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Prelude

A Control Engineer as an Archer...

@,

to drive the state to the target.
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Sliding Mode: an illustration

o fill oil into a bottle through a funnel



A “funnel-like’’ domain

(

X =X
X, =2X, —3X, +U

Target: (X, X,) = (0, 0)

System:

Funnel: X, =X,

New target: S=X, + X, =0




A Physical Example

Coulomb Friction
— Bﬂfﬂﬂﬂﬂ: TO M[;Eﬁ

dv
m—=—-Ksgn(v)+ f

f. :applied force = “Fmcron

For example, K =3, f, =-2

dv FRICTION 1S A FORCE THAT
v>0:>m—:—3 2¢0=vY ACTS IN AN OPPOD<ITE
DIRECTION TDO AMADVERENT.

v<0=m ﬂ - 3-2>0=>v? http://[www.physics4kids.com
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sliding mode:

(if | ,| < K).
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A “funnel-like” domain (cont.)

( X =X
System:

— <

X, = 2% —3X, + U+ f (t)
Target: (Xl, X2) =(0, 0)

Funnel: X, = —X;

New target: S=X, + X, =0



A “funnel-like” domain (cont.)

r)'(l — X2 ﬁ Parameter
System: 1 __variations
X, = 2X, —3X, +U +[(Alx1 +A,X,)
X

Target: (X, X,) = (0, 0)

Funnel: X, = —X;

New target:S =X, + X, =0




Introduction to Sliding mode
- Variable Structure Systems

(.
X =X, (K. D.Young, 1978)

System:<
(X, =ax, —bu

Switching line:s = cx, +x, =0
(Sliding Surface)

(ax,, if x;s>0 (region )
—aX,, If x;s<0(rigion II)

Control :u =+




Introduction to Sliding mode
- Variable Structure Systems

If . 0 1
Structure | : X = X
—ba a

X,5>0

: s* —as +ba = 0: spiral out

_ 0 1
. Structure ll : x = { } X
e ~ |ba al|”

I-—!l

s* —as —ba = 0:saddle point

Fig. 1. Sliding mode in a second order VSS.



Introduction to Sliding mode
- Invariance Condition

Q: Can the control law possibly reject
the disturbance out of the system!?

0 2 2 -
X=Ax+|-1 1 |u+|-1]|f(t)
2 -1 |3
0" L T

=Ax+|-1(u,+| 1 |u,+|-1|f(t)




Introduction to Sliding mode

- Invariance Condition

Control subspace: span-

Disturbance subspace:

* The disturbance can be rejected by the control law if
(and only if) the control subspace covers

-

span <

the disturbance subspace.

\




Introduction to Sliding mode
- Invariance Condition

In this example, | 2| [0] |2
~1]=2|-1]+] 1
3 | 2| |1
Ifd(t) is known, then the control law

u, =v, -2 (t)
u, =V, - f(t)
Will lead to

0 2 0 2 2 (0 2|
X=AX+|-1|v,+| 1 |v,+(-2|-1|—| 1 DFf@)+|-1|f(t)=Ax+|-1 1

<




Introduction to Sliding mode
- Invariance Condition

(Drazenovic, 1969):
The system with disturbance

X = AX+ Bu+ Ef (t) 4

is invariant of f(t)in sliding mode s=0 iff
rank|[B| E|=rank|B]|.

In the previous example,

0 2 2 0 2
rank| -1 1 | -1|=rank|-1 1 |=2.
I 2 -1 3 ] 2 -1




A “funnel-like” domain (revisit)

( X =X
System:

— <

X, = 2% —3X, + U+ f (t)
Target: (Xl, X2) =(0, 0)

Funnel: X, = —X;

New target: S=X, + X, =0



A “funnel-like” domain (revisit)

X, =X, - Par.an?eter
System: 1 \,__variations
X, = 2X, —3X, +U +f[(Alx1 +A,X,)
X

Target: (X, X,) = (0, 0)

