

# PID Controllers in Nineties

**Muhidin Lelic**  
**Corning Incorporated**  
**Science and Technology Division**  
**Corning, NY**

# Overview

- ◆ Purpose: extract the essence of the most recent development of PID control
- ◆ Based on the survey of papers (333) in nineties in the following journals:
  - ◆ **IEEE Transactions on Automatic Control** (23)
  - ◆ **IEEE Transactions of Control Systems Technology** (26)
  - ◆ **IEEE Transactions on Robotic and Automation** (11)
  - ◆ **IEEE Transactions on Industrial Electronics** ( 2)
  - ◆ **IEEE Control Systems Magazine** ( 4)
  - ◆ **IFAC Automatica** (59)
  - ◆ **IFAC Control Engineering Practice** (29)
  - ◆ **International Journal of Control** (20)
  - ◆ **International Journal of Systems Science** ( 2)
  - ◆ **International Journal of Adaptive Control and Signal Processing** ( 2)
  - ◆ **IEE Proceedings - Control Theory and Applications** (30)

# Overview

- ◆ Based on the survey of papers (333) in nineties:
  - ◆ Journal of the Franklin Institute ( 5)
  - ◆ Control and Computers ( 1)
  - ◆ Computing & Control Engineering Journal ( 3)
  - ◆ Computers and Chemical Engineering ( 1)
  - ◆ **AIChE Journal** (16)
  - ◆ Chemical Engineering Progress ( 2)
  - ◆ Chemical Engineering Communications ( 1)
  - ◆ **Industrial and Engineering Chemistry Research** (55)
  - ◆ **ISA Transactions** (21)
  - ◆ **Journal of Process Control** (13)
  - ◆ Transactions of ASME ( 1)
  - ◆ ASME Journal of Dynamic Systems, Measurements and Control ( 3)
  - ◆ Electronics Letters ( 2)
  - ◆ Systems & Control Letters ( 1)

# Paper Classification

- ◆ Ziegler-Nichols based PIDs (10)
- ◆ Frequency domain based PIDs (22)
- ◆ Relay based PIDs (29)
- ◆ Optimization methods based PIDs (20)
- ◆ Internal Model Control PIDs (15)
- ◆ Robust PID controllers (30)
- ◆ Nonlinear PIDs (12)
- ◆ Adaptive PIDs (28)
- ◆ Anti-windup techniques (13)
- ◆ Neural Network/Fuzzy Logic based PIDs (34)
- ◆ PID control of Distributed Systems ( 3)
- ◆ Multivariable PIDs (29)
- ◆ Applications of PID controllers (56)

# Forms of PID controller

$$u = K_p \left( e + \frac{1}{T_i} \int e dt + T_d \frac{de}{dt} \right)$$

$$e = y_r - y$$

Standard form

$$G_s(s) = K_p \left( 1 + \frac{1}{T_i s} + T_d s \right)$$

$$G_c(s) = K \left( 1 + \frac{1}{T'_i s} \right) \left( 1 + T'_d s \right) \quad \text{Cascade form}$$

$$G_c(s) = k + \frac{k_i}{s} + k_d s \quad \text{Parallel form}$$

$$u_c = k_c \left( e + \frac{1}{T_i} \int e dt - T_d \frac{dy_f}{dt} \right)$$

$$e = y_r - y$$

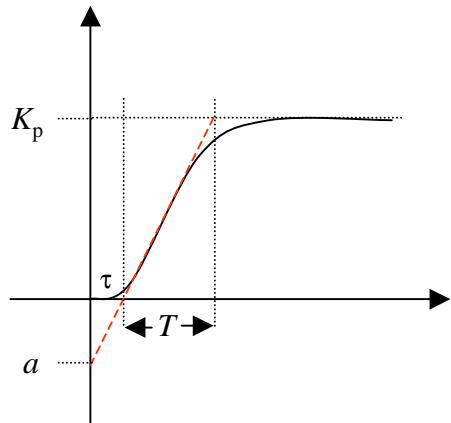
$$y_f = \frac{1}{1 + sT_d / N} y$$

Filtered derivative term

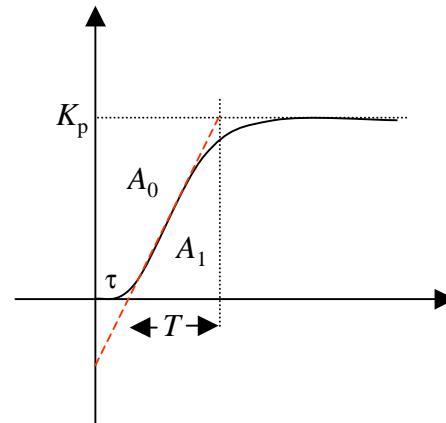
$$u_c = k_c \left[ (\beta y_r - y) + \frac{1}{T_i} \int e dt - T_d \frac{dy_f}{dt} \right]$$

