
11-3. The Wiener-Kolmogoroft' theory 

In the examples of the preceding section, the available data consisted 
of one, two, or at most a countable number of random variables. 1Y§.. 
now come to' our main objective, name~YI the el!timation problem, where 
the data are available over an entire interval. We are given two proc­
esses get) and x(t). The first process is the signals(O or a functional of 
this signal. The second process x(O is statistically related to the first, , 
and we assume that it is "known" (see footnote, page 387) for every 1in 
an interval (a,b), where the end points of this interval tnight depend on I. 

~ want to estimate s(t) for a apecific' by a linear combination of the 
known values . . . 

x(f) a ~ f ~ b 

of xm. This myns that we seek suitable weight. 1&(E) such that with 

~(t) .....,/.. h(~)xW df - lim t h(fa)x(M 4f (11-27)
•. Af-tO'_l 

the error 

e == EUg(t) - f: hWxW dflll (11-28) 

is minimum. 
The integral in (11-27) is the limit of a sum; thus (11-27) can be 

viewed as an estimation of get) by a linear combination of the r.v. XUi) 
multiplied by the constants Mfa) 4f. '.this is identical with the problem 
of ~. 11-2, where now the constanta a: are Mf;) 4t.. From the orthog­
onality principle folloWs that these constants must be so chosen that 
the difference between get) and the estimation sum (integral) is orthogonal 
to the data; i.e., . 

E([g(t) - f: x(a)h(a) da]xWJ ... 0 a ~ f ~ b (11-29) 

for every f in the interval (a,b). With 

E Ig(t)xm t = RIK(, - E) Elx(a)x(f>l == Ru(a - f) 

