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7-4. Mean-square estimation; the orthogonallty

principle

We shall now be concerned with the question of estimating a r.v. x
by a constant or by a function of another r.v. y. This problem will be
reexamined in Sec. 8-2 and in Chap. 11. In the following discussion we
consider its meaning and introduce the notion of mean square (abbrevi-
ation: m.s.) estimation. The formulation and solution of the problem
will be in terms of probabilities (conceptual). However, a brief expla-
nation in terms of repeated trials (physical) might be helpful.

Frequency interpretation. A r.v. x is defined on a certain experiment.
Its distribution F(z) is given, and so is its value x({) for each outcome ¢.
This does not, of course, mean that if the corresponding physical experi-
ment is performed, one will know in advance the resulting value x(¢) of
x. The outcome { of a particular trial might be any element of §. The
question arises whether, guided by F(z), we could ‘“guess’”’ a value a for
x(¢). This is the problem of estimating the r.v. x by a constant. Suppose
that a is somehow selected. At each trial we commit an error,

x(¢) —a (7-89)

and our problem is to find the particular a that will make this error “small.”
If by “small” we mean that the average of x(g‘) — a in a long run of trials
should be close to zero,

x(¢1)) —a 4 - - - + x(¢n) ~% o
n

then [see (5-22)] a should equal the expected value of x.

However, depending on the nature of the problem, one might prefer
some other criterion for selecting @, for example, the minimization of the
average of |x({) — a|. In this case, a should equal the median of x (see
Prob. 5-3). In our analysis we shall deal only with m.s. estimations. This
means that a should be so selected that the average of

[x($) — a]?

is minimum. This criterion is, in general, useful, but it is primarily chosen
because it leads to simple results. We shall soon see that the best a is
-again the expected value of x,

a = E{x]} (7-90)

The estimation of x can be improved if one has access to the values of
another r.v.y. We elaborate: It is assumed that at each trial we ‘“observe”’
the resulting value y(¢) of y and want x(¢) estimated on the basis of this
observation. If x and y are independent, then knowledge of y(¢) is of no
help in the estimate of x. In this case x is again estimated by a constant.
However, if x and y are not independent, then it might be best to use for an
estimate of x not the same number at each trial, but a quantity that depends
on the observed y(¢). In other words, we want x estimated by a function
g(y), and our problem is to find the best g(y).
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One might argue that if y(¢) is observed, then the particular outcome
¢ is known; hence x({) can be predicted exactly. This is not so. The same
number y = y(¢) might result from several outcomes ¢,

=y =" =y =--- (7-91)

and for each such ¢ the corresponding values of x might be different. Hence,
having observed y({) at a given trial, we cannot, in general predict x(¢), but
" only estimatet it.

The foregoing reasoning leads to the following conclusion: The fact
that y(¢) = y is specified means that the outcome ¢ of our trial is not any
element of §, but only one of the elements ¢; in (7-91). In other words,
we are asking for an estimate of x in the subset {y = y} of our space. In
this set, y(¢) is a constant, and our problem is to estimate x by the constant
gly(¢)]. Changing probabilities into conditional probabilities, we con-
clude, as in (7-90), that the best m.s. estimate of x is its expected value

9(y) = E{x|y}

We shall soon see that the above loose conclusions can be strictly estab-
lished in the conceptual world of probabilities.

Mean-square estimation of a random variable byl a constant, We
start with the following simple but basic problem: Find a constant a

such that

Blx— a1 = [ (o — @) da
is minjjpum. We maintain that
=E{x) =n=["of@d (02
Indeed, expanding, we have
E{(x — a)?} = a? — 2aE{x} + E{x?}

The derivative with respect to a equals zero for a = E{x}, and (7-92)
follows. Thus the constant 5, has the propertiesi that: The expected
value of x — 5, equals zero; the expected value of (x — 7,)? is minimum.

[—

Nonlinear mean-square estimation of y in terms of x. We now
want to estimate the r.v. y by a suitable functlon g(x) of x so that the
m.S. estlma.tlon error

Elly - g1} = [°, [T v - e@f @) dady  (7-99) .

is minimum (we reversed the role.of x and y).

t In the literature the expression “prediction of x in terms of y" is often used;

from the above we see that “‘estimation’’ is a more appropriate term.
1 The above result corresponds to the well-known fact that the moment of inertia
with respect to the center of gravity is smaller than with respect to any other point.
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Theorem. The function ¢(x) that minimizes (7-

ex-Eected value o Y, assuming x:

g(x) = E{y|x} - (7-94)
Proof. Since
| f@y) = fl)f(z)
we have '

[y — 9@ (yle) dy dz

Efly =gl = [~ 5@ [~

The inte is.nonne :
double integral, it suffices to minimize

[y — g@1l) dy
for every z. For a given z, this integral is the second moment of the

conditional densit z) with respect to the constant g(x). As we know
from (7-92), this moment is minimum if

g(@) = f " uf(yl) dy = Elylz)

and (7-94) follows.
Thus (7-94) is a simple extension of (7-92) in the probablhty space

conditioned by {x = z}. This conclusion

can also be drawn, after some thought, from Ay

[see (7-59)] % '
E{ly — g1} = E{E(ly — g(1*}x}) 7 g(i
The functi?n - /< x%“” 5
o(2) = Elyle] yix=d | 1
nown as sston curve (Fig. 7-18). It Fig. 7-18
is the locus of the centers of gravi e

masses on the strips (z, z + dx). If these masses are near g(z), then

the m.s. error -
E{ly — E{ylx}]*}
15 small.
Independent Random Variables.
(see page 182)

_If x and y are independent,. then

E{ylx} = Ely)

Hence the best m.s. estimate of y in terms of x is E{y}.
of x does not help in the estimation of y.