Weighted setpoint form

# Modeling (step response)



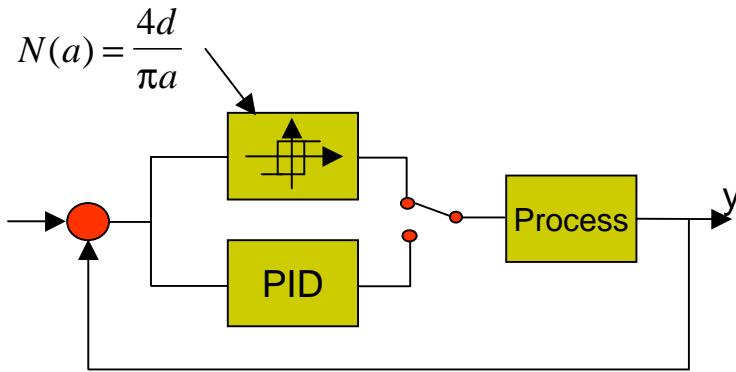
$$G(s) = \frac{a}{s\tau} e^{-\tau s} \quad G(s) = \frac{K_p e^{-s\tau}}{1 + sT}$$



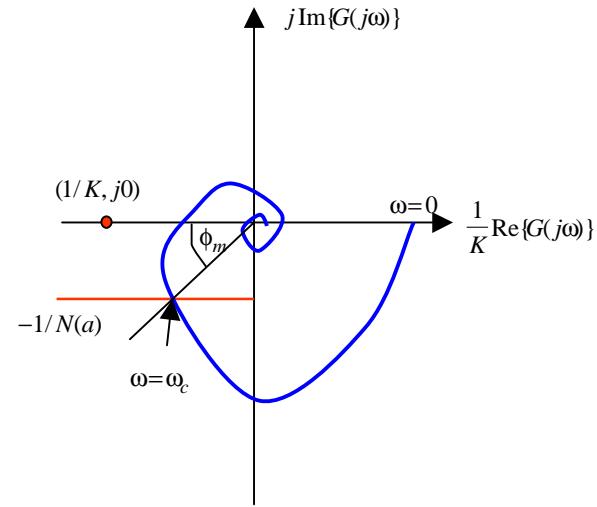
$$T + \tau = \frac{A_0}{K_p}$$

$$T = \frac{A_1}{K_p} e^1$$

# Modeling (frequency domain)



(a) Relay Excitation



(b) Correlation Method:

- use PRBS test signal  $u(t)$ ,
- measure  $y(t)$ ,
- find cross-correlation function between  $u(t)$  and  $y(t)$
- compute the impulse response  $g(t)$
- transform  $g(t)$  to  $G(s)$  and find the parameters of the model

# Tuning Techniques

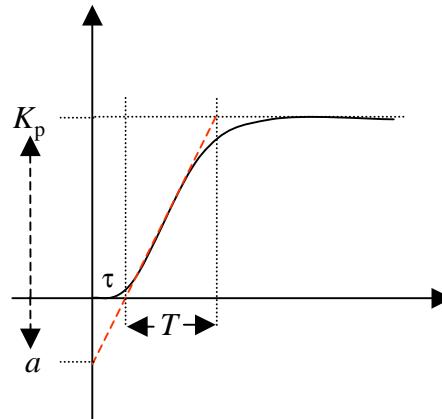
- ◆ Ziegler-Nichols (10)
- ◆ Frequency domain tuning (22)
- ◆ Relay based tuning (29)
- ◆ Tuning using optimization (20)
- ◆ Internal model control tuning (15)
- ◆ Other tuning techniques (30)

# Ziegler-Nichols Tuning

- Originated by work of Ziegler and Nichols, 1942
- Still in broad industrial use
- Several improvements reported
- Controllers tuned by this method tend to have large overshoot
- Two methods - time and frequency domain based
- Improvements reported (DePoor & I'Malley, 1989; Manz & Taconi, 1989; Chen, 1989; Hang & Sin, 1991, Astrom *et al*, 1992; Cox *et al*, 1997)

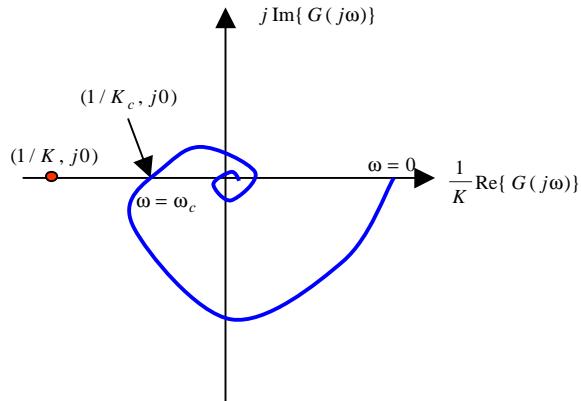
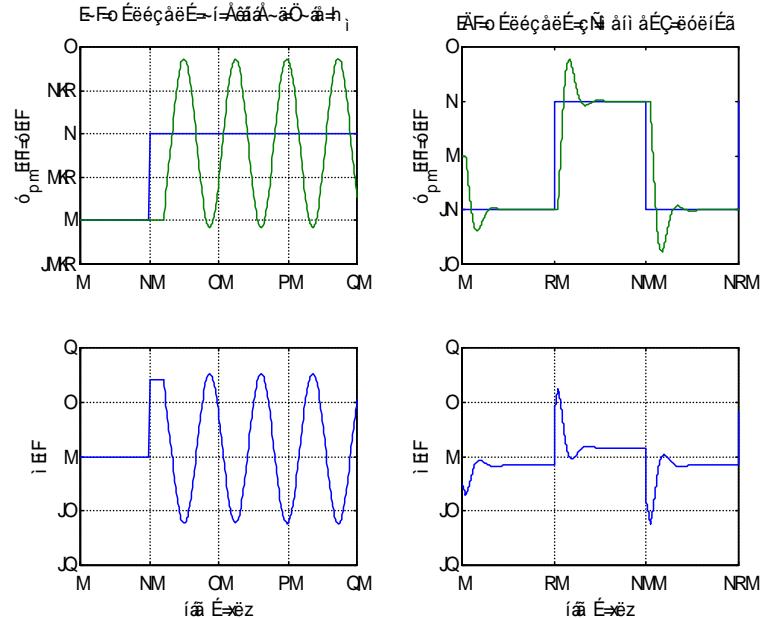
$$u_c = k_c \left[ (\beta y_r - y) + \frac{1}{T_i} \int edt - T_d \frac{dy_f}{dt} \right]$$

