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Abstract—We consider the problem of a Parameter Server
(PS) that wishes to learn a model that fits data distributed on
the nodes of a graph. We focus on Federated Learning (FL) as
a canonical application. One of the main challenges of FL is the
communication bottleneck between the nodes and the parameter
server. A popular solution in the literature is to allow each node
to do several local updates on the model in each iteration before
sending it back to the PS. While this mitigates the communication
bottleneck, the statistical heterogeneity of the data owned by the
different nodes has proven to delay convergence and bias the
model.

In this work, we study random walk (RW) learning algorithms
for tackling the communication and data heterogeneity problems.
The main idea is to leverage available direct connections among
the nodes themselves, which are typically “cheaper” than the
communication to the PS. In a random walk, the model is thought
of as a “baton” that is passed from a node to one of its neighbors
after being updated in each iteration.

The challenge in designing the RW is the data heterogene-
ity and the uncertainty about the data distributions. Ideally,
we would want to visit more often nodes that hold more
informative data. We cast this problem as a sleeping multi-
armed bandit (MAB) to design near-optimal node sampling
strategy that achieves a variance reduced gradient estimates and
approaches sub-linearly the optimal sampling strategy. Based on
this framework, we present an adaptive random walk learning
algorithm. We provide theoretical guarantees on its convergence.
Our numerical results validate our theoretical findings and show
that our algorithm outperforms existing random walk algorithms.

Index Terms—Decentralized Learning, Distributed Learning,
Random Walk, Incremental Algorithms, Multi-armed Bandit.

I. INTRODUCTION

A. Overview and Motivation

D ISTRIBUTED Machine Learning has proven to be an
important framework for training machine learning mod-

els without moving the available data from its local devices,
which ensures privacy and scalability. Federated Learning (FL)
has risen to be one of the main applications [1]–[3] that has
been attracting significant research attention and has been
deployed in real-world systems with millions of uses [2]. Other
applications include learning in IoT networks [4], smart cities
and healthcare [5], [6]. To see how a typical learning algorithm
works in this setting, consider the FL setting in Fig 1. There
is as Parameter Server (PS) (typically sitting in the cloud) and
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Fig. 1. Distributed Learning on Graph through local computations at the
graph’s nodes and through local communication between the connected nodes.

a number of nodes (phones, IoT-devices, smart sensors, etc.)
each having its own local data. The PS wishes to learn a global
model on all the data without moving the data away from its
original owner. The algorithm would work in a batch SGD
fashion. In each iteration, the PS samples a batch of nodes
and sends the current model to it. Each node in this batch
will update the model based on its local data and sends back
its updated model to the PS. The PS then aggregates all the
received models and starts over again.
Locality vs. Heterogenity. One of the main bottlenecks here
is the communication with the parameter server (PS) needed in
each iteration to aggregate the updates sent by the nodes and to
coordinate the learning process. A popular solution is to reduce
the communication cost with the PS is to let each node perform
several local model updates on its data before reporting back to
the PS [7]. However, the local computations may induce local
biases to the model and slow the convergence of the learning
algorithm. This is due to the data that is heterogeneous across
the different nodes, which imposes an inconsistency between
the local and the global objectives [8], [9].
Random Walks. We propose Random Walks (RW) as a
way to simultaneously achieve two seemingly opposing goals:
extending the benefits of locality and mitigating the drawbacks
of data heterogeneity. The idea being that instead of restricting
local computations to the node itself, they can be extended
to its neighboring nodes. This is achieved by leveraging
existing local connections among the nodes themselves, which
are typically cheaper than communication to the PS. We
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Fig. 2. Random Walk (RW) on the graph: the updated model w(k) is
transmitted at time k. The self-loops at k = 3 and k = 9, indicate that
the RW algorithm decided to make a second update at the same node. The
model is reported back to the PS on a regular basis.

represent the local connections by a graph structure where
each node is connected to a subset of other neighboring nodes.
Thus, each node can exchange information with its neighbors
and, through these local communications, information can
propagate through the whole network. This setting can arise
in mobile and edge networks, IoT applications and ad-hoc
networks, to name a few.

