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Abstract-The purpose of this paper is to present an alternate 
derivation of optimal linear filters. The basic technique is the use of 
a matrix version of the maximum principle of Pontryagin coupled 
with the use of gradient matrices to derive the optimal values of the 

; '1 filter coefficients for minimum variance estimation under the require­
:11" ment that the estimates be unbiased. The optimal filter which is de­\'.i . 

rived turns out to be identical to the well-known KaI.man-Bucy filter. . 

I. INTRODUCTION

T HE CLASSIC paper by Kalman and BucyllJ has 
produced one of the most useful theoretical and 
computationally feasible approaches to practical 

problems of estimation, filtering, and prediction. The 
so-called Kalman-Bucy filter has been used in many 
applications in aerospace-related problems. 

The purpose of this paper is to provide another tech­
nique for obtaining optimal linear filters; it can also b~ 
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viewed as an alternate derivation of the Kalman-Bucy 
filter. The orii'inal derivation11J was based upon the 

derivation of the Wiener-Hopf equation using the 
orthogonal projection lemma; the resultant integral 
equations were then transformed into differential equa­
tions. The method used here is conceptually and mathe­
matically different. It requir~s the use of the maximum 
(or minimum) principle of Pontryagin and is based 
upon viewing the filter as a dYnamical sy.stem which 
contains integrators and gains in forward and feedback 
loops. The optimal filter is then specified by 1) fixing 
its structure, and 2) fixing the gains. 

Certainly, this paper can be VIewed as an intellectual 
exercise. After all, no new results are presented. How­
ever, the method of attack seems promising-in the 
opinion of the authors-for attacking suboptimal 
linear and nonlinear filtering problems (see TseI8J ). 

The problem is formulated in such'a way that, on 
the basis of the dynamic behavior of the error covari-. 
ance matrix, the gains involved in the structure of the 
optimal filter can be found which will minimize a scalar 
function of .the error covariance matrix. Thus, by 
analogy toa conventional optimal control problem, iYthe 
elements of the error covariance matrix resemble the 
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it "state variables" of a dynamical system, and 2) the 
-d gains of the linear filter resemble the "control variables" 
d of the dynamical system. This approach leads then to a 
L- natural application of the maximum principle. It should 
n be remarked that this point of view has been succes­
:e sively used for the determination of optimal radar wave­
1- forms in communication problems.!').!6) 
~r The structure of the paper is as follows. In Section II 
It the plant whose state xCt) is to be estimated is defined; 
Ie it is a linear time-varying plant driven by white noise, 
s- and it produces an observed signal which consists of the 
Ie plant output corrupted by additive white noise (Fig. i). 

In Section III the purpose and structure of the filter are 
ld discussed. The purpose of any estimating filter is to 

generate an estimate of the state of the plant. It is 
argued that a reasonable choice is to use a linear filter of 
the ~ame dimension as that of the plant; this choice 
fixes the structure of the filter (Fig. 2). Thus, the filter 
is completely specified by 1) its initial state w(to), 2) the 
gains in the forward paths, i.e., the elements of the 
matrix G(t), and 3) the gains in the feedback paths, i.e., 
the elements of the matrix F(t). In Section IV the re­
quirement that the filter generate unbiased estimates of 
the plant state is imposed. This requirement is shown to 
1) fix the initial filter state, and 2) yield a relation be­
tween the filter gain matrices F(t) and G(t). In this 
manner, only the class of filters is considered that yields 
unbiased estimates (Fig. 3). This class of filters is pa­
rameterized by the matrix G(t). In Section V the ma­
trix differential equation satisfied by the error covari­
ance matrix 1:(t) is obtained; this equation involves the 
matrix G(t). In Section VI it is shown how the applica­
tion of the minimum principle yields the optimal value cy 
of the matrix G(t) when the expected value of a quad­ile 
ratic form in the error is to be minimized. Section VII

he 
contains the discussion of the results.-al 

a-
II. DEFINITION OF THE PLANTle­

m In this section the plant and the filter are defined 
cd using their input-output state representation. 
ch Consider an nth-order linear and time-varying dy­
:k namical system <P, called the plant (Fig. 1). The plant 
Ig is described by the relations 

al :k(t) = A(t)x(t) + B(t)u(t)
<P: (1) 

v- yet) = C(t)x(t) (2) 
Ie 

where
al 

-~ 

,. x(t) is the state of <P, avector with n components, 
m u(t) is the input of <P, a vector with r components, 
-1- yet) is the output of <P, a vector with m components, 
le A(t) is the nXn system matrix of <P, 
3.r B(t) is the nXr gain matrix of <P, 
Jy C(t) is the m Xn output matrix of <P. 

le It is assumed that <P is uniformly completely control­
le , lable and observable. 