$$0 < \beta < 1$$

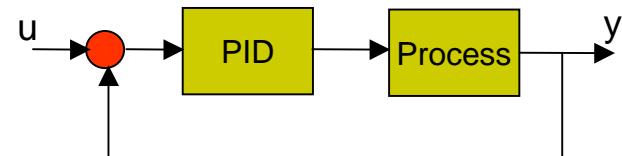


| Controller | K     | T <sub>i</sub> | T <sub>d</sub> |
|------------|-------|----------------|----------------|
| P          | 1/a   |                |                |
| PI         | 0.9/a | 3L             |                |
| PID        | 1.2/a | 2L             | L/2            |

# Ziegler-Nichols Freq. Response



|                   | PID              | PI              |
|-------------------|------------------|-----------------|
| Proportional gain | $k_c = 0.6k_u$   | $k_c = 0.45k_u$ |
| Integral time     | $T_i = 0.5t_u$   | $T_i = 0.85t_u$ |
| Derivative time   | $T_d = 0.125t_u$ |                 |



# Refined Ziegler-Nichols

$$\kappa = k_p k_u$$

Based on normalized parameters:  $\Theta = \frac{\theta_a}{T_p} = \frac{a}{k_p}$

Refined Ziegler-Nichols formulae for PID control

| PID                                                                                                                        |                    |
|----------------------------------------------------------------------------------------------------------------------------|--------------------|
| Large normalized Process gain or small<br>normlized dead<br>time $2.25 < \kappa < 15$ ; $0.16 < \Theta < 0.57$             | $k_c = 0.6k_u$     |
| $\beta = \frac{15 - \kappa}{15 + \kappa}$ (10% overshoot)                                                                  |                    |
| $\beta = \frac{36}{27 + 5\kappa}$ (20% overshoot)                                                                          |                    |
| Small normalized process gain or large<br>normalized dead time<br>$1.5 < \kappa < 2.25$ ; $0.57 < \Theta < 0.96$           | $T_i = 0.5\mu t_u$ |
| $\mu = \frac{4}{9}\kappa$ ; $\beta = \frac{8}{17}\left(\frac{4}{9}\kappa + 1\right)$<br>(20% overshoot and 10% undershoot) |                    |
| Derivative time                                                                                                            | $T_d = 0.125t_u$   |

# Frequency Domain Tuning Techniques

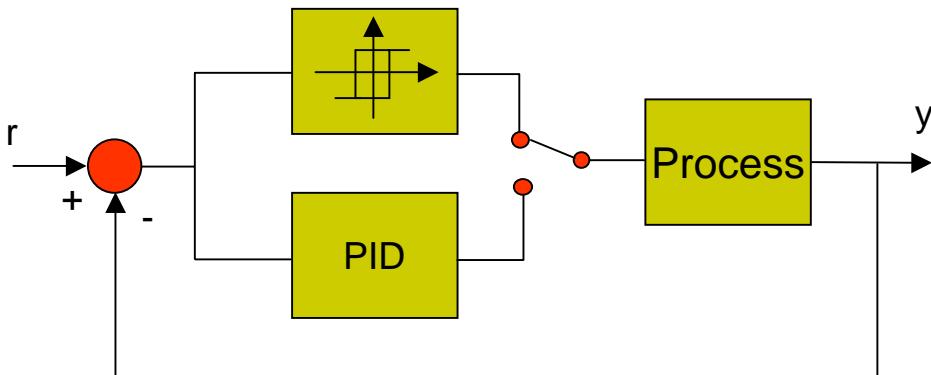
- ◆ Variety of the techniques based on desired phase and gain margin, and other frequency response parameters:
  - ◆ Hagglund & Astrom 1992;
  - ◆ Tyreus & Luyben, 1992;
  - ◆ Venkatasankar & Chidambaram, 1994;
  - ◆ Wang *et al*, 1995, 1997, 1999;
  - ◆ Ho *et al*, 1995, 1998;
  - ◆ Luyben, 1996, 1998;
  - ◆ Khan & Leman, 1996;
  - ◆ Poulin & Pomerlau, 1996;
  - ◆ Loron, 1997;
  - ◆ Shafei & Shenton, 1997;
  - ◆ Natarjan & Gilbert, 1997;

# Relay Based Tuning Techniques

- ◆ Introduced by (Astrom and Hagglund, 1994)
- ◆ Considered in many papers
- ◆ Relay Tuning considering two-parameter nonlinearity (Friman and Waller, 1995)
- ◆ Enhanced relay tuning by using the estimate at the two points of the Nyquist plot (Sung and Lee, 1997)
- ◆ Relay tuning that identifies three frequency data sets (Tan *et al.*, 1996) using one feedback relay test
- ◆ multiple-point frequency response fitting based on relay tuning (Wang *et al.*, 1999)
- ◆ Two relays working in parallel (Friman and Waller, 1997)
- ◆ A specialized book on relay tuning (Yu, 1999)