the above gives ou!" jiMl result 

~~~.~_.o..: I& Ru(a - f)h(a)-d~. a-;:;~f S :J (11-30) 

Thus the weights hm must be so selected as to satisfy the above 6quatip.!!:. 
The resulting minimum m.s. error equals the expected value of the prod­
uct of the error times the quantity"g(t) to be estimated [see (11-17»);, 

•-Bn~0:;~;::;~(~~~_~~~::~..(O)- ~.B..~'-"a~h(a:,~J 
This is the essence of the linear m.s .. estimation blem.t What 

remains is to i entify the processes g an x(t) and the interval (a,b) in 
a particular problem and to solve the integral equation (11-30) for the 
unknown function hm; T..b~!-I!alytieal difficulties lie. in the solution 
()f ~his ~quatiQn: . 

8=1-DvY\ Pa-ru.:6.:S 

11~. The filtering problem 

We are given the processes s(t) (signal) and 

x(t) - set) + net)· 

(signal plus noise). We assume that the data x(t) are "known" for 
every t from - 00 to 00. We want to estimate s(t) by a linear operation 
on these data. This problem is a special case of (11-27), with 

g(t) = 8(t) a = - 00 . b = 00 


s(t) ....., f--- h(t;f)~(E) dE 


~he statio~ritI of the gi'y~n processes &(0 and x<OfolloW]~ 

h(t:f) should depend only on the difference t - i (see Example 11-9): . 

8(1) ....., f:. 1&(1 - f)x(f) df = f_-. x(t - a)h(a) da 


Th!!! our estimatgr 
 I' .. l&(1)- (:~(I -' a)A~) ~J 
can be viewed as the output of a linear time-mvariant system with input 
x(t) and impulse response the unknown weightsh(l) (Fig. 11-2). We' 
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x(1) - .(t, te)X(te) + f~ C'(t, T)G(T)u(T)dT (3) 

",here we can.(t, to) the crll1lliticm maN of (1). The transition 
rnatrix is a nonsingular matrix lllliisfying the differential equation 

~/dt ... F('" (4) 

(any such matrix is afundamenl.al m.a.trU [23, Chapter 3]). made 
unique by the additional requirement that, for all to, 

.(to, it) = I == unit matrix (5) 

The following properties are ~ediate by the existence and 
uniqueness of solutions of (1): 

.-1(tl, to) ... 4t(t., tl) for all t., tl (6) 

• (tt, 16) == .(h, tl)4t(tl, 16) for all ,la, tl, It (7) 

Ii F == const, then the transition matrix can be represented by 
the well-knoWn formula .. 

.(t, fe) == exp F(t - Ie) ... L: [F(e - tu)}'/i! (8) 
i-O 

which is quite convenient for numerical computations. In this 
special case, one can also express • analytically in terms of the 
eigenvalues of F, using either linear algebra [22) or standard 
transfer-function techniques (14). 

In some cases, it is convenient to replace the right-hand side of 
(3) by a notation that focuses attention on how the state of the 
system "moves" in the state space as a function of time. Thus 
we write the left-hand side of (3) as 

x(t) == +<t; x, k; u) (9) 

Read: The state of the system (1) at time t, evolving from the 
initial state x ... x(to) at time It under the action of a fixed. forcing 
function u(t). For simplicity, we refer to cp as the motion of the 
dynamical system 

<D Statement of Problem 
We shall be concerned with the continuous-time analog of 

Problem I of reference [11], which should be consulted for the 
physical motivation of the assumptions stated below. 

(A.) The 71IUsage is a random process x(t) genprated by the 
model 

dx/dt = F(t)x + G(tlu(t) (10) 

The observed signal is 

z(t) ... yet) + vet) ... H(t)x(!) + vet) (ll) 

The functions u(n. v(tl in 00=11) are independent random proc­
esses (white noise) with identically zero'means and covariance 
matrices 

cov [u(t), U(T») = O(t)'o(t - T) 

cov (v(t), V(T») .. R(O'o(t - T) for all t, T (12) 

cov [u(t), V(T») = 0 

\\'bere 0 is the Dirac delta fu.nction. and O(t}, R(t} are symmetric, 
nonnegative definite matrices continuously differentiable in t. 

We introduce already here a restrictive assumption, which is 
Deeded for the ensuing theoretical developments: 

(A,) The matrix R(t) is positive definite for all I. Physically, 
this means that no component of the signal can be measured 
exactly. 

To determine the random process x(l) uniquply, it is necessary 
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to add a further assumption. This may be done in two different 
ways: 

(Aa) The dynamical system (10) has reached "lteady-state" 
under the action of u(t), ill other words, x(t) is the random func­
tion defined by 

x(t) ... J~. 4t(t, T)G(T)U(T)dT (13) 