1­... 

INITIAL MEASUREMENT 

STATE WHITE NOISE 

x(t.' v(t' 

Fig. 1. Block diagram of ~he plant <P which resu}ts in th~ observed 
signal z(t). All matrices A. B, and C are time varymg. 

It is assumed that the input u(t) to <P is a vector­
valued white-noise Gaussian process with zero mean 

E{ u(t)} = 0 for~all t (3) 

and covariance matrix 

cov[u(t); U(T)] = E{ u(t)u'(r)} = a(t - T)Q(t) (4) 

where 5(.) is the Dirac delta function. Evidently, Q(t) 
is an r Xr symmetric positive semidefinite matrix. 

Let to denote the initial time and x(to) the initial state 
vector of <P. It is assumed that x(to) is a vector-valued 
Gaussian random variable, independent of u(t), with 
known mean 

- E{x(to)}! Xo (5) 

and known covariance matrix 

cov[x(to); x(to)] = E{ [x(to) - fo][x(to) - f o]'} 

A 
= 1:0• (6) 

Under these assumptions the state x(t) and the output 
yet) are Gaussian random processes. 

Suppose that the output yet) can be observed only in 
the presence of white Gaussian noise. For this reason, 
let z(t) denote the observed signal, 

z(t) = yet) + vet) = c(t)x(t) + vet) (7) 

where vet) is a Gaussian white-noise process with zero 
mean, i.e., 

E{ v(t)} = 0 for all t (8) 

and covariance matrix 

cov[v(t) j V(T)] = E{ v(t)V'(T)} = aCt - T)R(t) (9) 

with R(t) symmetric positive definite. l Furthermore, it 
is assumed that vet), u(t), and x(to) are independent. 

III. THE FILTER 

In the problem of estimation, it is desired to obtain 
an estimate of the state x(t) of the plant <P. The state of 
<P is not, in general, available for measurement. Rather, 
the signal z(7') can be measured for to 5:7' 5:t, and, on the 
basis of this an estimate, say x(t), of x(t) can be obtained. 

I Unless this assumption is made. a singular optimization problem 
will be involved. 
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From an engineering point of view, a system !F, called 
a filter, must be constructed to accept the available data 
in real time, namely, z(.), and produce a vector-value"a 
signal i(t) for t'~to ~ch that the euorsignal , 

e(t) = x(l) - i(l) (10) 

is in some sense small. 
From a practical point of view, the following two 

questions are of interest: . 

1) How can" a filter !F be constructed and how com­
plex is its structure? 

2) How good is the filter (in the sense of estimating 
the state x(t»? 

The complexity of the filter can be related to several 
of its properties; for example, whether or not the filter 
is continuous-time or sampled-data, lumped or distrib­
uted, linear or nonlinear, time varying or time invariant, 
and so on". In general, the physical complexity of the 
filter is also related to the complexity of the mathe­
matics that describe the plant-filter process. 

As a general comment, two types of design should be 
distinguished. One type is to seek the best possible filter 
without any additional constraints. On the other hand, 
additional constraints (motivated by practical, mathe­
matical, or computational considerations) may be im­
posed before the optimization problem is formulated. 
In the latter case, a filter may be obtained which is" 
optimal with respect to the imposed constraints, but not 
identical to the truly optimal one. However, in that case 
the design may be more in accord with the requirements 
of the designer. In the sequel, the philosophy of design 
will be to constrain the fil ter to be a linear one. Of course, ' 
this constraint turns out to be of no consequence in 
this case of linear dynamics and Gaussian processes, 
since the Kalman-Bucy filter is also linear; in general, 
the resultS will be different. 