# Relay Tuning Basics

- ◆ Relay tuning (Astrom , Hagglund) is one of the most important methods commercially used



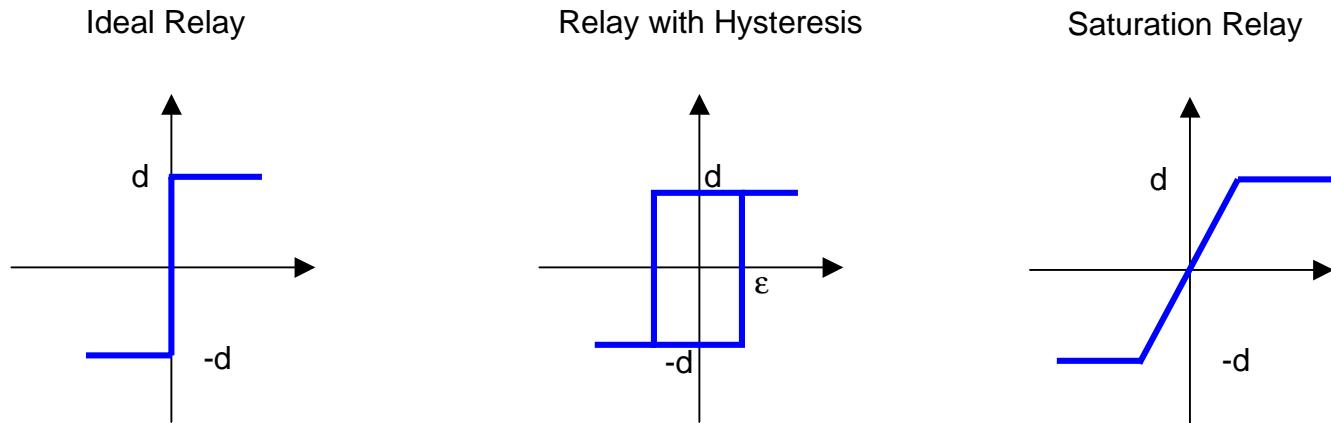
$$1 + N(a, \omega)G(j\omega) = 0 \quad \Rightarrow \quad G(j\omega) = -\frac{1}{N(a, \omega)}$$

$$N(a) = \frac{4d}{\pi a}$$

$$\operatorname{Re}\{G(j\omega)\} = -\frac{1}{N(a)}, \quad \operatorname{Im}\{G(j\omega)\} = 0$$

$$-\frac{1}{K_c} = -\frac{1}{N(a)} = -\frac{\pi a}{4d} \quad \Rightarrow \quad K_c = \frac{4d}{\pi a}$$