This formula is valid if the system (10) is uniformly asymp­
totically stable (for precise definition, valid also in the noncon­
stant case, see (21]). If, in addition, it is true that F, G, a are 
constant, then x(O is a stationary random procesa-this is one of 
the chief assumptions of the original Wiener theory. 

However, the requirement of asymptotic stability is incon­
venient in some cases. For instance, it is not satisfied in Example 
5, which is a useful model in some missile guidance problems . 
Moreover, the representation of random functions as generated 
by a linear dynamical system is already an appreciable restriction 
and one should try to avoid making any further assumptions. 
Hence we prefer to use: 

(Aa /) The measurement of x(t) starts at some fixed instant to 
of time (which may be - ex», at which time cov[x(to), x(to)] is 
known. 

Assumption (Aa) is obviously a special case of (A.'). Moreover, 
since (10) is not necessarily stable, this way of proceeding makes 
it possible to treat also situations where the message variance 
grows indefinitely, which is excluded in the conventional theory. 

The main object of the paper is to study the 
o ESTIMATION PROBLEM. Given known values 

of z(T) in the time-interval t.. ~ T ~ t. find an estimate x(tl t) of 
x(lt> of the form 

.(tt/t) == ),.r' A(tlo T}X(T)dT (14) 

8(x·, X(tl) - x(tlll)]' ... minimum for all x· (15) 

Remarks. (a) Obviously this problem includes as a special 
case the more common one in which it is desired to minimize 

8\1x(tl} - i(tIIOIl' 

(b) In view of (AI), it is clear that 8xOI) == 8iOIII) ... O. 
Hence (x·, x(tllt)] is the minimum variance linear unbiased 
estimate of the value of any coatate x· at x('I). 

(e) If8u(t) is unknown, we have a more difficult problem which 
will be considered in a future paper. 

(d) It may be recalled (see, e.g., (ll]) that if u and v are 
gaussian, then so are also x and x, and therefore the best estimate 
will be of the type (14). Moreover, the same estimate will be best 
not only for the loss function (15) but also for a wide variety of 
other loss functions. 

(e) The representation of white noise ,in the form (12) is not 
rigorous, because of the use of delta "funetions." But since the 
delta function occurs only in integrals, the difficulty is easily re­
moved as we shall show in a future paper addressed to mathema­
ticians. All other mathematical developments given in the paper 
are rigorous . 

The solution of the estimation problem under assumptions 
(AI), (A,), (AI') is stated in Section 7 and proved in Section 8. 

5 The Dual Problem 
It will be useful to consider now the dual of the optimal estima­

tion problem which turns out to be the optimal regulator problem 
in the theory of control. 
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(B) 

Fig. 8 Example 6: Block diagram of message process and optimal Riter 

~============~-I~==========~ 
Fig. 9 General block diagram of optimal Riteri" 

"~',:
" !I , This problem was studied by Hanson [9] and Bucy [25, 26]. 
i 

The dual problem is very similar to Examples 3 and 4. 

0summary of Results: Mathematics 
Here we present the main results of the paper in pre<'ise mathe­

matical terms. At the present stage of our understanding of the 
problem, the rigorous proof of these facts is quite complicated, 
requiring advanced and unconventional methods; they are to be 
found in Sections 8-10. After reading this section, one may pase 
without lose of continuity to Section 11 which contains the solu­
tions of the examples. 

(1) Canonical form of theoptimaljilter. The optimal estimate 
i(tlt) is generated by a linear dynamical system of the form 

di(tll)/dt == F(t)i(tlt) + K(t)i(tlt) 
(1) 

i(tlt) == %(t) - H(t)i(tlt) 

The initia.lstate i(lGlto) of (1) is zero. 

For optimal ~polation. we add the relation 

i(tllt) = .(11, t)x(tlt) (tl ~ t) (V) 

, No similarly simple formula. is known at present for interpolation 
(el < e). 

The block diagram of (1) and (V) is shown in Fig. 9. The 
variables appearing in this diagram are vectors ILlld the "boxes" 
represent matrices operating on vectors. Otherwise (except for 
the nODcommutativity of matrix multiplication) such generalized 
block diagrams are subject to the same rules as ordinary block 
