10-3. Linear systems (Papalits) = Sec. 3.5 Greated & Andrews
pages 344-345

White with impulse response a certain function pages 73-74

We are given a linear system with impulse response a certain function h(t). The Fourier transform $H(j\omega)$ of h(t) is known as system function \dagger

 $H(j\omega) = \int_{-\infty}^{\infty} h(t)e^{-j\omega t} dt \qquad (10-28)$

We now apply to the input of our system a process x(t) (Fig. 10-4). As is well known, the resulting output y(t) is given by

$$\mathbf{y}(t) = \int_{-\infty}^{\infty} \mathbf{x}(t-\alpha)h(\alpha) \, d\alpha = \int_{-\infty}^{\infty} \mathbf{x}(\alpha)h(t-\alpha) \, d\alpha \quad (10-29)$$

† We used the notation $H(j\omega)$ to conform with the usual convention of reserving H(p) for the Laplace transform of h(t). For theoretical purposes [see (10-40)] we shall not exclude the possibility that h(t) might be complex.

In physical systems, the impulse response h(t) is real and it equals zero for negative t (causality). In this case, (10-29) takes the form

$$\mathbf{y}(t) = \int_0^\infty \mathbf{x}(t-\alpha)h(\alpha) \ d\alpha = \int_{-\infty}^t \mathbf{x}(\alpha)h(t-\alpha) \ d\alpha \quad (10\text{-}30)$$

However, in our analysis it will not be necessary to make this assumption.

$$\begin{array}{c|c} & h(t) \\ \hline \mathbf{x}(t) & H(j\omega) & \mathbf{y}(t) \end{array}$$

Fig. 10-4

The following discussion is a concrete version of the results presented in Sec. 9-5 in terms of linear operators.

Mean and autocorrelation. We now assume that the input x(t) is stationary. Reasoning as in (9-97), we conclude that

$$E\{y(t)\} = \int_{-\infty}^{\infty} E\{x(t-\alpha)\}h(\alpha) d\alpha$$

Thus the expected value of y(t) is constant and is given by

$$\eta_{y} = \eta_{x} \int_{-\infty}^{\infty} h(\alpha) d\alpha = H(0)\eta_{x}$$
 (10-31)

To determine the autocorrelation of the output y(t), we shall first determine the cross-correlation between x(t) and y(t). Multiplying both sides of (10-29) by $x^*(t-\tau)$, we have

$$\mathbf{y}(t)\mathbf{x}^*(t-\tau) = \int_{-\infty}^{\infty} \mathbf{x}(t-\alpha)\mathbf{x}^*(t-\tau)h(\alpha) d\alpha \qquad (10-32)$$

But

$$E\{\mathbf{x}(t-\alpha)\mathbf{x}^*(t-\tau)\} = R_{\mathbf{x}\mathbf{x}}[(t-\alpha) - (t-\tau)] = R_{\mathbf{x}\mathbf{x}}(\tau-\alpha)$$

Hence, taking expected values of both sides of (10-32), we obtain

$$\sum_{\mathbf{y}} \mathbf{x}(\mathbf{t}) = E\{\mathbf{y}(t)\mathbf{x}^*(t-\tau)\} = \int_{-\infty}^{\infty} R_{\mathbf{x}\mathbf{x}}(\tau-\alpha)h(\alpha) d\alpha$$

The above integral is obviously independent of t, and it equals the convolution of $R_{xx}(\tau)$ with $h(\tau)$. Hence the left-hand side is also independent of t, and since it equals the cross-correlation of y(t) and x(t), we conclude that

$$R_{yx}(\tau) = R_{xx}(\tau) * h(\tau)$$
 (10-33)

Multiplying the conjugates of both sides of (10-29) by $y(t + \tau)$, we also have

$$\mathbf{y}(t+\tau)\mathbf{y}^*(t) = \int_{-\infty}^{\infty} \mathbf{y}(t+\tau)\mathbf{x}^*(t-\alpha)h^*(\alpha) d\alpha$$

$$R_{yy}(\tau) = \int_{-\infty}^{\infty} R_{yx}(\tau + \alpha)h^*(\alpha) d\alpha = R_{yx}(\tau) * h^*(-\tau)$$
(10-34)