In our proposed framework, the learning algorithm will
run as a random walk where in each iteration the model
gets updated at one of the nodes and then passed to one
of its neighbors to take over the next update, as shown in
Figure 2. The model is then passed to the PS on a regular
basis and/or depending on the network resources to mitigate
the communication cost to the PS.

Random walk learning algorithms have been well studied in
the literature on optimization [10], [11], wireless networks [12]
and signal processing [13]. What distinguishes this work is that
it tackles the problem of designing random walk learning al-
gorithms in the presence of arbitrary data heterogeneity across
the nodes. Our main contribution is a random walk algorithm
that, along with updating the model, it learns and adapts
to the different nodes’ distributions by carefully combining
exploration and exploitation. Our main tool is the theory of
Multi-Armed Bandit (MAB).
Random Walk via Multi-Armed Bandit. Typically, the
distributions of the local data at each node are not known
a priori. Therefore, we want to devise a random walk strategy
that overcomes data heterogeneity by learning about the local
data distributions along the way. The goal is to minimize the
variance of the global objective gradient estimates computed
locally by adjusting the nodes’ sampling strategy. More specif-
ically, at each iteration k, one has to design the probabilities
with which the next node in the RW is chosen among the
neighboring nodes. Note that these probabilities will depend
on k to adapt to the information learned so far, leading to
a time-varying RW. Therefore, the random walk will start
with an exploration phase before gradually transitioning into
an exploitation phase, once more robust estimates about the
nodes’ data are obtained.

We design the RW by casting our problem as Mulit-

Armed bandit. The multi-armed bandit (MAB) is a learning
framework to decide optimally under uncertainty [14]–[16].
It features N arms with unknown random costs (negative
rewards). At each iteration, one pulls. The problem is to decide
on which arm to pull each time so that the accumulated cost,
called regret, after playing T times is minimized. Our solution
is an algorithm that explores the different arms and, in parallel,
it exploits the collected information so far, where it observes
the outcome of playing an arm and uses it to tune its expected
reward estimate to adjust future selections [14], [15]. In our
distributed learning setting, we model the node selection in the
RW as arm pulling in the MAB framework. At each iteration,
the random walk picks a node in graph to activate for the next
update, observes the update, and receives the local gradient as
a cost.

Under this analogy, the performance of the learning al-
gorithm is measured by the regret, which is the difference
between the cost of a random walk with optimal transition
matrix when all the distributions are known, and the cost of
the nodes visited by the algorithm.

B. Contribution

In this paragraph, we summarize our contribution as fol-
lows:

• In this work, we propose a distributed learning algorithm
to learn a model on the distributed data over the nodes
in a graph. Our algorithm selects the nodes to update the
model by an adaptive random walk on the network to
address the statistical heterogeneity of distributed data.

• We model the random walk transition design as a sleeping
multi-armed bandit problem to compete with the optimal
transition probabilities that mitigate the high variance in
the local gradients estimates.

• We provide the theoretical guarantee on the rate of
convergence of our proposed algorithm approaching a
rate O(1/

√
T ). The rate depends on the graph spectral

property and the minimal gradient variance.
• Finally, we simulate our algorithm on real and synthetic

data, for different graph settings and heterogeneity levels
and show that it outperforms existing baseline random
walk designs.