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diagrams. The fat lines indicating direction of signal flow serve 
as a reminder that we are dealing with multiple rather than 
single signals. 

The optimal filter (1) is a feedback system. It is obtained by 
taking a copy of the model of the message process (omitting the 
constraint at the input), forming the error signal iCtlt) and feed­
ing the error forward with a gain K(t). Thus the specification of 
the optimal filter is equivalent to the computation of the optimal 
time-varying gains K(t). This result is general and does not de­
pend on constancy of the model. 

(2) Canonical form 	 for the dynamical system gOlJeming the 
optimal 	error. Let 

x(tlt) = x(t) - x(tlt) (22) 

Except for t.he way in which the excitations enter the optimal 
error, x(tlt) is governed by the same dynamical system as x(tlt): 

dx(tlt)/dt = F(t)ii(tit) + G(t)u(t) - K(t)[v(t) 

+ H(t)x(tjt)] (lI) 

See Fig. 10. 
(3) Optimal gain. Let us introduce the abbreviation: 

p(t) == cov[i(tjt), x(/jt)] (23) 

Then it can be shown that 

K(t) = P(t)H'(t)R-l(t) (Ill) 

(4) Variance equation. The only remaining unknown is P(t)· 
It can be shown that pet) must be a solution of the matrix dif­
ferential equation 

riP/dt - F(t)P + PF'(t) - PH'(t)R-I(t)H(t)P 
+ G(t)Q(t)G'(t) (IV) 
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'fbiB is the variance equation; it is a aystein of n(n + 1}/2' DOn­

linear differential equations of the first order, and is of the Riccati 
type well known in the calculus of variations [17, IS}. 

(5) Existenu of solutions of the variance equation. Given any 
fixed initial time to and a nonnegative definite matrix Po, (IV) has 
a unique solution 

pet) = n(ti Po. to) (24) 

defined for all /1 - tol sufficiently smaU, which takes on the value 
P(t.) = Po at I = to. This follows at once from the fact that (IV) 
~ati.sfies a Lipschitz condition (21). 

Since (IV) is nonlinear, we cannot of course conclude without 
further investigation that a solution P(I) exists for aU t [21J. By 
Ulking into account the problem from which (IV) was derived, 
however, it can be shown that pet) in (24) is defined for all t ~ to. 

These results can be summarized by the following theorem, 
which is the analogue of Theorem 3 of [I1J and is proved in 
Section 8: 

THEOREM 1. Under A8sumplions (AI), (At), (~'), the 
,olution. of the optimal estimation problem with to > '" is given by 
relations (I-V). The 80lution P<tl of <IY) i8 uniquely determined 
for all t ~ to by the 8pecification of 

Po = cov[x(to), x(to)J; 

/mowledge of pet) in turn determines the optimal gain K(t). The 
initial stale of the optimal filter is O. 

(6) Variance of the estimate of a C08tate. From (23) we have 
immediately the following formula for (15): 

S[x·, i(Ilt») I = IIx*II;'(t) (25) 

(7) Analytic 80lution of the variance equation. Because of the 
close relationship between the Riccati equation and the calculus 
of variations, a closed-form solution of sorts is available for (IV). 
The easiest way of obtaining it is as follows [17J: 

Introduce the quadratic HamiUtmian function 

X(x, w, t) = -(I/,)I!G'(t)xIIIQ(t) 

- w'F'(t)x + (1/1)/IH(t)wll'R-'(t) (26) 

and consider the associated canonical differential equations 

dx!dl = <>JC/bwi = -F'(t)x + H'(t)R-I(t)H(t)w } 
(27)

dw/dl = -bX/bx = G(I)Q(t)G'(t)x + F(t)w 

Wt' denote the transition matrix of (27) by 

0(t, to) = [8u(t, to) 0 12(t, to)] (28) 
0 n(t, to) 0 11(t, t.) 

• This is the number of distinct elements of the 8ymmetric matrix 
p(t). 

I The notation ClJC/ClW means the gradient of the scalar JC with 
respect to the vector w. 

In Section 10 we shall prove 
THEOREM 2. T"~ solution of (IV) for 0I'bitrart/ nonnegati!1, 

definite, symmetric P. and all t ~ ,. ccm be repramtect bv tM formuk 

mt; Po, to) .. [8I1(t, to) + 8a(t, t.)Po)· [8u(t, to) 

+ 8 11(t, tc)PO]-1 (29) 

Unless all matrices occurring in (27) are constant, this result 
simply repllLCes one difficult problem by a.nother of similar dif­
ficulty, since only in the rarest cases can 8(t, to) be expressed in 
analytic form. Something has been accomplished, however, since 
we have shown that the 8olution of nonCDnstant estimation problems 
i1WoWes precisely the same analytic difficultiu IJ8 the 8olution of linear 
differential equations with variable coejficienU. 

(8) Existence of 8teady-Stale solution. If the time-interval over 