The filter !F is constrained to be a linear and time­
varying system described by the relations 

wet) = F(I)w(t) + G(t)z(t) (11) 

i(t) = H(t) wet) (12) 

where i t is an n vector . ext and z t an m vector. 
ote that the complexity of this linear filter can "be 

related to the dimension, say 9., of its state vector wet}. 
It may be argued that the smaller the value of g, the less 
complex the filter. In the remainder of this paper, .!hi§ 
class of linear filters is further restricted by! " 

, q = n; 

H(t) = I (13) 

where 1 is the nXn identit matrix so that the filter 
is escribed by the equation 

I This assumption will be diScussed in the sequel. 

FILTER INITIAL 
CONDITIQNS

wI", 

will 

FILTER"" STATE 

Fig. 2. Dynamic simulation of the filter. 

[!F: W"(t). ~ F(t)w(t) + G(t)z(t) \ (14) 

where the state wet) of the filter !F is to act as the esti­
.§ate of the state x(t) of the plant <P. "" 

Once the structure of the filter !F (Fig. 2) has been 
constrained by (14), then the specification of the ele­
ments/si{t) of the nXn matrix F{t), the elements g,J:{t) 
of the nXm matrix G(t), and the initial state vector 
(deterministic) w(to) completely defines the filter !F in 
the sense that wet) is well defined for any z{r), 10SrSt. 

In the remainder of this p'aper the initial state w{to) 
and the matrices F t and G I of the filter wHI be deter­
mine by demanding that 1) wet) be an unbiased esti­

- mate of x(t); and then 2) w(t) be a minimum variance 
estimate of x(t). 

IV. STRUCTURE OF THE FILTER FOR 


UNBIASED ESTIMATION 


The requirement that wet) be an unbiased estimate of 
x(t) is basic to the subsequent development. This re­
quirement of unbiasedness may not be imposed (or even 
desirable) in a statistical estimator, although it is a 
property of the conditional expectation. Nevertheless, 
such a constraint appears to be popular and desirable 
in many engineering applications of the theory, and it 
is made in this paper. 

Since wet) is to be an estimate of x{t), consider the 
-error vector 

e(t) = x(t) .:... w(t), (15) 

Differentiating formally both sides of (15) 'and using 
(1), (2), (7), and (14), it may be concluded that the error 
e(t) satisfies the differential equation 

e{t) = A(t)x(t) + B(t)u(t) - F(t)w(t) 

- G(t)C(t)x(t) - G(t)v(t). (16) 

Since wet) =x(t) -e(t), (16) further reduces to 

e{t) =" [A(t) - F(t) ....: G(t)C(t)]x(t) + F(t)e(t) 

+ B(t)u(t) - G{t)v(t), (17) 

N~t, impose the requirement ,that wet) be an unbiased 
estimate o( x(t) for all 1>10; this means that the con­
straint 

E{ x(t)} = E{ w(t)} for all t 2: 10 ~18) 
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Fig. 3. w(t) is an unbiased estimate of %(t) for all t>to for any
matrixG(t). All matrices are time varying. - .. 

must hold. The constraining equation (18) yields 

E{ e(t)} == 0 for alIt ~ to (19) . 

;t E{ e(t)} == E{ e(t)} == 0 for all t ~ to. (20) 

[A(t) - F(t) - G(t)C(t)]E{x(t)} = 0 (21) 

must hold for all t ~ to. But, in general, E {x(t) } ~o since 
it is the solution of the differential equation (see Ap­
pendix I) . 

d 
dt E{ x(t)} = A(t)E{x(t)} ; 

E{ x(to)} == i o. . (22) 

Therefore, if (21) is to hold for all E {x(t)}, then one 
arrives at the relation 

[ A(t) - F(t) - G(t)C(t) = 0 for all t ~ to] (23) 

Furthermore, from (15) the requirement that at the 
. initial time E { e(to) } = 0 yields (see (5»

I w(to) = E{ x(lo)} ~ iJ (24) 

since w(to) is a deterministic vector (the initial state of 
the filter). 

