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computational requirements, stopping criteria, and modifications for ?ix‘ed
end point problems. Table 6-4 summarizes these and other characteristics

of the three iterative methods. ‘ . .
It should be emphasized that the numerical techniques we have discussed

Tuble 6-4 A COMPARISON OF THE FEATURKN OF THREI FFKRATIVE MIETHODS YOR
AOEVINGG NONEINEAN FWO PUINT BOUNDARY VAL LI PROM EMA

Featu;e W Steepest descent Variation of extremals |  Quasilinearization
Initial guess ul(f), t € [to, 1y} plro) [or x(t)] x(8), p(t), ! E, [te, /]
* te and costaté
lterate to anr _ .. o Wiy Stal :
satisfy E 0 : '&‘U N 3}(‘( M ,,I equations
Importance of I.:;{
initial guess :
Storage u(e), x(1), and 2(n % n) matrices, x@r), pt(r),
requirements | dX° W o, 1/] boundary t€ftg,tnxan
du 0, ¢ €lta ty conditions matrix, boundary
conditions, ¢
Convergence
smputation i i i - tionof g
Computations | Integration of 2n dif-] Integration of Integra
required ferential equations,|  2a{m <= 1) first- 21(n + 1) first- -y,
calculation of order differential order differential
4.0 [du, niep nise, equations, inversion | oquations, inverslon
of an 2 x n matrix, | of ann X n malrix,
Modifications | Penalty function or Adjust p(t¢) based on Soi_ve for ¢ from equa-
for fixed end see {B-5] calculated values of | tion for xérs)
point x(17).
problems

may not always converge, and even if convergence occurs it may be only to a
local minimum, By trying several different initial guesses, we can be reason-
ably sure of locating any other local minima that may exist, or, if tflc num‘er.u?al
procedure converges to the same control and trajc‘ctory for a variety of initial
guesies, we have some assurance that a global minimum hus bheen deter-
mined,

‘The difficulty of solving nonlinear two-point boundary-value problems
has made iterative numerical techniques the subject of continuing resca.rgh.
When one is confronted with a problem of this type, it is useful to be familiar
with many diflerent techniques, perhaps trying several methods on a given
problem, or a hybrid scheme may be useful. For example, the steepest de-
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scent method may be used as a starting procedure and quasilinearization to
close in on the solutign.

.

6.6 GRADIENT PROJECTION

In this section we shall discuss an alternative approach to optimization
introduced by J. B. Rosen [R-4, 5, 6] which does not involve the solution of
nonlinear two-point boundary-value problems. Rosen’s methel , valled
gradlent projection, iy un iterative numerical procedure for finding an extre-

mum of a function of several varjables that are required to satisfy various

o

constraining relations, If the - function to be extremized (called the objective
Jfunction) and the constraints are linear functions of the variables, the optimiza-
tion problem is referred to as a linear programming problem; when nonlinear
terms ate present in the constraining relations or in the objective function, the
problem is referred to as a nonlinear programming problem.

We shall first discuss gradient projection as it applies to nonlinear pro-
gramming problems that have linear constraints, but nonlinear objective
functions. Then we shall show how the gradient projection algorithm can be
used to solve optimal control problems, :

Minimization of Functions by the Gradient
Projection Method

Example 6.6-1. 'I'o begin, let us consider simple example. Let £ be a

function of two variables y, and Y2 and f(y,, y,)} denote the value of

[ at the point (¥,, ;). The problem is to find the point (¥, y¥) where f

has its minimum value. The variables y1 and y, are required to satisfy
. the linear inequality constraints

i 20 (6.6-1a)
7220 " (6.6-1b)
2y, =5y, + 1020 (6.6-1¢)
=4y, — Ty, + 22520 (6.6-14)

"("] 2_"‘ l 2“45 . 0 “l,(’"t')
The set of points that satisfy all of these constraints is denoted by R and
called the admissible region.t For this example, R is the interior and the

boundary of the region whose boundary is determined by the lines lubelled

t In the nomenclature of nonlinear
admissible.

programming the term feasible i3 used rather than
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