which data are available is infinite, in other words, if to = - "', 
Theorem 1 is not applicable without some further restriction. 

For instance, if H(t) = 0, the variance of i is the same as the 
variance of X; if the model (10-11) is unstable, then x(t) defined 
by (13) does not exist and the estimation problem is meaningless. 

The following theorem, proved in Section 9, gives two sufficient 
conditions for the steady-state estimation problem to be meaning­
ful. The first is the one 88BUmed at the very beginning in the 
conventional Wiener theory. The second condition, which we in­
troduce here for the first time, is much weaker and more "natural" 
than the first; moreover, it is almost a necessary condition as well. 

THEOREM 3. Denote the solutions of (IV) IJ8 in (.94). Then 

the limit 


lim n(ti 0, to) = P(t) (30) _ 

ezists for aU t and is a 80lution of (IV) if either 
CA.) the model (10-11) ill uniformly lJ8ymptotically stable; or 
CA.') the model (10-11) is "completely obeenJable" [17], that is, 

for aU t there is 80me to(t) < t 8t1ch that the matrix 

M(to, t) = i: 4»'(T, t)H'(T)H(T)4»(T, t)dT (31) 

is po3itive definite. (See [21) for th.e definition of uniform lJ8ymptotic 
stability. ) 

Remarks. (g) pet) is the covariance matrix of the optimal error 
corresponding to the very special situation in which (i) an arbi­
trarily long record of past measurements is a.vailable, and (ii) the 
initial state xC"') was known exactly. When all matrices in 
(10-12) are constant, then so is also P-this is just the classical 
Wiener problem. In the constant case, IS is an equilibrium 
state of (IV) (i.e., for this choice of P, the right-hand side of (IV) 
is zero). In general, Pet) should be regarded as a moving equi­
librium point of (IV), see Theorem 4 below. 

(Ii) The matrix M(It, I) is well known in mathematical statistics. 
It is the information matrix in the sense of R. A. FiSher [2OJ 
corresponding to the special estimation problem when (i) u(t) = 0 
and (ii) vet) = gaussian with unit covariance matrix. In this 
case, the variance of any unbiased estimator JoI(t) of [x," x(t)] 
satisfies the well-known Cramer-Rae inequality [2OJ 

~==========~-I~==========~. 
Fig. 10 G.,,_I block diagram of optimal ••tlmatlo" error 
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EIJery costate x· has a minimum-IJariance unbilJ8ea estimator for 
;' it I which the equality sign holds in (Se) if and only if M is positive 

definite. This motivates the use of condition (A.') in Theorem 3I ' 
and the term "completely observable." " 

(i) It can be shown [17] that in the constant case complete 
observability is equivalent to the easily verified condition: 

with P. Note. however, that the procedure may fail if the con­
ditions of Theorems 3 and 4 are not -satisfied. See Example 4. 

(11) Solution of the Dual Problem. For details, consult (17). 
The only facts needed here are the following: The optimal con­
trol law is given by 

u*(t*) = -K·(t*)x(t·) (34) 

where K*(t*) satisfies the duality relation 
rank[H', F'H', ..., (F')"-IH'] = n (33) 

where the square brackets denate a matrix "ith n rows and np 
columns. ,l 

(9) Stability of the optimal filter. It should be realized now that 
the optimality of the filter (I) does not at the same time guarantee 
its 8tability. The reader can easily check this by constnlcting an 
example (for instance, one in which (10-11) consists of two non­
interacting systems). To establish weak sufficient conditions 
for stability entails some rather delicate mathematical technicali­
ties which we shall bypass and state only the best final result cur­
rently available. 

First, some additional definitions. 
We say that .the model (10-11) is uniformly cumpletely oll­

8eruable if there exist fixed constants, ai, a2, and (T such that 

alllx*1I1 ;a IIx·IIIM(/- .... /) ;a a~lx·II' for all x· and to 

Similarly, we say that a model is cumpletely controllable [uni­
formly completely controllable] if the dual model is completely ob­
servable [uniformly completely observable]. For a discussion of 
these motions, the reader may refer to [17). It should be noted 
that the property of "uniformity" is always true fofcontltant 
systems. 

We can now state the central theorem of the paper: 

THEOREM 4. Assume that the model of the message process is 