Funnel: X, = —X;

New target:S =X, + X, =0




VSS Design

.
Xl — X2 (K. D.Young, 1978)

System:<
X, = ax, —bu

Switching line:s=cx +x, =0
(Shiding Surface)

(ax,, if x;s>0 (region I)
—aX,, If x;s<0(rigion 1)

Control :u =+




VSS Design

Existence of sliding mode
~i.Reaching condition (sufficient, global)

S<—osgn(s), o>0

ii. Sliding condition (sufficient, local)

0 Iims<0, Ilims>0

s—>0" s—>0~

//.%O,O Shiding Surface: s =0



VSS Design

Finite time reaching: §<—-osgn(s), o >0

Lyapunov function
V =¢°
dv

—=2s8§=-20s|<0
dt

S s(x)—>0

Reaching time T < W) _[s)

O o)



VSS Design

A heuristic example
(D°+a,D’+a,D+a,)y(t)=(b,D’ +b,D+b)(u+ f(t)), D=
0 1 o] [0] [O
X=| 0 0 1 [Xx+|0u+|0]f(t)

-a, —a, —a 1 1

y= bl b, b3]l
(i) Sliding surface S(X) =X, +C,X, +C;X =0

Sliding mode dynamics:

o _x |
< Xl ?, With x, = —¢,X, —C,X,.
Ko = X

2|a



VSS Design

(ii) ds(x) oOs dx
dt  ox dt
S=X; +C,X, +CX

=—-a,X —a,X, —a X, +U+ f(t)+C,x; +CX,

(iii) Discontinuous control
U=2aX + (&, —C)X, + (8, —C,) X — (T, +0)sgN(S)

- Reaching condition $<-osgn(s), o >0
satisfied if | f(t)] < f -



VSS Design

Two steps in VSS design

X

= f(x,u,t)

I. Choose sliding surface

s(x)=0

2. Design discontinuous control to

render sliding mode

X=

ri(ﬁ,uﬂt):f, s>0
T, s<0

Txuny=



VSS Design
- Sliding Surface

X=AXx+Bu+ Df (1)

Elgenspace Approach v.S. Lyapunov Approach

Nonsingular transformation

0
B :{ <”m>xm}, ng{xl}
BZ XZ

Canonical form

My MEMENE

Sliding surface

X2:_le’or S(X)Z[K Imxm]TX

Stabilizing feedback
X=AXx—-BKx+ Df (t)
Lyapunov function

PA +ATP=-Q
V(z)%f%

Sliding surface
s(x) =B'Px



VSS Design

- Discontinuous Control
X=AX+Bu+ Df (1)

sliding surface:s(x)=Cx =0
S=CAX+CBu+CDf (1)

Signum function
Single-input case)
u=-(CB)"CAx—(CB)*(c+d__)sgn(s)

~~

V.S.

u=—(CB)™CAx—(CB)*(d_. +0)- H H



Discrete-Time Sliding Mode

Continuous-time
X = AXx+ Bu + Df (1)

Sliding surface: s(t) =Cx(t) =0

Sampled-data
X, =DX +Tu +d,
Sliding surface: s, =Cx, =0
d=e"", sz(: e™drB,

(k+1)T T
d = [ e Df(r)dr = [e"Df (k+1T - 2)dA
0

KT



Discrete-Time Sliding Mode

= X = DX, +Fuk +d,
r= jeMdzB d, jeMDf (kK +1)T — 2)d A
Issues on disturbance rejection:
|. Matching condition fails d« # range(I’)
However, d, =Tf(kT)+O(T?)
2. Non-causal disturbances

However, d, =d, ,+0(T?)
dk—l = X _(DXk—l _Fuk—l

JItiImate achievable accuracy.O(l °)




Discrete-Time Sliding Mode

Quasi-sliding mode S, =0O(T), s(t)=0(T)

tate
trajectory . .
Discontinuous control

Sliding surface s(x)=0. AN YAV AN /\

Discrete-time sliding mode S, =0, s(t) = O(T*)