# Types of Relays

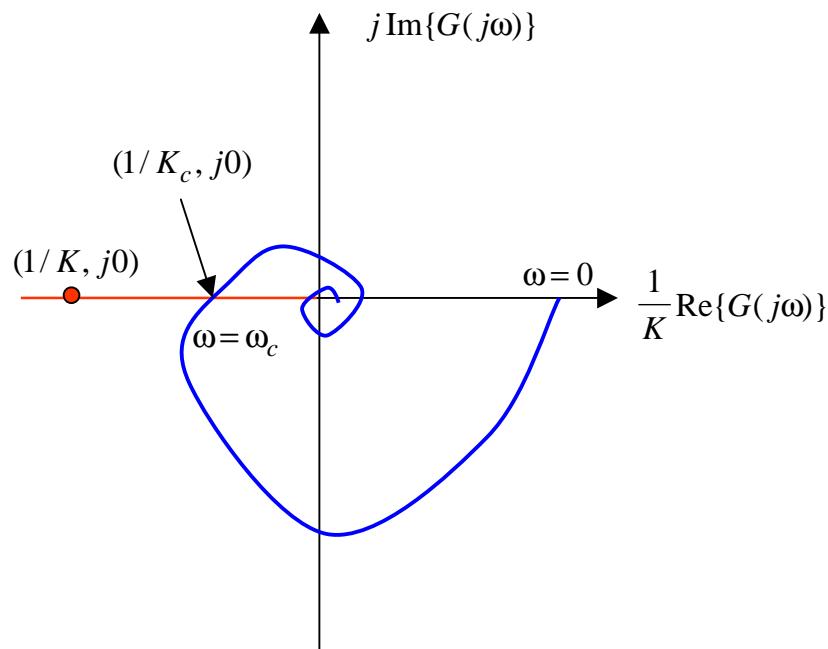


$$N(a) = \frac{4d}{\pi a}$$

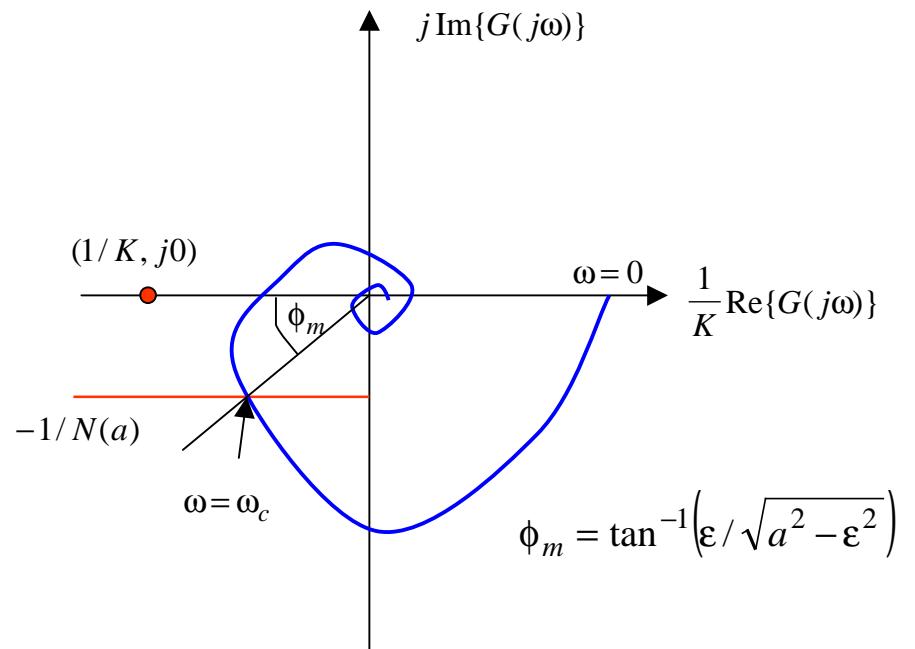
$$N(a) = \frac{4d}{\pi a} \left[ \sqrt{a^2 - \epsilon^2} - j\epsilon \right]$$

$$N(a) = \frac{2d}{\pi} \left( \frac{1}{a} \sin^{-1} \frac{\bar{a}}{a} + \sqrt{\frac{a^2 - \bar{a}^2}{a^2}} \right)$$