(A.") uniformly cumpletely obseruable; 

(A.) uniformly cumpletely controllable; 

(A.) aa ;a 1/0(t)1/ ;a a., al;a I!R(t)!! ;a a. for all t; 

(Al) IIF(t)1I ;a a7. 


Then the following is true: 

(i) The optimal fiUer is uniformly 1J811mptoticaUy stable; 
(ii) EIJery solution fi(ti P., to) of the uariance equation (IV) 

Btarting at a symmetric nonnegatwe matrix P. conuerges to P<t) 
(defined in Theorem S) IJ8 t _ CD. 

Remarks. (j) A filter which is not uniformly asymptotically 
stable may have an unbounded response to() a bounded input (21); 
the practical usefulness of such a filter is rather limited. 

(k) Property (ii) in Theorem 4 is of central importance since it 
shows that the variance equation is a "stable" computational 
method that may be expected to be rather insensitive to roundoff 
errors. 

(l) The speed of convergence of P.(t) to P<t) can be estimated 
quite effectively usinJl; the second method of Lyapunov; see (17). 

(10) Solution of the claaBical Wiener problem. Theorems 3 and 4 
have the following immediate corollary: 

THEOREM 5. Assume the· hypotheses 01 Theorems S and .4 
are .atisfied and that F, G, H, 0, R, are constants. 

Then, if to ... - CD, the solution of the estimation problem is 0b­
tained by Betting the right.hand Bide of (IV) equal to ,ero and soWing 
the resulting Bet ·of quadratic algebraic equations. That solution 
which is nonnegative definite is equal to P. 

To prove this, we observe that, by the &ll8umption of con­
stancy, pet) is a constant. By Theorem 4, all solutions of (IV) 
starting at nonnegative matrices converge t6 P. Hence, if a 
matrix P is found for which the right,.hand side of (IV) vanishes 
and if this matrix is nonnegative definite, it must be identical 
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K·(t·) = K'(t) (35) 

and is to be determined by duality from formula (III). The 
value of the performance index (20) may be written in the form 

,min V(x*; t*, to*, u·) = Ilx·IlIII*(I*; x*.I'\) 
u* 

where n*(t*; x*, to·) is the solution of the dual of the variance 
equation (IV). 

It should be carefully noted that the hypotheses of Theorem 4 
are invariant under duality. Hence essentially the same theory 
covers both the estimation and the regular problem, as stated in 
Section 5. 

The vector-matrix block diagram for the optimal regulator is 
shown in Fi~. 11. 

Pl.AIfI' 

COlfI'ROLLER I 
-r(t) I 

II 
L J 

Fig. II Gon_1 block dlogram of optimal regulator 

(12) Computation ofthe couariance matriz for the message process. 
To appJyTheorem 1, it is necessary to determine cov [x(k), x(lt»). 
This may be specified as part of the problem statement as in 
Example 5. On the other hand, one might assume that the mes­
sage model has reached steady state (see (Aa», in which case from 
(13) and (12) we have that 

S(t) = cov [x(t), x(t)] ... f~ .. ~t, T)G(T)Q(T)G'(T)4l'(t, T)dr 

provided the model (10) is asymptotically stable. Differentiating 
this expression with respect to t we obtain the following dif­
ferential eouation for Set) 

dS/dt ... F(t)S + SF'(t) + G(t)O(t)G'(t) (36) 

This formula is analogous to the weIl~known lemma of Lyapunov 
(21) in evaluating the integrated square of a solution of a linear 
differential equation. In case of a constant system, (36) reduces 
to a system of linear algebraic equations. 

8 Derivation of the Fundamental Equations 
We first deduce the matrix form of the familiar Wiener-Hopf 

integral eguation. Difi'erentiating it with respect to time ana 
then using (10-11), we obtain in a very simple way the funda­
mental equations of our theory. 

Much cumbersome manipulation of integrals can be avoided by 
recognizing, as has been pointed out by Pugachev (27), that the 
Wiener-Hop! equation is a special case of a simple geometric 
principle: anal·eel·. 

Consi er an abstract space OC such that an inner product (X, Y) 
is defined between any two elements X, Y of OC. The norm is 
defined by \lXlI - (X, X)l/s. Let 'lL be a subspace of OC. We 
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Combining (10) and (1), we obtain the differential equation for 
the error of the optimal estimate· (fo)..o:-)",.. 

di(tlt)/dt == [F(t) - K(t)H(t») x(tl&) + G(t)u(t) - K(t)v(t) (II) 

To obtain an explicit expression for K(t), we observe first that 