Thus knowledge
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3 1s the conditional

(7-95) |
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Linear Mean-square Estimation; the Orthogonlzhty
Principle R e

The solution E {y|x} of the nonlinear estimation problem looks simple

enough. However, the actual evaluation of E{y|x} is not simple at all.
One must determine this function for every x. The difficulties become.

severe if more than one r.v. are involved (Chap. 11). A much easier
problem is the estimation of y by a linear function

ax + b

of x. We now seek not a function, but merely the two constants @ and b
that minimize |

E{ly — (ax + b)]*}

The resulting error is of course larger than the corresponding error-in the
nonlinear estimation; however, this is often compensated by the simplicity
of the solution.

Theorem The constants a and b that minimize the m.s. error
m T

e=Elly — ax+ 0P} = [, [ 0~ oz~ )wy) dzdy (7-96)

are given bx
a = %‘-’ b = E{y} — aE{x} (7-97)

and the gesulting minimum error é, bz :
em = ay2(1 — r?) (7-98)

where r is the correlation coefficient of x and § Isee :7-66)]. |
roof. Suppose that a is specified. e value of b that mini-
mizes e is the best m.s. estimate of the r.v. y — ax by a constant; hence

[see (7-92)]

'b = E{y — ax} = 5, % ang b

With b so determined, we now have

E{(y — ax — b) } = E{[(y — ) — a(x — n)?} = oy® — 2Wx6ya + os’a’

e e

and (7-97) follows. Insérting the value &f a in the above quadratic,
we find ‘
em = 0’,2 - 27‘20"2 + T20',2 = O'yz(l - Ta)

E4 -0 (1Y-D) ¥ _

r =

\fe lo s Sty T b
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The above result will now be stated in a more basm form. We shall )
assume for simplicity that
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| E{x} = E{y} =0
Orthogonality principle.
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The constant a that minimizes the m.s,

e = E{(y — ax)?}

is such that y — ax is orthogonal to x; that .isi

E{(y —ax)x} =0, (7-99)

ints ¢ and b and the minimum m.s. error is Eiven by
| = E{(y — ax)y} (7-100)
error-in the Proof. The above can be deduced from (7 97) and (7-98); it will be
e simplicity instructive, however, to give a second proof. This proof can be simply

extended to complex r.v. (see Sec. 11-2), whereas the differentiation pre-
sents certain complications.

Tor | Suppose that a is such that E{(y — ax)x} = 0. We maintain that
the resulting error e is minimum. Indeed, for any A, we have
-dy  (7-96)

E{(y — A%)?} = E{[(y — ax) + (a — A)x]}
= E{(y — a0} + 2(a — A)E{(y — ax)x} + (a — A)E{x?}

(7-97) But the second term in the last expression is zero, and the last non-
negative; hence

E{(y — 49} 2E{(y — ax)*}

(7-98) and our statement is proved. The minimum error is given by
em = E{(y — ax)?} = E{(y — ax)y} — aE{(y — ax)x}
that mini- and (7-100) follows because the last term is zero.
stant; hence From (7-99) we conclude that
\ @ = 2%3’7} (7-101)
Inserting into (7-100), we obtain
«0ya + o5’a’ E{xy} A
: em = E{y?} — aE{xy} = E{y?} — Eix] (7-102)
The m.s. error can also be written in the form |
em = E{y?*} — E{(ax)?} (7-103)

» quadratic, We remark that

em 2 Efly — E{ylx}]*}



We shall now extend briefly the results of Sec. 7-4 to several r.v. @
- This discussion will be resumed in Chap. 11. We are given then + 1r.v.

X0, X1, . « . 5 Xn (8-29)

and we want to estimate xo by a function g(x;, . . . , X») of the other r.v.

so as to minimize the m.s. error:

Ef[xo — g(x1, . . ., xa)]?} (8-30)

Reasoning as in (7- we can easily show that
g(x1, . .., x0) = E{xdx;, . .., xn} (8-31)
The above expected value is given by (8-17). Thus, to solve the non-
linear m.s. estimation problem, we need to know the joi i he

TV, X0, . o Xa

Linear mean-square estimation. The estimation problem is con-
siderably simplified if one seeks an estimate of xo by a linear combination

of x5, . . ., Xa. In this case the problem is to find » constants a,, .
a. such that the m.s. error
e = E{[Xo —,(G1X1 4+ - - +'a,.x,.)]2} (8‘32)

is minimum, It turns out that these constants can be determined in

terms of the second moments

Rc,' = E { x.-x,-}
- of the given r.v. If E{x;} = 0, then R, is the covariance of the r.v.
x; and x;,.

Orthogonality Principle. Thegopstants a; that minimize e are such

that the error
- (01X1+ © ++ 4 anxa)

is orthogonal to x;, . . . , xa; that is,
Ellxo— (@xi+ - - +ax)x] =0  di=1,...,n\ (833
R . T - .
Proof. The m.s. error ¢ is a function of ay, . . ., as, and to mini-
mize it we differentiate with respect to a;:

de(ay, . . ., an) - dE{[x0o — (arx; + * * * + @axa)]?} =0
da; da;

i=1...,n

Writing the above expected value as an integral of the form (8-15), we see
tﬁw&m value can be interchanged;
the result is ’ ,

% o 2Bl (e + - + Gz} = 0
and (8-33) follows.

It is easy to see by expandi 8-32 a.nd using (8-33)
that the minimum m.s, error is given by

bm = E{[Xo - (alxl + - +-anxn)]x0’
= Roo — (@1Roy + * -+ + a:Ron) (8-34)