C. Prior Work

Random Walk Learning. Several works have studied random
walk learning algorithms focusing on the convergence under
different sets of assumptions. The works of [11], [17], [18]
established theoretical convergence guarantees for uniform
random walks for different convex problem settings and using
first-order methods. Later work [19] employs more advanced
stochastic updates based on gradient tracking technique that
uses Hessian information to accelerate convergence. The work
of [20] proposed to speed-up the convergence by using non-
reversible random walks. In [13], the authors studied the
convergence of random walks learning for the alternating
direction method of multipliers (ADMM). In [21], the paper
proposes to improve the convergence guarantees by designing
a weighted random walk that accounts for the importance
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of the local data to speed up convergence. An asymptotic
fundamental bound on the convergence rate of these algo-
rithms was proven by [22] and it approaches O(1/

√
k) under

convexity and bounded-gradient assumptions. From our MAB
perspective, a common aspect of these algorithms is that they
are purely exploitative. They require a priori information about
the local data (e.g., gradient-Lipschitz constants, bounds on the
gradients) to design a non-adaptive (time-invariant) random
walk.

Random Walk algorithms belong to a more general class
of decentralized learning algorithms where no central entity,
such as a PS, is involved to handle the learning process. Gossip
algorithms are another class of decentralized algorithms that
are not based on random walks (see for e.g. [10], [23]–[25]).
In (synchronous) gossip algorithms, at each round, each node
updates and exchanges its local model with its neighboring
nodes. Hence, in each iteration, all the nodes and all the links
in the graph are activated. The goal of a Gossip algorithm
is to ensure that all nodes, and not just the PS, learn the
global model and assume convergence once a consensus is
reached. Hence, it is less efficient in terms of computations
and communication costs [21].

Data Heterogeneity. Recently, there has been lots of work
addressing the problem of data heterogeneity especially in
the FL literature. The data across the nodes is typically not
generated in an iid fashion. A local dataset tends to be more
personalized and biased towards its specific owner’s profile.
Therefore, multiple local updates on the global model can drift
the global objective optimization towards its local one. This
may slow down the convergence and can lead to converging
to a suboptimal model [9], [26]. Several measures have been
proposed in the literature to quantify statistical heterogeneity,
which refers to this local vs. global objectives’ inconsistency
in the distributed data. The focus has been on quantifying the
gap between the local update direction and the global one [8],
[26]–[29]. The proposed solutions vary between controlling
the update direction [28] or the learning objective [26].

Multi-Armed Bandit Sampler. The multi-armed bandit
(MAB) problem aims to devise optimal sampling strategies
by balancing together exploration and exploitation [14]–[16],
[30]. Results from MAB have been used in problems related to
standard SGD training in a non-distributed settings [31]–[35].
The idea there is to use an MAB sampler to select more often
the data points that can better guide the learning algorithm.

In the classical MAB setting there is no constraint on which
node to sample (visit) at a given time (which arm to pull in
the MAB language). However, in our case, we are restricted
by the graph topology, so only neighboring nodes can be
visited. To account for this constraint, we cast our problem
as Sleeping Multi-Armed Bandit in which nodes that are not
neighbors of the current nodes are assumed to be sleeping
(not available) at the time of the sampling. The Sleeping
MAB literature has studied various assumptions on sleeping
reliance: independent availabilities, general availabilities, and
adversarial availabilities. The lower bound on the regret is
known to be Ω(

√
NT ) if we consider stochastic indepen-

dent availabilities. For a harder sleeping-MAB setting with

adversarial availabilities, the lower bound is Ω(N
√
T ) for

N being the total number of nodes and T being the total
number of rounds [30], [36], [37]. In our work, we model the
RW design problem as dependent availabilities Sleeping MAB
learning algorithm [37]. For the proof technicality, we use a
harder upper bound on the performance that assume oblivious
adversarial availibilities.

A related line of work is the work on importance sampling
which can be thought of as a pure exploitation scheme with
no exploration. The literature has studied different aspects
of importance sampling using prior information on the local
datasets (e.g., [38]–[41]). For instance, in [42], the paper
proposes to sample proportionally to the smoothness bounds
of the local objectives. While the scheme in [38] suggests to
select the data points based on the bounds of the gradients of
the local objectives.