(39) implies that following identity in the interval to ;:! (T < t: 

cov [x(t), y«(T)) - f~ A(t, T) cov [yeT), y«(T»)dT - A(t,O')R(O') 

(39') 

Since both sides of L39') are continuous functions of 0', it is clear 
that equality holds also for 0' ... t; Therefore 

K(t)R(t) = A(t, OR(t) = cov[x(tlt), yet») 

... cov [x(tlt), x(t») H'(t) 

By (40), we have then 

== cov [x(tlt), x(tlt)]H'(t) == P(t)H'(t) 

Since R(t) is assumed to be positive definit.e, it is invertible and 
therefore 

{ K(t) ... p(t)H'(t)R-1(t) 

We can now derive the variance equation. Let 'F(t, T) be the 
common transition matrix of (1) and (II). Then 

p(t) - 'F(t, to)P(to)'F'(t, to) 

- ef~ 'F(t, T)[G(T)U(T) - K(T)y(T)]dT 

X f: [u'(O')G'(O') - v'(O')K'(O'»)'F'(t, 0')d0' 

Using the fact that u(t) and v(t) are uncorrelated white noise, the 
integral simplifies to 

- (''F(t, T)[G(T)O(T)G'(T) + K(T)R(T)K'(T»)'F'(t, T)dTJlo 
Differentiating with respect to t and using (Ill), we obtain after 
easy calculations the variance equation 

iIP/dt - F(t)P + PF'(t) - PH'(t)R-1(t)H(t)p 

+ G(t)Q(t)G'(t) (IV) 

y, we could write 

iIP/dt ... d cov Ii, i)/dt- cov [di/dt, i) + cov Ii, di/dt) 

and evaluate the right-hand side by means of (II). A typical 
covariance matrix to be computed is 

cov [i(tll), u(t») 

- cov L£: 'F(t, 1')[G(T)u(1') - 1C(1')y(1'»)d1', u(t) ] 

- (1/.)G(t)O(t) 

~e factor 1ft following from properties of the 8-function • 
~ To complete the derivationl, we note that, if 'I > C, then by 

(3) 

[X(~t) - .(11) Ox(tlt) (tJ iit t) (V)] 

The lI&IIle conclusion does not follow if " < , because of lack of 
iDdependeoce between x(1') and u(1'). 
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The only point remainiDg in the proof of Theorem 1 is to de­
termine the initial conditions for (IV). From (38) it is clear that 

x(t..IIo) == 0 

P') == P(LG) =-cov(x(tclto), x(toltc») 

== covl x(to), x(tc:») 

In case of the conventional Wiener theory (see (A.», the last term 
is evaluated by means of (36). 

This completes the proof of Theorem 1. 

9 Outline of Proofs 
Using the duality relations (16), all proofs can be reduced to 

tho!'t' given for the regulator problem in (17). 
(1) The fact that solutions of the variance equation exist for 

all t ~ to is proved in [17, Theorem (6.4»), using the fact that the 
variance of x(t) must be finite in any finite interval (to, II. 

(2) Theorem 3 is proved by showing that there exists a particu­
lar estimate of finite but not necessarily minimum variance. 
Under (A.), this is proved in [17; Theorem (6.6»). A trivial 
modification of this proof goes through also with assumption 
(Aa). 

(3) Theorem 4 is proved in [17; Theorems (6.8), (6.10), (7.2»). 
The stability of the optimal filter is proved by noting that the 
estimation error plays the role of a Lyapunov function. The 
stability of the variance equation is proved by exhibiting a 
Lyapunov function' for P. This Lyapunov function in the 
simplest case is discussed briefly at the end of Example 1. While 
this theorem is true also in the nonconstant case, at present one 
must impose the somewhat restrictive conditions (At - At). 

10 	 Aaalytic Solution of the Variance Equation 
Let X(t), Wet) be the (unique) mat·rix solution pair for (27) 

which satisfy the initial conditions 

X(t:.) - I, W(to) - Po (47) 

Then we have the following identity 

Wet) ... P(t)X(t;, t ~ 10 (48) 

which is easily verified by substituting (48) with (IV) into (27). 
On the other hand, in view of (47-48), we see immediately from 
the first set of equations (27) that X(t) is the transition matriX 
of the differential equation 

dx/dt -= -F'(t)x + H'(t)R-I(t)H(I)p(I)x 

which is the adjoint of the differential equation (lV) of the 
optimal filter. Since the inverse of a' transition matrix alway' 
exista, we can write 

pet) - W(tiX -1(t), 'iit eo (49) 

This formula may not be valid for t <. to, for then P(t) may not 
exiSt! 

Only trivial steps remain to complete the proof of Theorem 2. 

11 	 Elamples: Solution 
Ezompk 1. If !III > 0 and rll > 0, it is easily verified that the 

conditions of Theorems 3-4 are satisfied. After trivial lUll­
etitutions in (m-IV) we obtain the expression for the optimal 
gain 

ku(O - 'Pu(t)/rJl 	 .(50) 

and the variance equation 

d'Pu/dl - ~II'PII - 'PJI·/ru + flJ (iiI) 

Transactioos of tile ISME 


