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7-4. Mean-square estimation; the orthogonality 
principle 

We shall now be concerned .with the question of estimating a r.v. x 
hy a constant or by a function of another r.v. y. This problem will be 
reexamined in Sec. 8-2 a~d in Chap. 11. In the following discussion we 
consider its meaning and introduce the notion of mean square (abbrevi­
ation: m.s.) estimation. The formulation and solution of the problem 
will be in terms of probabilities (conceptual). However, a brief expla­
nation in terms of repeated trials (physical) might be helpful. 

Frequency interpretation. A r.v. x is defined on a certain experiment. 
Its distribution F(x) is given, and so is its value x(S') for each outcome S'. 
This does not, of course, mean that if the corresponding physical experi­
ment is performed, one will know in advance the resulting value x(r) of 
x. The outcome r of a particular trial might be any element of S. The 
question arises whether, guided by F(x), we could "guess" a value a for 
x(r). This is the problem of estimating the r.v. x by a constant. Suppose 
that a is somehow selected. At each trial we commit an error, 

(7-89) 

and our problem is to find the particular a that will make this error "small." 
If by "small" we mean that the average of x(r) - a in a long run of trials 
should be close to zero, 

_x(=S'=I)_-_a_+..:...-._._._+~x..:.::(r.c;;.!,,),----_a ~ 0 
n 

then [see (5-22)] a should equal the expected value of x. 
However, depending on the nature of the problem, one might prefer 

some other criterion for selecting a, for example, the minimization of the 
average of Ix(S') - al. In this case, a should equal the median of x (see 
Prob. 5-3). In our analysis we shall deal only with m.s. estimations. This 
means that a should be so selected that the average of 

[x(s-) -	 a]2 

is minimum. This criterion is, in general, useful, but it is primarily chosen 
because it leads to simple results. We shall soon see that the best a' is 
again the expected value of x, 

a == E\x} 	 (7-90) 

The estimation of x can be improved if one has access to the values of 
another r.v. y. We elaborate: It is assumed that at each trial we "observe" 
the reSUlting value y(r) of y and want x(r) estimated on the basis 6f this 
observation. If x and yare independent, then knowledge of y(r) is of no 
help in the estimate of x. In this case x is again estimated by a constant. 
However, if x and yare not independent, then it might be best to use for an 
estimate of x not the same number at each trial, but a quantity that depends 
on the observed y(r). In other words, we want x estimated by a function 

, g(y), and our problem is to find the best g(y). 
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One might argue that if y(r) is observed, then the particular outcome The 
r is known; hence x(r) can be predicted exactly. This is not so. The same exee 
number y = y(r) might result from several outcomes r, 

(7-91) 

and for each such r the corresponding values of x might be different. Hence, 

having observed y(r) at a given trial, we cannot, in general, predict x(r), but 


.. only estimate tit. 

The foregoing reasoning leads to the following conclusion: The fact we h 

that y(r) = y is specified means that the outcome r of our trial is not any 
element of £, but only one of-the elements ri in (7-91). In other words, 
we are asking for an estimate of x in the subset Iy = y I of our space. In 
this set, y (5) is a constant, and our problem is to estimate x by the constant T~ 
g[y(r»). Changing probabilities into conditional probabilities, we con­ dou.b 
clude, as in (7-90), that the best m.s. estimate of x is its expected value 

g(y) =ElxlyJ 

We shall soon see that the above loose conclusions can be strictly estab­ for e"
lished in the conceptual world of probabilities. ­condi 

Mean-square estimation of a random variable by a constant.. We from 
start with the following simple but basic problem: Find a constant a 
~lJch that 

and IE{(x-a)2} = f_fIOfIO(x-aFf(x)dx 
r -

~minimum. We maintain that condi 
can a 

a = E{x} = 1]x = f _fIOfIO xf(x) dx (7-92) [see ( 

Indeed, expanding, we have E 

E{(x - a)2} = a2 - 2aE{x} + E{x2} 

The derivative with respect to a equals zero for a = E {x}, and (7-92) 
follows. Thus the constant 1Jx has the properties t that: The expected 
value of x - 1Jx equals zero; the expected value of (x - 1Jx)2 is minimum. .w 

is-thNonlinear mean-square estimation of y in terms of x. We now 
want to estimate the r.v. y by a suitable function g(x) of x so that the mass 

thenm.s. estimation error 
. 