\atﬁ |

@ecmry




Discrete-Time Sliding Mode

Ukin’s discrete-time equivalent control

(Continuous control law)
S, =Cdx +CI'u +Cd, =0

u¥ = —(CI)'C(dx, +d,)

Discrete-time O(T?) sliding mode control
(Modification of u?)

u, =—(Cr)~"C(®x, +d, ,)

= S, =C(d, —d, ;) = O(T*)
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Switched Reluctance Motors




Switched Reluctance Motors

o A

4-phase, 8/6-pole SRM



Switched Reluctance Motors

) d

Magnetic flux
uc
X -
X "
—e ]
L(O) .
Torque, 9
T(+) ‘
T(-) o)




Switched Reluctance Motors

(mH)

R 30 i
L
X 10

7.5 15 22.5 30 37.5 45 52.5 60
(Degree)

di, dL(9). o
Vj:Lj(H)dtJr it I, +Rl;,, ]=AB,C,D

1dL. (6’)

Torque ci?: T. =
| =2 dg




Minimum-Time Torque Control

System dynamics:
% =—A(0, w)i + B(O)V (1)

Sliding surface:
S=I1-1 =0

Minimum-Time VSC:

V,if i) >
N6 © BN
V., 1f1(t) <1

Princeton/Central Jersey Section of IEEE
2008/11/17 - Circuits and Systems Chapter Meeting 37



Minimum-Time Torque Control

100 m WV olt 10 s
100 mwWolt 10 rins

I
oo 31 I
N ' T

I

100 mi%’crlt 2__:‘"_:. s
2 Wolt 2.5 ms.

L
e

N
A




Temperature Control
- A Plastic Extrusion Process

¥ ¥

F

TC rc TC TC
Heater3 y Heater2 y Heater1
| P | | [
Heaterd
| | | | H
Cooler3 Cooler2 | Coolerl
L‘SE (ssk) (ssk) (ssk) [ ssk) [ ssr]
7 ] ]
| [ [

Temperature Measurement
and Control Interface Board

ndustrial Personal

=

Computer (IPC)

System setup: ITRI (Industrial Technology Research Institute), Taiwan, R.O.C.



Temperature Control
- A Plastic Extrusion Process

Dynamics of Channel temperature:

Rate of change of energy input:
d_w: a(w,ut) = a (w,u,t),u=0
dt a (w,u,t),u<0

/Single-channel dynamics: R
Yy =-—my-+V

v:anm0+§
N pN )




Temperature Control

- A Plastic Extrusion Process

g

/Single-channel dynamics: R
Yy =—my+V
W
V:a(’m0+§

ocV )

-

Siding surface (Plcontrol)

V=Ko=K 0r V(5) = (Ko +~ ) (Yo )Y ()
J

Princeton/Central Jersey Section of IEEE
2008/11/17 - Circuits and Systems Chapter Meeting

41



Temperature Control

- A Plastic Extrusion Process
‘heat, s <0
water, s, >0

2 Channel Adaptive VSC
T T

Switching control law: U, =1

250

-
0
Q

Temperature(c)

1 ) 1 1 1 1 1 L 1
O 200 400 600 800 1000 1200 1400 16800 1800 2000
5 sec/sample



Rod-less Pneumatic Cylinder Servo

Waork Table

Transducer Signals | =
& Actuating Current ' Drata Acquisition Unit
. .
| ' 1
. YMEbus
Valve Filtering & S"Ppll" Control
Regulation Unit

f@%”

Rodless Pneumatic Linear Slide

SERVOVALVE

Fig. 1. General hardware layout.

Piston / Load Rdass

Fig. 2. Schematic of a rodless cylinder.




Rod-less Pneumatic Cylinder Servo

Equation of motion:
MY =—uY — 1 sgnY + A AP

Pressure dynamics:
AP =y, (P,P,,Y, X)X +w,(P,P,,Y,Y, X)

Supply

Sleave

m | m2

Fig. 3. Schematic of a four-way servovalve.