The last equality resulted with $\alpha = -\beta$. Reasoning as above, we can similarly show that

$$R_{xy}(\tau) = R_{xx}(\tau) * h^*(-\tau) \qquad R_{yy}(\tau) = R_{xy}(\tau) * h(\tau) \qquad (10-35)$$

Hence

$$R_{xy}(\tau) = R_{xx}(\tau) * h^*(-\tau)$$
 $R_{yy}(\tau) = R_{xy}(\tau) * h(\tau)$ (10-35)
$$R_{yy}(\tau) = R_{xx}(\tau) * h^*(-\tau) * h(\tau)$$
 (10-36)

These relationships can be given a system interpretation: Applying $R_{xx}(\tau)$ to a system with impulse response $h^*(-\tau)$, we obtain as output $R_{xy}(\tau)$ (Fig. 10-5). With $R_{xy}(\tau)$ as input to the system $h(\tau)$, the output is $R_{yy}(\tau)$.

$$\frac{S_{XX}(\omega)}{R_{XX}(\tau)} \begin{array}{|c|c|c|c|c|} h^*(-\tau) & S_{XX}(\omega)H^*(j\omega) & h(\tau) & S_{XX}(\omega)|H(j\omega)|^2 \\ \hline R_{XX}(\tau) & H^*(j\omega) & R_{XY}(\tau) & H(j\omega) & R_{YY}(\tau) \\ \hline Fig. 10-5 & & & & \end{array}$$

Comments

1 If x(t) is white noise, i.e., if $R_{xx}(\tau) = \delta(\tau)$, and h(t) = 0 for t < 0(real causal system), then

$$R_{xy}(\tau) = h(-\tau) = 0$$
 for $\tau > 0$

In other words, y(t) is orthogonal to $x(t + \tau)$ for $\tau > 0$.

2. Using white noise as input, one can measure experimentally the impulse response h(t) of a system by a time average. follows: Since $R_{xy}(\tau) = h(-\tau)$, it suffices to measure the cross-correlation between the input x(t) and the resulting output y(t) for various negative values of τ . If $R_{xy}(\tau)$ is ergodic (see Prob. 9-20), then for sufficiently large T

$$h(-\tau) = R_{xy}(\tau) \simeq \frac{1}{T} \int_0^T \mathbf{x}(t+\tau)\mathbf{y}(t) dt$$

where x(t) is a single function of the input process, and y(t) is the resulting response. The last integral can be evaluated with a correlator (multiplier and integrator). If x(t) is not white noise, then $h(\tau)$ can be found by solving the integral equation

$$R_{xy}(\tau) = \int_{-\infty}^{0} R_{xx}(\tau - \alpha)h(-\alpha) d\alpha$$

Its solution is simple, using transforms: $H^*(j\omega) = S_{xy}(\omega)/S_{xx}(\omega)$ [see

(10-37)]. However, computationally, it might be best to use other methods.†

Stationarity of the output. From the preceding discussion follows that if x(t) is wide-sense stationary, then the mean of y(t) is constant and its autocorrelation a function only of τ . Hence y(t) is also wide-sense stationary.

The same is true for strict-sense stationarity: From

$$y(t + \varepsilon) = \int_{-\infty}^{\infty} x(t + \varepsilon - \alpha)h(\alpha) d\alpha$$

we conclude that if the processes x(t) and $x(t + \varepsilon)$ have the same statistics, then the same is true for y(t) and $y(t + \varepsilon)$.

The above conclusions are not correct if the input to the system is applied at t = 0. In this case, if h(t) is absolutely integrable (stable system), then y(t) is asymptotically stationary.