# Limit Cycle Parameters

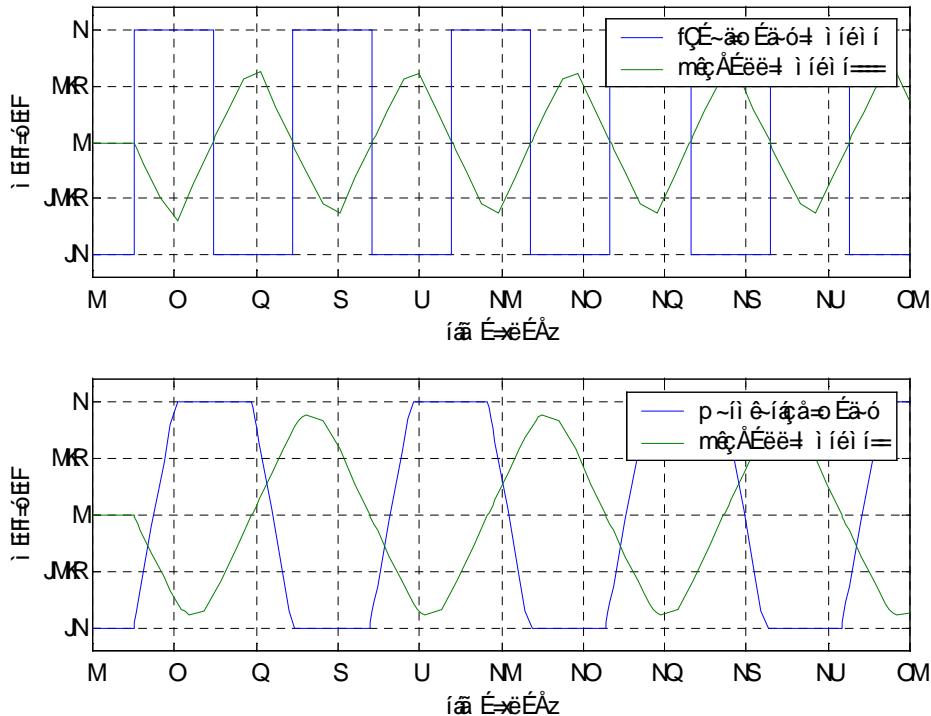


Ideal/Saturation Relay



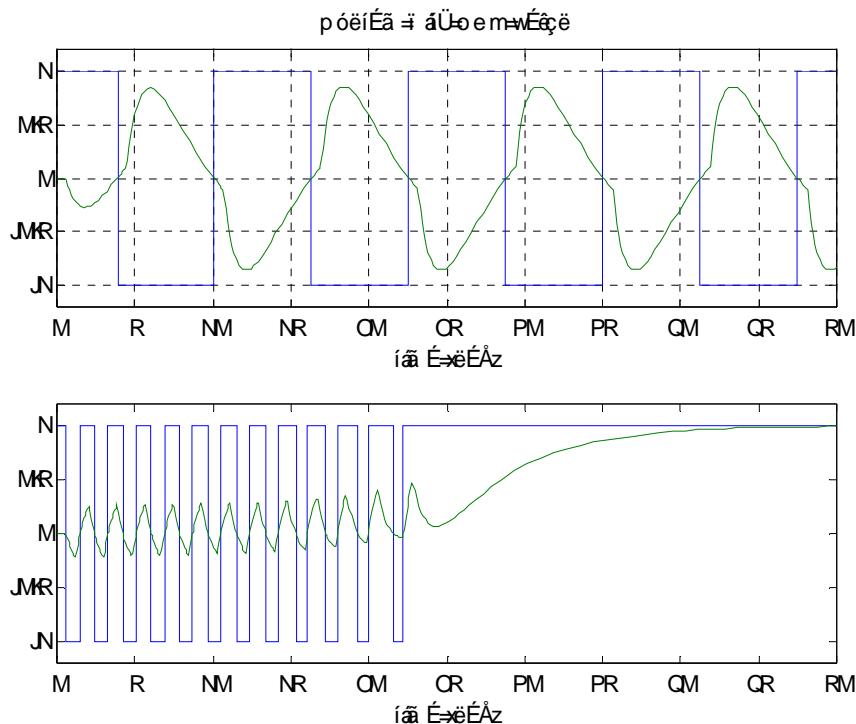
Relay with hysteresis

# Ideal and Saturation Relay



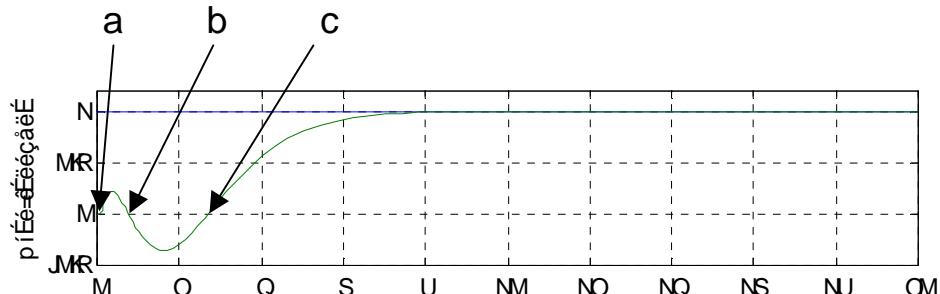
$$G(s) = \frac{12.8e^{-s}}{16.8s + 1}$$

# System with RHP Zeros

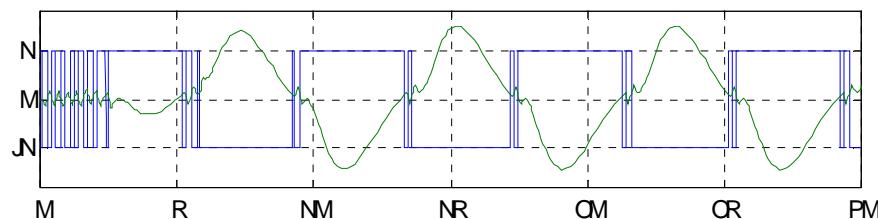
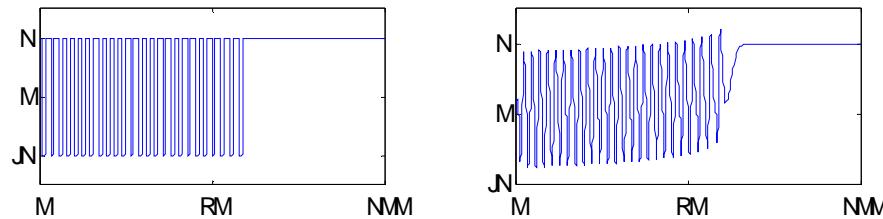


$$G(s) = \frac{(-3s+1)e^{-0.6s}}{(5s+1)(s+1)}$$

# System with two RHP zeros

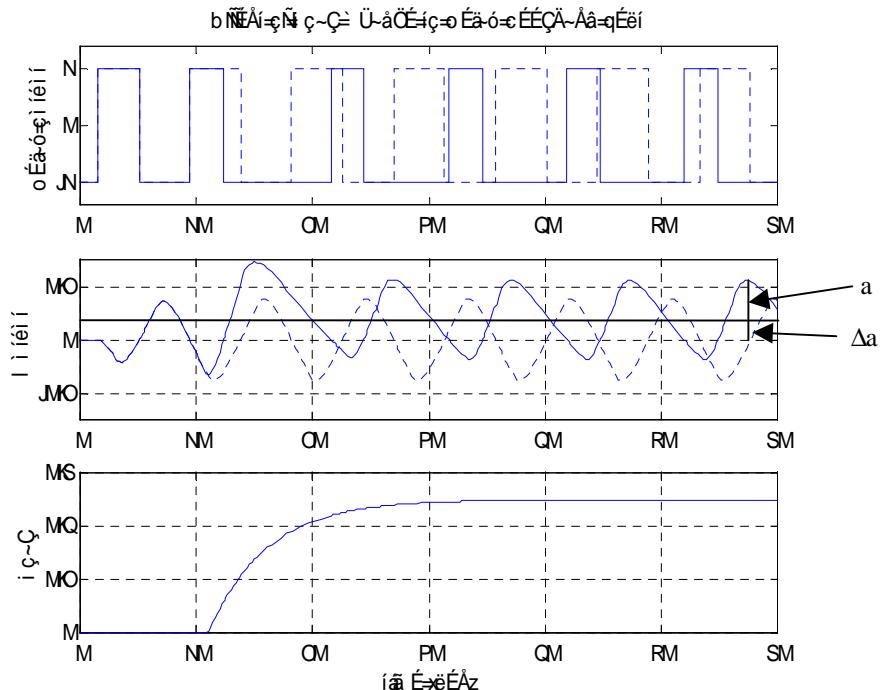
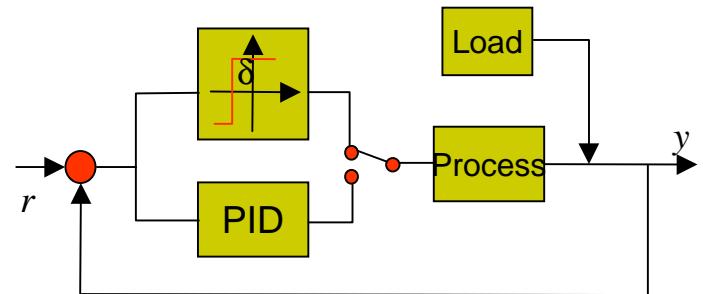