Rod-less Pneumatic Cylinder Servo

Sliding surface:

o =AP —%[Yg +k, (Y, =Y)+k, (Y, —Y)]+%|:IUUY. + i, sgny |

Variable Structure Control: X =—-X, sgn(o)

Pintan Poaition (m)

Piston Pesilion ()

~structure control and classic PID contro 1.

Fig: 8 Comparison of variable



Wireless Network Power Control

Matched Viterbi
: > Rake
Filter C . Tl
‘ombiner
0.625 ms SIR 10 ms Frame Error
Measurement Detector
Measured SIR
. (k) FER |
Transmitter
Power up/down « II]I?EEI L;oop « O“:“ﬂ' L‘-UUP
command Control Target SIR Control
target

Vi
Base Station Behavior

Zoran Gajic, Plenary Lecture 2007 CACS International Automatic Control Conference
National Chung Hsing University, Taichung, Taiwan, November 9-11, 2007



Wireless Network Power Control

7’

ith user

to-

Signal

interference ratio (SIR) for the

1

(t)
—far

g, (t)p
OPO)+5,(t)

7 (1) =

Logarithmic scale representation

2.0
j#i

jective

OB (1)
1 (t)

J

7 (t) =
Control ob

it P = L(ps)

.

AMICS

.

.

.



Wireless Network Power Control

Sliding surface s;(t)=7;(t)-7" =0
Discrete-time representation
S.(k+1)=s(k)+Tu. (k)+d(k)+v(k)
Discrete-timﬁ SMC (clontinuous)
Ui (K) = =5, (k) ~ = (d (k 1) +-v(k -1))
Stability analysis

1 T
Si(k+1) B Si(k) ) 1 i
Li(k+1)}_ 1o Li(k)} {Z}T(d(khv(k))
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Extended Research Problems
e Singular Perturbations

Singularly Perturbed Systems VSS

Quasi-steady state (slow mode) Sliding mode

Fast mode Reaching phase
Continuous control Discontinuous control
Infinite-time reaching Finite-time reaching

(boundary layer)



S

Extended Research Problems

e Distributed Parameter Syste

ms

Heat Conduction System: s \ 0

A

Boundary conditions U (0,t) =0

U () =aU,, (x 1)+ AU (x,) 1

x=0 x=I

Laterally insulated

U(l,t) =Q(t)+ f (1)

Wt = anx
w(0,t) =0
w(l, 1) =Q(t) + 1,(t)

—CW

Princeton/Central Jersey Section of IEEE
2008/11/17 - Circuits and Systems Chapter Meeting 51



Extended Research Problems

e Distributed Parameter Systems

Ultx, h g

Sliding surface: e
SH=w,(,t)=0 me %0 ety e

W, = aW,, —CW
w(0,t) =0
w(l,t) = Q(t) + f,(t)

Princeton/Central Jersey Section of IEEE
2008/11/17 - Circuits and Systems Chapter Meeting 52




Extended Research Problems

* Distributed Parameter Systems

Sliding surface: S(t) =w (I,t) =0

1B Seniching fercacn

S(t) =U, (1)~ k(LU (1)~ [k ()0 (v, Hdy}.

Sliding Mode Control: T M SRARF SRR AR
t . e} Lonem , A) Czmzedlr asfon

Q(t) = -K,, [ sgn(S(e))d7| . S S
wad S e

TraEm: | D e —



Conclusions

e Merits of VSS

> Robustness (against disturbances and system

parameter variations)
> Reduced-order system design
o Simple control structure

> Fits switching power electronics control



Conclusions

e Chattering Reduction (Elimination)
o Discrete-Time Sliding Mode
° Filtering methods
* Interesting Problems
> Qutput feedback
o Singular Perturbations
° Infinite-dimensional systems

o Systems with delays (e.g. wireless network)
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