RecapitUlation: The constraint that wet) be an un­
biased estimate of x(t) for all t ~ to implies that 

an 
2) iliefilter matrices F(t) and G(t) must be related, in 

view of (23), by 

F(t) == .A(t) - G(t)C(t). (25) 

Henceforth, only the class of "unbiased filters" 3'"'11 
described by the relation 

w(t)·= [A(t):"'" G(t)C(t) ]w(t) + G(t)z(t) ~ 
3'"'\1: 

w(to) = i o. (26) 

will be considered. This class of filters 3'"'11 contains ~ a 
parameter the "gain" matrix G(t) (Fig. 3). . 

V. TIME EVqLUTION OF THE ERROR 


COVARIANCE MATRIX 


Consi~er the class of all linear filters ff'11 'which provide 
'unbiased estimates wet) of x(t). Such filters are de­
scribed by (26) where G(t) i~ an arbitrary nXm matrix. 
For any given choice of Q(t) the error· ee') satisfies the 
differential equation . '. 

e(t) == [A(t) - G(t)C(t)]e(t) +B(t)u(i) - G(Ov(t) (27) 

which is obtained by substituting (25) into (17). 
From a physical point of view it is desirable to have 

an unbiased estimate with small variance. For this rea­
son, let r be some time r > to, and consider the scala~ . 
quantity 

J == E{ e'(T)M(T) e{-r) } ; 

M(T) == M'(T) (28) 

where the matrix M(T) is constrained to be positive 
definite.' Since for any two column vectors x and y the 
following equality holds 

ry == tr[yx'] (29) 

it follows that 

J == E{ tr[M(T)e(T)e'(T)]} == tr[M(T)E{ e(T)e'(T) }] (30) 

because the trace and expectation operators are linear 

and they commute. But the matrix 


(31) 

is simply the covariance matrix of the error e(T), i.e., 

1:(T) = cov[e(T); e(.,.)] 

since E {e(t) } =0 for aU t. Henceforth, the scalar quan­
!!ty 

(32) 

shall be used as a measure of the filter performan.£.e. The 
smaller the value of J, the better the filter. 

Since the quality of the filter can be related to a func­
tion of the error covariance matrix 1:(.), consider its 
time evolution. As the error differential equation (27) is 
linear, the results stated in Appendix I can be used to 
deduce that 1:(t) satisfies the linear matrix differential 
e,.9uation 

~(t) = [A(t) - G(t)C(t) ]1:(t) + 1:(t)[A(t) - G(t)C(t))' 

+ B(t)Q(t)B'(t) + G(t)R(t)G'(t). (33) 

Furthermore, the value of 1:(to) is known to be 

1:(to) = E{ e(to)e'(to)} 

= E { [x(to) - w(to)] [z(to) - w(to)]'} 

== E{ [x(to) - io][z(to) - io)'} = 1:0 (34) 

I The matrix M(T) is included so that there is freedom to penalize 
certain components of the error vector more heavily than others. 
However, it turns out that the optimal filter is independent of M(T) • 
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in view of (24) and (6). In other words, the initial value 
of the error covariance matrix equals the covariance 
matrix of the initial plant state. 

Clearly, for any given matrix G(t), (33) and (34) com­
pletely specify the error covariance matrix ~(t) for all 
t~to. Thus, the scalar quantity J of (32) can be evalu­
ated. If it is assumed that the plant matrices A(t), B(t), 
C(t) and the covariance matrices Q(t), R(t), and ~o are 
given, then the value of J will depend upon the choice of 
the filter matrix G(t) for to5:t5:r. 

VI. OPTIMAL FILTER 

The preceding discussion leads naturally to the ques­
tion: How can the matrix G(t), to5:t5:r, be chosen so as 
to minimize the "cost junctional" J? The answer to this 
question involves the solution of a deterministic optimi­
zation problem. The precise formulation of the problem 
is as follows. 

Given: The matrix differential equation satisfied by 
,the error covariance matrix ~(t) (see (33P 

i(t) = [A(t) - G(t)C(t) ]~(t) + ~(t)[A(t) - G(t)C(t) l' 
+ B(t)Q(t)B'(t) + G(t)R(t)G'(t); 

a terminal time r, and the cost f 

(35) 

(36) 

Determine: The matrix G(t), to5:t5:r, so as to mini­
mize the cost functional (36). 

