < Q™M = QU+ PY - PE IS P
+IPETI IS = S P

+ | PETDSETD I P® - DY 24

The norms of JA® — AG=1) 18+ — =D} and 10" —
QY| can be estimated in terms of the original problem matrices
(1)—(6) so that the results of [6] can be used, that is

2} 1/2

A — A=V < [Z
X {IPF 2 — 250 4| P — PED ) 2s)

j=1
2} 1/2

%(N]-R_IBT +BR™'N])

n

159 = §*9) < [E

=1

1 o 1T —1 7T
SR BT + BRT'N))

x [l =22

2

n 1/2
+ {Z ||N,R_1NJ~T||2]

i, =1

x (1] + * D fle™ = 257V 26)
2} 1/2

@n

n

16% — @tV < {z

i =1

%(NlB_l NI+ N;RT'N])

X (IPP B 4 1P
) {IPE ® — 2471
+[IP®) = PEI D)y

Application of the results of (23)-(27) to (21) leads to the same
fixed-point problem as one obtained in [6]

[Jeen 2l < [l - 2]

Hp(k-f-l) - P(’C)“ HP(’C) _ p(kvl)” 28

where the 2 x 2 matrix M has to have both eigenvalues inside the
unit circle to assure convergence. It can be seen from (25)~(27) that
the term ||R™'|| can be factored out on the right-hand sides of all
upper bounds given in (25)-(27) leading to

M= M(H|R7Y. (29)

It is important to notice that the multiplicative influence of R7!
in (29) makes the eigenvalues of the matrix M arbitrarily small by
choosing R arbitrarily large. Note that the assumption that the penalty
matrix R is large enough is also the main assumption of [6].

The rest of the convergence proof follows by invoking Theorem 4.1
from [6] which states the contraction property for a pair of operators
defined in (28) under the assumption that the eigenvalues of the matrix
M are in the unit circle.

V. CASE STUDY: CHEMICAL REACTOR

The new method for the optimal control of bilinear systems is
applied to the control of a chemical reactor [6]. The bilinear model

of the system is given by
5/12} B= {—1/8}

. [13/6
A= [—50/3 -8/3 0

e 3] u-[)

The normalized state variables x; and x» represent temperature
and concentration of the initial product of the chemical reaction,
respectively. The normalized scalar control u represents the cooling
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Fig. 1. Profiles of temperature for z° = (0.15, 0)7.
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Fig. 2. Profiles of concentration for 20 = (0.15, 0)7.

flow rate in a jacket around the reactor. To transfer the system in
finite-time very closely to the steady state given by z = 0, v = 0,
the weighting matrix F' in the performance index has to be chosen
dominant compared to the design matrices () and R. A choice of the
design matrices F', Q, and R is

1000 0 10 0
F“[o 1000]’ Q‘[o 10]’ R=1

Initial conditions are #(0) = o = [0.150] and the final optimiza-
tion time ¢; = 3. Simulation resuits are presented in Figs. 1 and 2
where the solid lines are the optimal trajectories. The approximations
of the actual optimal trajectories are represented by the dashed lines
for the first approximations, the dotted lines for the second approx-
imations, and the dashed-dotted lines for the third approximations.
It can be seen from Figs. 1 and 2 that the new method preserves
very good convergence in this particular example. In addition, the
convergence is achieved with relatively small value for the control
penalty matrix R so that the constraint imposed in Assumption 1
does not seem to be very severe.

VI CONCLUSION

In this paper, the new method for the optimization of the bilinear-
quadratic  control systems is developed. The starting point is the
algorithms of [6] for the approximation of the optimal solution of
the bilinear optimal control problem. That method itself presents an
interesting approach from the application point of view. Namely, the
optimization problem of the bilinear (nonlinear) system is replaced
by a sequence of the linear optimization problems.

The new algorithm presented simplifies the procedure of [6]
by replacing the computation of the solution of the time-varying
differential Riccati equation by the problem of solving the differ-
ential time-varying Lyapunov equation at each iteration level. The
numerical example shows that the speed of convergence of the new
algorithm is not inferior to the one of the algorithm from [6].
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