$$G(s) = \frac{(-s+1)^2 e^{-0.1s}}{(0.8s+1)^3}$$



Wrong sign of the system

# Load Disturbance Effect

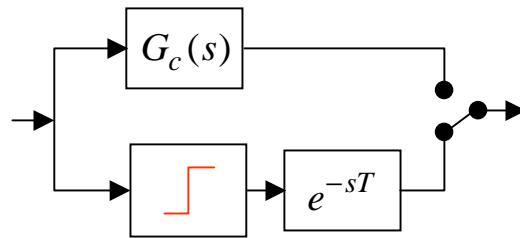
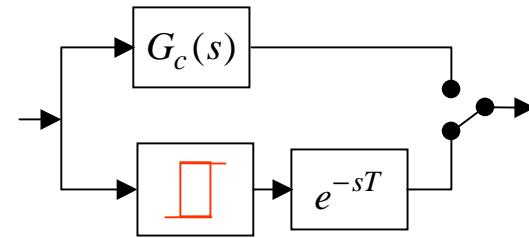


$$G(s) = \frac{e^{-1.5s}}{(10s+1)(s+1)}$$

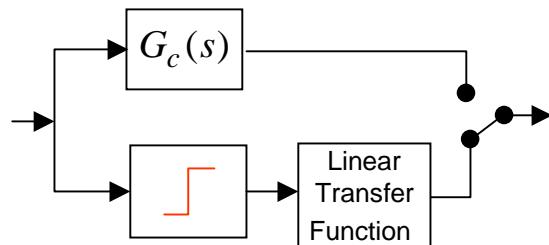
$$G_L(s) = \frac{e^{-s}}{5s+1}$$

# Multiple point estimation

- ◆ Time delay element in series with a relay



(Besancon-Voda and Roux, Buisson, 1997)



(Schei, 1992)

# Tuning Using Optimization Methods

- ◆ Based on optimization of certain, mostly integral criteria
- ◆ The technique dates back to papers (Johnson, 1968; Athans, 1971; Williamson & Moore, 1971)

$$J_n(\theta) = \int_0^{\infty} [t^n e(\theta, t)]^2 dt$$

$n = 0 \quad ISE$

$n = 1 \quad ISTE$

$n = 2 \quad IST^2E$

- ◆ Most of the methods based on FOPD system
- ◆ PID tuned in frequency domain using an optimization (Liu and Dailey, 1999)
- ◆ Comparative study (Ho *et al.*, 1999)

# Internal Model Control Tuning

- ◆ Developed by Morari and co-workers (Garcia and Morari, 1982)
- ◆ IMC is a general design technique - PID is a special case
- ◆ This is analytical method of PID design based on FOPD model.
- ◆ Tuning by this method considered in (Chien &Fruehauf, 1990; Rotstein & Levin, 1991; Jacob & Chidambaram, 1996).
- ◆ Comparative study between IMC based and frequency based tuning (Hang *et al.*, 1994)
- ◆ Several IMC schemes compared in (Vandeursen & Peperstraete, 1996)
- ◆ IMC has very good robustness (Scali *et al.*, 1992)
- ◆ Simplified tuning rules for IMC presented in (Fruehauf *et al.*, 1994)
- ◆ Improved filter design for IMC proposed in (Horn, 1996).

# Other Tuning Methods

- ◆ Approximation of pure time delay by Pade approximation (Yutawa & Seborg, 1982) of FOPD model to get second order system.
- ◆ Iterative technique to solve transcendental equation (Lee, 1989)
- ◆ Pattern recognition based adaptive controller (Cao & McAvoy, 1990)
- ◆ Transient response of second order plus time delay (Hwang, 1995)
- ◆ Graphical tuning based on the parametric D-stability partitioning (Shafei & Shenton, 1994)
- ◆ Gain scheduling tuning (McMillan *et al.*, 1994)
- ◆ Tuning based on the closed-loop system specification (Abbas, 1994)
- ◆ Delay compensation PID tuning formula based on Smith predictor (Tsang *et al.*, 1994)
- ◆ Pole-placement method (Hwang & Shiu, 1994)
- ◆ Model-based PID tuning (Huang *et al.*, 1996)
- ◆ Kessler;s Symmetric optimum principle (Voda & Landau, 1995)

# Kessler's Symmetrical Optimum Principle

- ◆ Based on two Kessler's papers from fifties which describe PID design technique based on Bode diagrams
- ◆ The idea is based on the idea that the plant transfer function be as close as possible to one at low frequency by accommodating  $G(0)=0$  and  $d^i G(j\omega) / dt^i = 0$  at  $\omega=0$  for  $i$  as high as possible.
- ◆ Kessler's principle says that:
  - ◆ the gain cross over frequency of the compensated system should be placed at  $\omega_{cg} = 1/2\tau_e$ , where  $\tau_e$  is equivalent time constant of all noncompensable time constants (sum of fast time constants and time delay).
  - ◆ The slope of the Bode diagram at the gain crossover frequency is minus 20 dB/dec
  - ◆ the PID controller is chosen such that it preserves the slope of minus 20 dB/dec for one octave to the right and  $m$  octaves to the left ( $m$  is the number of compensated time constants)