The elements Uii(t) of ~(t) may be considered as the 
"state variables" of a system, an~ the elements gi",(t) of 
G(t) as the "control variables" in an optimal control 
problem. The cost functional is then a terminal-time 
penalty function on the state variables uii(r). Thus the 
minimum principle of Pontryagin can be applied to 
determine the optimal matrix G (t), to 5: t5: r. 

To do this, define a set of costate variables Pii(t) cor­
responding to the U ii(t) , i, j = 1, 2, . . . , n. Define an 
nXm costate matrix pet), associated with the matrix 
~(t), so that the ijth element of pet) is given by Pij(t). 
Then the minimum principle[31 can be used. This neces­
sitates the definition of the Hamiltonian function H 
given by----------------------,

! H = t iTij(t)P,j(t) = tr[l;(t)P'(t)]. 

Substituting (35) into (37), 

H = tr[A(t)~(t)P'(t)] - tr[G(t)C(t)~(t)P'(t)] 

+ tr[~(t)A'(t)P'{.t)] - tr[~{t)C'(t)G'{t)P'{t)] 

+ tr[B(t)Q(t)B'{t)P'{t)] + tr[G{t)R{t)G'{t)pl(t)]. 

(37)' 

(38) 

The Hamiltonian function H is quadratic in the ele­
ments gi",(t)' of the matrix G{t). Thus, from the minimum 
principle, th~ necessary condition 

IaH (39)
agik(t) * = 0 

is obtained, where * is used to indicate optimal quanti­
ties and~ indicates that the quantity above must be 
evaluated along the optimal. 

According to the minimum principle, the costate 
variables Pii(t) must satisfy the differential equations 

. aH I
Pi;*(t) = - -- . (40) 

. aUij(t) * 

Furthermore, the transversality conditions ;:1.t the ter­
minal time rare 

p,;*(r) = _a- tr[M(r)~(T)]1 . (41) 
aU,i(r) * 

Using the concept of a gradient matrix (see Appendix 
II), (39) through (41) reduce to 

aH I (42)
aG(t) * = 0 

• aH IP*(t) =--- (43) 
a~(t) * 

P*(r) = _8_ tr[M(r)l:(r)]I. (44) 
a~(r) * 

Using the formulas of Appendix II it is found that 
(42) yields the relationship 

-P*(t)~*'(t)C'(t) - P*'(t)~*(t)C'(t) + P*(t)G*(t)R'(t) 

+ P*'(t)G*(t)R(t) = o. (45) 

Equation (43) yields the matrix differential equation 

P*(t) = - A'(t)P*(t) - C'(t)G*'(t)P*(t) - P*(t)A(t) 

- P*(t)G*(t)C(t) (46) 

= - P*(t)[A(t) - G*(t) C(t)] 

- [A(t) - G*(t)C(t)]'P*(t). (47) 

Finally, (44) yields 

P*(r) = M(r). (48) 

Equation (47) is a linear matrix differential equation in 
P*(t); this fact, coupled with the fact that P*(r) is sym­
metric and positive definite, implies that4 

P*(t) is symmetric positive definite. (49) 

Thus P*{t)=P*'(t), and moreover [P*(t)]-l exists; this 
means that (45) reduces to 

2G*(t)R{t) = ~*'(t)C'(t) + ~*(t)C'{t) (50) 

since R{t) is assumed symmetric positive definite. But 

'This follows trivially from the general form of the solution of a 
matrix differential equation (see Bellman,[IO) p. 175). 

it 
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the error covariance matrix ~*(t) is' also symmetric and, . 

9) therefore, the'optimal valile for G*(I) must be ·ven by 


;., G*(t) == ~*(t)C'(t)ICl(t). (51) 

i- ~ 


>e The matrix 1:*(t) is the error covariance matrix for 

the optimal filter. It'is determined by substituting (51)
.t 

te 	 into (35) to find 

1S 
1:*(t) == [A(t) - 1:*(t)C'(t)IC1(t)C(t)]1:*(t) Fig. 4~ r(I) is the unbiased minimum variance estimate of X(I). 

All matrices are time varying. 1:*(1) is the solution of the Riccati + 1:*(t}[A'(t) -:- C'(t)R--l(t)C(t)1:*(t)]
0) 	 equation (53). 

