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We are given a linear system with impulse response a certain function £33 T3-74
k(). The Fourier transform H(jw) of k(f) is known as system functiont '

H(jw) = f = h()ei dt | (10-28)

We now apply to the input of our system a process x(f) (Fig. 10-4).
As is well known, the resulting output y(¢) is given by

y0) = [ x(t = @)he) da = [ x(@h(t ~ o) dar  (10-29)

t We used the notation H (jw) to conform with the usual convention of reserving
H(p) for the Laplace transform of h(f). For theoretical purposes [see (10-40)] we¢
shall not exclude the possibility that k() might be complex.

In phyvsical systems, the impulse response h({) ié real and it equals

zero for negative ¢ (causality). In this case, (10-29) takes the form

YO =[xt - a)h(@) da = [!_ x(@)h(t — o) da  (10-30)

However, in our analysis it will not be necessary to make this assumption.
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Fig. 10-4

The following discussion is a concrete version of the results presented
in Sec. 9-5 in terms of linear operators. -

Mean and autocorrelation. We now assume that the input x(f) is
stationary. Reasoning as.in (9-97), we conclude that

Ely®)} = [, E(x(t — @)}h(e) da
.
Thus the expected value of y(t) is constant and is given t:y/

k 1y = 1 [ h(a) da = H(O)q‘ (10-31)

To determine the autocorrelation of the output y(f), we shall first
determine the cross-correlation between x(f) and y(f). Multiplying both :
sides of (10-29) by x*(¢t — r), we have \'

yOx*(t —7) = / _: x(t — a)x*(t — 7)h(a) da (10-32)
But ‘ :
E{x(t — a)x*(t — 7)} = Rul(t — @) ‘-: (t=1)] = Rulr — @)

Hence, taking expected values of both side§ of (10-32), we obtain
2 LT =E{y(Ox*(t — 1)} = j_: Ruc(r — @)h(a) dex

The above. integral is obviously independent of ¢, and it equals the convo-

lution of Ry (r) with h(r).  Hence the left-hand side is also independent
of ¢, and since it equals the cross-correlation of y(f) and x(t); we conclude
that \/

‘Rya(r) = Ruelr) * h(ra (10-33)

Multiplying the conjugates of both sides of (10-29) by y(t + 7,) we also
have

Y+ 0540 = [° yt +nx* — @)h*(e) da



- -

Hence , P? e
(Ryy(‘r) [ Ryx(r + a)h*(a) da = yx(1') * h*(-—r)} (10- 34)

The last eguahtv resulted thh a = —f. Reasoning as above, we can
similarly show that

R,y(vt) = Ru("r) * h*(—71) R,y(‘r) = Ruy(r) *h(r) (10-35)

Hence

) = Eu) A7) + (1) | (10-36)

These relationships can be given a system mterpretatlon Applying

R (r) to a system with impulse response A*(—7), we obtain as output
R.y(r) (Fig. 10-5). With R, (r) as input to the system A(r), the output
is Ryy(r). ‘

Sxx(w) | A%-1) Sxx(wlﬂ’(jw) air) | SlHGal®

RSSO SUE——
RxlT) | Hljw) Rey(T) H(jw) Ryy(T)
Fig. 10-5
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@ If x(t) is white noise, i.e., if Ry (r) = 8(r), and h() = 0 fort < 0
(real causal system), then

Rey(r) = h(—7) =0 forr > 0

In other words, y(#) is orthogonal to x(¢ + 7) for r > 0.

2. Using white noise as input, one can measure experimentally the
impulse response h(f) of a system by a time average. This is done as
follows: Since R,y(r) = h(—7), it suffices to measure the cross-correlation
between the input x(f) and the resulting output y(¢) for various negative
values of 7. If R, (r) is ergodic (see Prob. 9-20), then for sufficiently
large T :

h(—"T) = ny(‘l') &’]"T /;)T X(i + T)Y(t) dt

where x(¢) is a single function of the input process, and y(t) is the resulting
response. The last integral can be evaluated with a correlator (multi-
plier and integrator). If x(¢) is not white noise, then i(r) can be found by
solving the integral equation '

R = [ Ralr — )h(~a) da

Its solution is simple, using transforms: H*(jw) = Siy(w)/S(w) [see
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(10-37)].  However, computationally, it might be ‘best to use other v
methods. .

- Stationarity of the output. From the preceding discussion follows
that if x(¢) is wide-sense stationary, then the mean of y(t) is constant and
its autocorrelation a function only of 7. Hence y(t) is also wide-sense
stationary.

The same is true for strict-sense stationarity: From

¥+ = [ x(t+¢ - ah(a) da

we conclude that if the processes x(f) and x(¢ + €) have the same statis-
tics, then the same is true for y(¢) and y(¢ + ¢).

The above conclusions are not correct if the input to the system is
applied at ¢ = 0. In this case, if A(t) is absolutely integrable (stable
system), then y(t) is asymptotically stationary.

Power Spectrum

Since} the Fourier transform of A*(—{) equals H*(jw), we conclude
from (10-35) and the convolution ?yfem (page 159) that

Sey(w) = Sxx(w)H*(jw)V  Syy(w) = Say(w)H(jw) (10-37)

Combining, we obtain:

Fundamental theorem. The power spectrum Syy(w) of the output
of a linear system with system functlon H(jw) is given by

SN /
Sn(@) = Su@HGW)? | N (1038
where Sz (w) is the power spectrum of the mput. 4= F {(m“—‘}@} =7 (&3‘3)

Corollary. The power spectrum of an arbitrary process x(¢) real or
complex is nonnegative:

—— . 2.0 - i

[s@ >0 I | (10-39)

Proof (Indirect). Suppose that S(w) is neéative for w = wo:
S(wo) <0
We can then find a small enough interval (w,ws) near wo such that

Slw) <0 for wy < w < w2

t For numerical details, see W. W, Solodownikow and A. S. Uskow, ‘“‘Statistische
Analyse von Regelstrecken,”” VEB Verlag Technik, Berlin, 1963.
t See ‘“The Fourier Integral,”’ p. 16.
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