Power Spectrum

Since the Fourier transform of $h^*(-t)$ equals $H^*(j\omega)$, we conclude from (10-35) and the convolution theorem (page 159) that

$$S_{xy}(\omega) = S_{xx}(\omega)H^*(j\omega)$$
 $S_{yy}(\omega) = S_{xy}(\omega)H(j\omega)$ (10-37)

Combining, we obtain:

Fundamental theorem. The power spectrum $S_{yy}(\omega)$ of the output of a linear system with system function $H(j\omega)$ is given by

$$S_{yy}(\omega) = S_{xx}(\omega)|H(j\omega)|^2$$
where $S_{xx}(\omega)$ is the power spectrum of the input. (10-38)

Corollary. The power spectrum of an arbitrary process x(t) real or complex is nonnegative:

$$S(\omega) \ge 0 \tag{10-39}$$

Proof (Indirect). Suppose that $S(\omega)$ is negative for $\omega = \omega_0$:

$$S(\omega_0) < 0$$

We can then find a small enough interval (ω_1,ω_2) near ω_0 such that

$$S(\omega) < 0$$
 for $\omega_1 < \omega < \omega_2$

† For numerical details, see W. W. Solodownikow and A. S. Uskow, "Statistische Analyse von Regelstrecken," VEB Verlag Technik, Berlin, 1963.

‡ See "The Fourier Integral," p. 16.

3.5.1 Stochastic Differential Equations Dreven by While Horse

Contenuaus-time

$$\dot{x} = F(t)x + G(t) + C(t)u$$

$$x = H(t)x + V + D(t)u$$

X = X(t) = State Yector Z = Z(t) = measurement Yector

u=u(+)= deterministic input vector (coutrol)

w = w(2) = system (plant) zero-mean while nouse Goussian)

v = v(t) = measurement zero-mean while noise (Goussian)

E(w4)=0, E(x4)=0

 $E(w(H)w(H)) = Q(H)\delta(H-H)$

 $E(V(H)V(H)) = R(H) \delta(H_2-H)$

E (w(4) (T(4)) = M (4) S(+2-4s)

correlation between system and measurement virule maise (usually = 0)

E(x(+)) = x0 $E(x(t_0)) = \overline{x_0}$ (mean and varconce $E((x(t_0)-\overline{x_0})(x(t_0)-\overline{x_0})^T)$) of unital state must be known

these are the undual condutions for the above differential equation

the first and second moments for x(t)

3,5,2 Discrele-Tome SDEquations Driven by While Haise

$$E(\forall \mu) = 0$$
, $E(\forall \mu) = 0$
 $E(\forall \mu) = 0$, $E(\forall \mu) = 0$

$$\triangle(22-41) = \begin{cases} 1 & 4=42 \\ 0 & 4=42 \end{cases}$$

Initial conditions for Xxo, represented by mean and votance are given

moments for xx

(3.6) SHAPING FILTERS

$$(1) \dot{\chi} = F \chi + 6 \gamma \psi_1$$

VII not a white noise

V = while noise

Ptoblem: fund the system attrem by whose output us well

(2)
$$\dot{x}_{SF} = f_{SF} \times_{SF} + G_{SF} \times_{SF}$$

$$(2) \times_{11} = H_{SF} \times_{SF}$$

Jet us augment (1) and (2)

$$X(t) = \begin{bmatrix} x(t) \\ x_{SF}(t) \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} \dot{x} \\ \dot{x}_{SF} \end{bmatrix} = \begin{bmatrix} F & GH_{SF} \\ O & F_{SF} \end{bmatrix} \begin{bmatrix} x \\ x_{SF} \end{bmatrix} + \begin{bmatrix} O \\ G_{SF} \end{bmatrix} \forall d$$

$$\Rightarrow z = \begin{bmatrix} H & O \end{bmatrix} \begin{bmatrix} x \\ x_{SF} \end{bmatrix} + \nabla$$

$$\Rightarrow z = \begin{bmatrix} H & O \end{bmatrix} \begin{bmatrix} x \\ x_{SF} \end{bmatrix} + \nabla$$

or $X = F_T X + G_T W$ $Z = H_T X + \gamma$

> The problem is how to fund FSF, GSF, HSF (mostrices for shaping feeler). Solution is not unique. One example is given in Frample 35, page 75,

MEASUREMENT HAN -WHITE HOISE

$$\dot{x} = Fx + Gy$$
 $y = y + h \cdot h \cdot h \cdot h \cdot h$
 $x = Hx + y_1$ $y = non-y + h \cdot h \cdot h \cdot h$

XSF = FSF XSF+ GSFY V = while noise

Y1 = HSF XSF

note: no noise in measurements