+ B(t)Q(t)B'(t) 
(S2)A. Dependence on the Terminal Time 1"

'r-	 + ~*(t)C'(t)ICI(t)R(t)ICl(t)C(t)1:*(t) 
Observe that although the optimization problem was 

which reduces to formulated so as to minimize a weighted scalar function 
of the error covariance matrix at some fixed time 1", the1) 1:*(t) == A(t)1:*(t) + 1:*(t)A'(t) + B(t)Q(t)B'(t) I . ' answer turns out to be independent of 1". The value of 

-1:*(t)C'(t)R-l(t)C(t)1:*(t). (53) the costate matrix P*(t) does depend on 1"; however, 
IX only the fact that the costate matrix P*(t) is symmetric

Equation (53) is a matrix differential equation of the and invertible is used to eliminate P*(t) in (45). In this
Riccati type. Recall that the initial condition. assumed manner, neither G*(t) nor 1:*(1) depend on 1". It is,known, is 2) 	 therefore, obvious that the Kalman-Bucy filter pro­

(54) duces, uniformly in I, unbiased minimum variance esti­
mates as it accepts the observations z(.) in real time. 

3) 	 Then, the error covariance matrix for the optimal un­

biased minimum variance filter is completely speciped 
 B. Dependence on the Cosl Functional 
by (53) and (54), and the solution 1:*(t) specifies the 

t4) 	 Kalman and Bucy[l) sought a filter to minimize the optimal filter. 
expected squared error in estimating any linear function 
of the message. It is indeed known that the Kalman­at 	 VII. DISCUSSION OF niE RESULTS 
Bucy filter is optimal for a variety of performance cri­

The preceding derivations complete the determina­ teria. Similar results can be obtained using the proof 
tion of the optimal filter. In essence, the optimal filter is presented. It is easy to see that the same conclusion 
s ecified b r' would hold for the class of cost functionals which have 

5) 1 Initial filter state (see (24» 	 the property that P*(1") is symmetric positive definite. 
In other words, it is possible to consider directly cost 

w(to) == %0 	 (55) functionals of the form 

Q) Feedback matrix (se~ (2Sl ilng (SI» 
 (59) 

6) 
F*(t) == A(t) - 1:*(t)C'(t)R-I(t)C(t) (56) where g(.) is a scalar function of the matrix 1:(1"), if the 

gradient, matrix 
7) 	 OJ Forward matrix (see (~1» 

~*(t) == 1:*(t)C'(t)IC1(t). (57) _8_ g[1:(1')]I 	 (60)
81:(1') .. 

Thus, the optimal estimate w*(t) of x(t) is generated by
3) Hie system is symmetric and positive definite. In this category falls 
in the cost functional 
11- ~*(t) = (A(t) - 1:*(t)C'(t)IC1(t)C(t)]w*(t) 

(61)+ 1:*(t) C'(t) lC i(t)z(t) ; 
because its gradient matrix 

, w(to) ,== %0 	 ,(58)
IL,________----~----~----____~ 

as illustrated in Fig. 4. The matrix 1:*(t) is completely _8_ det[1:(1')]I == det[1:*(1')][1:*-l(1')l' (62)is 	 81:(1') '* defined by the Riccati equation (53) with the boundary 
condition (54) . is symmetric and positive definite. In fact, the cost 

) . The'optimal filter thus 'derived turns out to be identi­ functional (61) is related, to the volume of the "error 
cal to the Kalman-Bucy filter.!l) In the remainder of ellipsoid. "[12) In short, the derived linear filter is optimal

t't this section properties which are immediat~ly obvious for a large class of cost functionals as long as the costate 
from the development contained in the main part of this matrix P*(t) turns out to be symmetric and nonsingular 

a paper are discussed. for ail I, 10~1~1'. 

- ... ...,...-_.,.;............--.-- ...__ .... -':';---- ;"'-: .... - ....----: ..
_ 
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C. Order of the Filter 

In Section IV the assumption was made that the order 
of the filter is the same as the order of the plant. This 
assumption will now be discussed. 