E{[y - g(X)]2} = J - g(x)]2f(x,y) dx dy (7-93) . 188mf _fIOfIO -"'flO [y 

is minimum (we reversed the role.of x and x). (see" 

t In the literature the expression "prediction of x in terms of y" is often used; 

from the above we see that "estimation" is a more appropriate term. 


: The above result corresponds to the well-known fact that the moment of inertia 

with respect to the center of gravity is smaller than with respect to any other point. 
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Theorem. The function x that minimizes 

Ef,xpected value 0 v, assumIng x: 


g(x) = E{ylx} . (7-94) 


Prog.£ Since 

f(x,y) == f(ylx)f(x) 
we have 

E{[y - g(x»)21 == f_«>«>f(x) f-«>«> [y - g'(x»)2f(ylx) dydx 

ThejntegffJ,u4 a.hoy~ is O,q!1~~gatiye: thergfor~, jn order to minimize the 
double intei'ral, it suffices to minimize 

f _«>«> [y - !l(x»)2f(ylx) dy 

for every x. For a given X, this int~~ral is the second moment of the 
conditional density fCulx) with respect to the constant g(x). As we know 
fronl(7.-~2), this moment is minimum if 
',-' ~----------

g(x) = f _«>~ yf(ylx) dy = E{ylx} 

and (7-94) follows. 
Thus (7-94) is a simple extension of (7-92) in the prob~bi1ity space 

conditioned by {x == x}. This conclusion 
ean also be drawn, after some thought, from Y 

[see (7-59)] 

E{[y - g(x»)2} = E{E{[y - g(x»)2lxl.} 

The function ... 
g(x) = E{ylx} 

i§ known as regression curve (Fig. 7-18). It Fig. 7-18 
. h I IIS t e ocus of the centers of gravity of tbe 
masses on the strips (x, x + dxL If these masses are near !lex), then 
tIle m.s. error 

E{[y - E{ylx}}2} (7-95) 
is small. 

I ndependent~..JJ(J,lld,!m Variables. , If x and yare independent,. then 
(see pa.ge'182) '., . ..-" ,,_. , 

E{ylx} = E{y}
• 

Hence the best m.s. estimate of y in terms of x is E {y} . Thus knowledge 
of x does not help in the estlmationof y . 
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Linear Mean-square Estimation; the Orthogonality 
Principle"'­

The solution E{ylx} of the nonlinear estimation problem looks simple 
enough. However, the actual evaluation of E LIlx1 is not simple at all. 
One must determine this function for ever;y x. The difficulties become· 
severe if more than one r.v. are involved (Chap. 11). A much easier 
problem is the estimation of y by a linear function 

ax + b 

of x. We now seek not a function, but merely the two constants a and b 
that minimiif( 

E{[y - (ax + b)]2} 

The resulting error is of course larger than the corresponding error in the 
nonlinear estimation; however, this is often compensated by the simplicity 
of the solution. 

Theorem. The constants a and b that minimize the m'.s. error 
• ! 	 ­

e = E([y - (ax + b»)2} = f-"~ f _ .... ,(y - ax - bPf(x,y) dx dy (7-96) 

are given b~ 
rCTy 

a=­ b = E{y} - aE{x} 	 (7-97) 
CT x 

and the resulting minimum error em by . 

em = CTy 2(1 - r2) 	 (7-98) 

where r is the correlati n coefficient of x and 
roo,[. Suppose that a IS speC! e . e va ue 0 b that mini­

mizes e is the best m.s. estimate of the r.v. y - ax by a constant; hence 
[see (7-92)] 

With b so determined, we now have 

E{(y - ax - bP} = E{[(y -l1y) - a(x -l1x)]2} = CTy2 - 2rCTxCTya + CTx 2a2 

The last ~~ty_ is minimum for 

_ 'TCTxCTy _ rCTya----­
CTx2 CTz · 

and (7-97) follows. Inserting the value ~f a in the above quadratic, 
we find 

Sec. 	7-4 

Th 
assume 

Orthog 

~ 

is such 1 
= 

and 	the 

Pro 
instructi 
extende( 
sents cel 

Sup 
the resul 

, E{(y-

But the 
negative 

and our 

and 	(7-1: 
Fro] 

Insertin~ 

The m.s. 