D. Organization

The rest of the paper is organized as follows. We present
the problem setup in Section II. In Section III, we present
the detailed random walk learning algorithm. In Section IV,
we provide the optimal sampling scheme and its theoretical
motivation. In Section V, we outline the analogy between
the RW design problem and the sleeping MAB problem. In
Section VI, we present the MAB RW learning algorithm and
the main theorem on its convergence. Moreover, we provide
the technical definitions and assumptions used into the main
theorem proof in Section VII . Finally, we provide numerical
results on the convergence of our proposed algorithm in
Section VIII. The full proofs of the technical results are
deferred to the appendices.

II. SETUP

A. Network Model.

We represent a network of N nodes by an undirected
graph G(V, E) with V = {1, ..., N} being the set of nodes
and E being the set of edges such that E = {(i, j) ∈
V ×V, if i is connected to j}. Since the graph is undirected,
then ∀(i, j) ∈ E, we have (j, i) ∈ E. Any two connected
nodes i and j are called neighbor nodes and we denote it by
i ∼ j. Moreover, we assume that all the nodes have self-loops,
thus, ∀i, (i, i) ∈ E.

B. Data Model.

We assume that every node i owns a
dataset Di of size n such that Di ={
ξi,j := (xi,j , yi,j) ∈ Rd × R for j ∈ [n]

}
, which is

sampled from an unknown local distribution Πi.

C. Learning Objective.

Our goal is to minimize a global objective function F (w)
where w ∈ W ⊂ Rd, W being the feasible set assumed to be
closed and bounded. The objective function F (.) represents
the empirical mean of local losses on the distributed data over
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the graph of N nodes. Therefore, we are looking to solve the
following problem:

min
w∈W

{
F (w) :=

1

N

N∑
i=1

Fi (w)

}
, (1)

where the function Fi is the local objective at the node i and
it is defined as

Fi (w) = Eξi [Fi (w; ξi)] for ξi ∼ Πi. (2)

The optimal model is denoted by w∗ and defined as follows:

w∗ = argmin
w∈W

F (w).

D. Data Heterogeneity.

The data distributions across the nodes of the network are
assumed to be arbitrary. Therefore, when a node performs a
local update on the global model it may bias it by its local
dataset that may not be a good representative of the global
learning objective. Multiple definitions have been recently
proposed to quantify the degree of local heterogeneity in
distributed systems [9], [26], [27], [29]. These definitions
focus on the variance of the local gradients with respect to
the global gradient at a given model w. In our work, we adopt
the definition used by [28] as stated below.

Definition 1 (Data Heterogeneity). The local objectives Fis
are (α, σ)-locally dissimilar at w if

Ei

[
∥∇Fi (w)∥22

]
≤ α2 + σ2 ∥∇F (w)∥22 ,

for α ≥ 0, σ ≥ 1, Ei is the expectation over the nodes and
∇Fi (w) is the gradient at node i. For α = 0 and σ = 1, we
restore the homogeneous case.

This definition is a generalization of other definitions [26],
[29].

E. Model Update.

We focus in our analysis on first-order methods using
stochastic gradient descent1. Given the limited compute power
of the nodes,

Thus, the model update at round k will be as follows

w(k+1) = ΠW

(
w(k) − γ(k) 1

p(k)(i(k))
∇̂Fi(k)

(
w(k)

))
, (3)

where γ(k) is the step size, ∇̂Fi(k)

(
w(k)

)
is an unbiased

estimate of the local gradient at node i(k) computed on a
uniformly sampled data point from Di(k) , p(k)(i(k)) is the
probability of picking node i(k) at round k, and ΠW is
the projection operator onto the feasible set W . For our
convergence analysis, we will need the following technical
assumptions.

Assumption 1. For every node i ∈ [N ], the local loss function
Fi(.) : W → Rd is differentiable and convex function on the
closed bounded domain W .

1Our work is applicable to any iterative algorithm that uses an unbiased
descent update [43]–[45].