Suppose that the filter is described by (11) and (12). 
The.error is 

e(l) = x(t) - i(l) = x~l) - H{I)w(I). (63) 

1£ the requirement is imposed that i(t) be an unbiased 
estimate of x{t) for all t ~ to, then at t = to the relation 

H{to)w(lo) = E{ x(to)} ! io (64) 

must hold. Thus, to specify uniquely the filter initial 
condition w(to) , the matrix H(to) must have rank n. This 
means that the order of the filter must be at least n, i.e., 
the dimension of the filter state vector wet) must be at 
least n. Since the filter is less complex if the dimension 
of wet) is small, it is reasonable to investigate (as it was 
already done in the main part of this paper) the case 
that the plant and the filter have the same dimension. 

D. Sufficiency Considerations 

I t is well known that the maximum principle provides 
necessary conditions for optimality. In this case the 
necessary conditions are also sufficient. This can be . 
shown by proving that the Hamilton-Jacobi equation 
is satisfied for all ~(t).[8) However, the proof is not in­

. eluded here since it is straightforward but lengthy. 

E. Comments on the Variational Approach 

The use of the calculus of variations and of the maxi­
mum principle is certainly not new in filtering prob-. 
lems.l8).[7).[ll) However, the philosophy used here is to 
optimize directly the gains of the filter once the filter 
structure, dimensionality, and other properties, e.g., 
linearity, have been fixed by the designer. As mentioned 
before, this general technique will lead to a filter which 
may be inferior to the unconstrained optimal one. N one­
theless, this method of optimizing directly the feed­
forward and feedback gains may prove useful to the 
designer. 

VIII. CONCLUSIONS 

It has been demonstrated that the "matrix" minimum 
principle can be used to rovide a direct constructive 

erivation of the well-known Kalman-Bucy filter. The 
method of proof also indicates that the Ralman-Bucy 
filter is optimal for a variety of performance criteria. 

ApPENDIX I 
MEAN AND COVARIANCE DIFFERENTIAL "EQUATIONS. 
Consider a linear time-varying system -with state 

vector x(t) and input . vector u{t) described. by the 
equation 

:.t(t) = A(t);,:(t) + B(t)u(t). (65) 

Suppose that u(t) is a white-noise process with mean 

u(l) ! E{ u(t)} (66) 

and coyariance matrix 

cov[u(I); U(T)] = E{ [u(l) - u{I)][U(T) - U(T»)'} 

= 8(t - T)Q(I). (67) 

Suppose that the initial state x(to) of the system (65) is 
a vector-valued random variable with mean 

~8) 

and covariance matrix 

" cov[x{to); x(to)] = E{ [x(to) - io][x(to) - i o]'} 

(69) 

Assume that x(to) and u(t) are independent. 
Define the mean of x(t) by 

i{l) ! E{ x(I)} (70) 

and the covariance matrix of x(t) by 

cov[x(I); x(I)] = E{ [x(l) - i(l) ][x{l) - i{t)]'} 
Il. 
= ~(t). (71) 

I t can be shown that the mean i(t) satisfies the linear 
vector differential equation 

d _ _ _ 
- x(l) = A(t)x(l) + B(t) u(t);
dt 

-(72) 

and the covariance ~(t) satisfies the linear matrix differ­
ential equation -

-
d 

~(I) = A(t)~(I) +~(I)A'(t) + B(t)Q(t)B'(t);
dl . 

~(Io) = ~o.- (73) 

The derivation of (72) is straightforward as it follows 
from the time differentiation of (70) and the use of the 
property that 

d 
- E{ x{t)} = Ex(I).
dt 

However, the derivation of (73) is slightly more formal. 
It has been stated by many authors (e.g., see Kalman,[l8) 
pp. 201-202) and is given hereafter for the sake of 
coptpleteness. _ 

For simplicity assume that all random variables have 
zero mean, i.e., 

E{ x(to)} = 0; 

E{ u(t)} = 0.' (74) 

i 
; 
o· 

I, 
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Then, from (72) it follows that E{x(t)} ==O,and thus' 
the covariance matrix 1:(t) is simply defined by

,6) , 
".; 

1:(t) == E{ x(t)x'(I)}. . (75) 

Taking the time der~vative of (75) yields 
d' . . 

i(l) == - E{ x(t)x'(I)} == E{%(t)%'(t) } + E{ %(t)%'(t) }. (76)
de· . 