We 

Ei (~-'1?~)(18-?("a-) '} 

r = V\:= tG<4>,--f3 E{&! -"N)':l.j 



[Chap. 7 ' - Sec. 7-4] Mf~an-square estimation 219 

The above result will now be stated in a more basic form. We shall )
assume for simplicity that 

.."" . 
ooks simple 
mple at 1!J1. 
~ies become. 
nuch easier 

tAts a and b 

error-in the 
.e simplicity 

rror.... 
~ dy (7-96) 

(7-97) 

(7-98) 

that mini­
;tant; hence 

~ quadratic, 

E{x} = E{y} = 0 
Orthogonality principle. The constant a that minimizes the m.s, 

~ 
e = E{(y - ax)2} 

is such that y - ax is orthogonal to xi that is) • 

E{ (y - ax)x} = OJ (7-99) 

and the minimum m.s. error is given b~ 

em = E{ (y - ax)y} (7-100) 

Proof. The above can be deduced from (7-97) and (7-98); it will be 
instructive, however, to give a second proof. This proof can be simply 
extended to complex r.v. (see Sec. 11-2), whereas the differentiation pre­
sents certain complications. 

Suppose that a is such that E{(y - ax)x} = o. We maintain that 
the resulting error e is minimum. Indeed, for any A, we have 

E{ (y - Ax)2} = E{[(y - ax) + (a - A)x]2} 
= E{ (y - ax)2} + 2(a - A)E{ (y - ax)x} + (a - A)2E{x2) 

But the second term in the last expression is zero, and the last non­
negative; hence 

E{ (y - AX)2} > -E{ (y - ax)2} 

and our statement is proved. The minimum error is given by 

em = E{(y - ax)2} = E{(y - ax)y} - aE{(y - ax)x} 

and (7-100) follows because the last term is zero. 
From (7-99) we conclude that 

_. ­ . -

\ _ 
I a -

E{xy} 
E{x2 } 

(7-101) 

Inserting into (7-100), we obtain 

em = E{y2} - aE{xy} = E{y2} - ~::~,} (7-102) 

The m.s. error can also be written in the form 

em, E(y2}-E(ax)2} (7-103) 

We remark that 



We shall 'how extend briefly the results of Sec. 7-4 to several r.v. ® 
This discussion will be resumed in Chap. 11. We are given the n + 1 r.v. 

Xo, Xl", • • , Xn (8-29) 

and we want to estimate Xo by a function «(Xl! , Xn) of the other r.v. 

so as to minimize the ni.s. error: 

E{[xo - g(XI, • • • , Xn)]2 J (8-30) 

Reasoning as in (7-94). we can easily show that 

g(Xl, • • • , XII) = E {xlllxl, . . . , Xn I (8-::U) 

The above expected value is given by (8-17). Thus. to solve the no,!!­
linear m.s. estimation problem, we need to know the joint density of tbe 
r,ve Xn, : ' ,Yr. 

Linear mean-square' estimation. The estimation problem is con­
siderably simplified if one ,seeks an estimate of Xo by a linear combination 
of Xl, • • • ,Xn• In this case the problem is to find n constants a" . . . , 
an such that the m.s. error 

e = E{[xo -,(alxl + ... +anXn»)2J (8-32) 

is minimum. It turns out that these constants can be determined in 
terms of the second moments 

Rii = E{XiXJJ 

of the given r.v. If E{xd = 0, then Ri , is the covariance of the r.v. 
Xi and Xi. 

Orthogonality Principle. The GApetants a. that minimize e are such 
that the error 

+ tlnxn) 

is orthogonal to Xl, • • • , Xn; that is. 


- {E{[xo - (a1xl: + ... .;. tlnxn)1x.} =.0 i :2~ ,~. ~ .,~ (8-33) 


Prool,. The m.s. error e is a function of ai, . • . , tin, and to mini­
mize it we differentiate with respect to a.: 

oe(al1 , an) = oE{[xo - (alxl + ... + anx,,)11 } == 0 
oa. Oa. 

i = 1,' ... I n 

oe 
oa. == -2E{[xo - (alxl + + anx,,)]Xi J == 0 

and (8-33) follows. . 
It is eaBl: to see 'b.u~djng tim square in (8-32) and usinC (8-33) 

that the minimum m.s. error is ciyen Qy 

ern = E{[xo - (alxl + ... +anxn)]xol 
= Roo - (aiRol + ... + an Ron) (8':'34) 