# Kessler's Symmetrical Optimum Principle

$$G(s) = \frac{Ke^{-s\tau_n}}{(1+\tau_1s)(1+\tau_2s)\dots(1+\tau_{n-1}s)(1+\tau_ns)} \approx G_{app}(s) = \frac{K}{(1+\tau_1s)(1+\tau_2s)(1+\tau_e s)}, \omega \leq \frac{1}{\tau_e}$$

For  $m=2$  and  $\tau_1 \geq \tau_2 \gg (\tau_3 + \tau_4 + \dots + \tau_n) = \tau_e$

In the neighborhood of the gain crossover frequency,  $\omega_{cg} = 1/2\tau_e$ ,  $G(s)$  is approximated by

$$G(s) = \frac{K}{(1+\tau_1s)(1+\tau_e s)}, \text{ with } \tau_1 \geq 4\tau_e$$

Tuning of PID controller by Kessler's method (Voda and Landau, 1995)

| Controller Type | Assumed Model                                                                       | Controller Parameters                                                                                                                 |
|-----------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| PI              | $G_1(s) = \frac{K}{(1+\tau_1s)(1+\tau_e s)}, \tau_1 \geq \tau_e$                    | $K_p = \frac{0.5\tau_1}{K\tau_e}, \quad T_i = 4\tau_e$                                                                                |
| PID             | $G_2(s) = \frac{K}{(1+\tau_1s)(1+\tau_2s)(1+\tau_e s)}, \tau_1, \tau_2 \geq \tau_e$ | $T_d = \frac{4\tau_2\tau_e}{\tau_2 + 4\tau_e}, \quad T_i = \tau_2 + 4\tau_e, \quad K_p = \frac{\tau_1(\tau_2 + 4\tau_e)}{8K\tau_e^2}$ |

# Kessler's method salient features

- ◆ Produces good phase and gain margins by imposing the slope  $20 \text{ dB/dec}$  around the gain crossover frequency
- ◆ Handles well nonlinearities and time varying parameters, and takes into account unmodeled dynamics (represented by the equivalent time constant  $\tau_e$  (Voda and Landau, 1995))
- ◆ The frequency  $1/\tau_e$  can be found from the Nyquist diagram where the phase margin is around  $45^\circ$ . This frequency also represents the closed loop bandwidth
- ◆ This frequency can be determined from a relay with hysteresis feedback experiment, as follows:

PID Tuning by Kessler-Landau-Voda method (KLV)

| Controller Type | Assumption                                                                              | Controller Parameters                                                                                                                        |
|-----------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| PI              | $\omega_{135} = \frac{\alpha}{\tau_e}$                                                  | $K_p = \frac{1}{3.5\tau_e}, \quad T_i = \frac{4\alpha}{\omega_{135}} = \frac{4.6}{\omega_{135}}$                                             |
| PID             | $\tau_2 \approx 1/\omega_{135} \Rightarrow \omega_{135} = 1/\beta\tau_e, 1 < \beta < 2$ | $K_p = \frac{\beta(4+\beta)}{8\sqrt{2}G(\omega_{135})},$<br>$T_i = \frac{4+\beta}{\beta\omega_{135}}, T_d = \frac{4}{(4+\beta)\omega_{135}}$ |

# Industrial Controllers

- ◆ **ABB Commander 355:**
  - ◆ Gain scheduling, feedforward, cascade, ratio control, autotune for 1/2 wave or minimal overshoot
- ◆ **Foxboro 762C:**
  - ◆ Exact Self-tuning control, dynamic compensation: lead/lag, impulse, dead time.
- ◆ **Fuji Electric PYX:**
  - ◆ Autotuning, fuzzy logic feedback control
- ◆ **Honeywell (few different models):**
  - ◆ Self-tuning, autotuning, gain scheduling, fuzzy logic overshoot suppression
- ◆ **Yokogawa:**
  - ◆ Autotuning, overshoot suppression (at sudden change of setpoint), gain scheduling

# Implementation Issues

## ◆ Commercial controllers

- ◆ Of the shelf units
- ◆ Mostly digital versions with sophisticated auto-tuning features
- ◆ Used in SISO (or multi-loop control architectures)
- ◆ Give satisfactory results (according to the Corning engineers)
- ◆ Digital controllers have 0.1s sampling period - good for process control
- ◆ Contain many of additional features based on many years of application experience (integral windup prevention, integral preload, derivative limiting, bumpless transfer)
- ◆ The above features make PID safe to use.

# Embedded Controllers

- ◆ Customized to the specific needs (when there are special requirements for speed, size, ...)
- ◆ Needed when the custom version of PID control (combined with monitoring, alarm processing, communication software ... if needed)
- ◆ Can accommodate virtually any tuning method
- ◆ Very fast control loops require fixed-point arithmetic and special electronics for implementation (DSP, FPGA,...)
- ◆ Example: optical amplifier gain and output optical power control - needs very fast sampling rates.

# Conclusions

- ◆ PID (PD, PI) controllers received lot of attention during '90
- ◆ Centennial work of Ziegler and Nichols (1942) still widely used in industrial applications and as a benchmark for new techniques
- ◆ Despite of a huge number of theoretical and application papers on tuning techniques of PID controllers, this area still remains open for further research
- ◆ There is lack of comparative analysis between different tuning techniques
- ◆ No common benchmark examples
- ◆ There is a number of industrial controllers based on modern tuning techniques
- ◆ Embedded controllers are good candidates for new PID techniques
- ◆ The area is still open for research