Substitution of (65) into (76) yi~lds'is 

i(t) == E{A(t)%(t)x'(t)} + E{B(t)u(t)%'(I)} 
is) + E{ x(t)x'(t)A'(t)} + E{ x(t)u'(t)B'(t)}. (77) 

Now E{x(t)u'(t)} must be evaluated. Since th~ solu­
tion to (65) is 

.. x(t) == 4»(t, to)x(Io) +f 'fIt(I, T)B(T)U(T)d~ (7S) 
'0 

where fIt(t, to) is the transition matrix of A(t), 

E{ x(I)u'(t)} == fit (I, to)E{ x(to)u'(t)} 
70) 

+f 'fIt(I, T)B(T)E{ U(T)U'(t) }dT. (79)
'0 

Since x(to) and u(t) are assumed independent, 

E {x(lo) u' (e) } == 0,71) 
and so (79) reduces to 

ear 

E{ x(t)u'(t)} ==f 'fIt(t, T)B(T)Q(T)8(t - 1')dT (SO) 

" 
in view of (67) with ti(l) =0. But, from the theory of 
distributions. the formula 

.72) 

f" f(x)8(b - x)dx == if(b) (81)fer-
II 

loosely implies that since the delta function occurs at the 
upper limit x - b, oUly "balf" the impulse is weighed. 
The generalization of (81) to the matrix case exhibited 
by (80) yields:73) 

E{ x(t)u'(t)} == tflt(t, t)B(t)Q(t) == tB(t)Q(t).
ows 
the §imilarIy, 

E{ u(t)x'(t)} = iQ(t)B'(t). 

.Substitution of (82) and (83) into (77) yields· 

. i(t) = A(t)1:(t) + 1:(t)A'(t) + B(t)Q(t)B'(t)
'. '. .nal. 


l,(13) .• which is the desired relation. 


, of 
 ApPENDIX II 

GRADIENT MATRICES.ave 

(82) 

(83) 

(84) 

. In this appendix the concept of a gradien:t matrix is 
defined and some equations are presented. The basic 
ideas and a more complete set of calculations can he 

.~74) found in Athans and Schweppe. It) 

'69@ 

Let Xbe an nXn matrix with elements Xij. Let!(.) be 

a scalar-valued function of the Xii 

I(x) == f(X11, ••• ~ Xbo, Xu, ••• , X2lo, ••• ). (85) 

For example, a common scalar function is the trace of X 

. I(X) = tr[X] == X~l + X22 + ... ~ + x..... (86) 

Consider the partial derivatives 

afa(X) ,i, j == 1, 2, ... , n. (87) 
Xij 

.Then the gradient matrix of f(X) with respect to the' 
. matrix X is defined to be the nXn matrix whose ijth 
element is the function (87). The gradient matrix is 
denoted by 

af(X) 
(88)ax 

Straightforward computations yield the following 
relations 

a 
- tr[X] == Iax . 
a . 

- tr[AX] == A'ax 
a 

-tr[AX'] = A ax 
a 

(89) 

(90) 

(91) 

- tr[AXBX] = A'X'B' + B'X'A' (92)ax . 

-
a 

tr[AXBX'] = A'XB' + AXB. (93)ax . 
Additional:- relations can be obtained through the use of 

. the trace identities 

tr[AB] == tr[BA] (94) 

tr[AB'] = tr[BA']. (95) 

An extensive table of gradient matrices for trace and 
deterrninant functions can be found elsewhere.l9) 
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Abstract-A technique is presented for solving the discrete 
version of the multidimensional Wiener-Hopf equation by spectral 
factorization. This equation iS'derived to establish a need for spectral 
factorization and to determine the requirements of the factors of the'. . 
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spectral matrix. The ~ethod of factoring the spectral matrix of con­
tinuous systems, developed by Davis, is then extended to discrete 
systems. More speci1l.cally, a matrix H(z) must be found such that 
the matrix of the spectra of the input signals equals the product of 
H(rl ) and H7'(z;). A technique for finding this matrix is presented. 
The nonanticipatoriness as wen as the stability of the elements of 
H(z;) and H-l(z;) must be and is guaranteed. It is then shown that the 
solution to the discrete Wiener-Hopf equation is unique. 