Assumption 2. The step size γ(k) is decreasing and satisfies
the following

∞∑
k=1

γ(k) = +∞ and
∞∑
k=1

ln k.(γ(k))
2
< +∞. (4)

Assumption 3 (Bounded Gradient). There exits a constant D
such that, ∀i ∈ [V ] and ∀w ∈ W , we have ∥∇Fi(w)∥22 ≤ D.

The last assumption is actually a result that follows from
the functions Fi’s being convex on a closed bounded subset
W ⊂ R. A complementary proof can be found in [21].

III. RANDOM WALK ALGORITHM

Our objective is to design a random walk on the graph G
algorithm to learn the optimal model w∗. The algorithm starts
uniformly at random at an initial node in the graph, say i(0),
with an initial model w(0) also sampled uniformly at random
from the feasible set W . Let i(k) be the node visited (active) at
the kth round of the algorithm, k = 0, 1, . . . , T . At each round
k, the active node i(k) will receive the latest model update w(k)

from a neighbor node i(k−1), that was active at the previous
round. Then, the model w(k) is updated via a gradient descent
update using data sampled from the local dataset of node i(k).

The main question we are after is how to design the transi-
tion probabilities defining the random walk, which govern how
the RW is sampling the nodes in the graph. In addition to the
explicit objective of learning the model, the random walk will
simultaneously learn information about the heterogeneity of
each node’s data. Therefore, as the random walk progresses,
it can adapt with the information gained on the importance of a
given node’s data to speed up the convergence. For this reason,
we allow the transition probabilities of the random walk to
adapt over time (algorithm rounds). We denote by p(k)(i) the
probability distribution to select the node i to be active at
round k. We denote by P (k) the transition matrix at time k.
Therefore, we have P (k)(i, j) > 0 if j ∼ i and P (k)(i, j) = 0
otherwise. Moreover, we have p(k) = p(0)P (1)...P (k) and
p(m,k) = p(0)P (m+1)...P (k).

IV. NODE SAMPLING STRATEGY

We aim to design a sampling strategy that mitigates the
effect of heterogeneity on the performance of the learning
algorithm. Such strategy is constrained by an environment with
two essential properties to consider: 1) The node sampling is
restricted by the topology of the graph where the node to pick
next has to be connected to the current active node; 2) No
full information about the distributed heterogeneous data is
available except what has been learned in the rounds so far
and what can be shared among neighbor nodes.

In our algorithm, each node i is sampled (visited) with
probability p(k)(i) at round k. And the gradient is computed
on one data point sampled uniformly among the n local data
points at the visited node. A crucial quantity for our analysis is



5

the second moment of the unbiased gradient estimate at round
k which is is

E
[∥∥∥∇̂Fi(k)

(
w(k)

)∥∥∥2
2

]
=
∑
i∈[N ]

1

p(k) (i)

n∑
j=1

1

n2

∥∥∥∇Fi

(
w(k); ξi,j

)∥∥∥2
2
. (5)

This quantity affects the convergence rate of the Random Walk
SGD algorithm as we show in equation (6) (see the Appendix
for the details)

O

( T∑
k=1

γ(k)

)−1 T∑
k=1

E
[∥∥∥∇̂Fi(k)

(
w(k)

)∥∥∥2
2

] . (6)

Thus, the second moment of the gradients’ updates imposes
a burden on the convergence, especially in heterogeneous data
settings where the diversity of the gradients is high. This de-
pendence on the second moment is a common property of SGD
based algorithms and has been well studied in the literature.
Variance reduction techniques via importance sampling have
been proposed to improve the convergence guarantees [38],
[39], [41], [42], [46].

Our goal is to design the node sampling strategy to approach
the optimal probability that minimizes the convergence bound
[38], [39], [42] given by

p(k)(i) ∝
√
g
(k)
i

(
w(k)

)
, such that

g
(k)
i

(
w(k)

)
:=

∑
ξi,j∈Di

1

n2

∥∥∥∇Fi

(
w(k); ξi,j

)∥∥∥2
2
.

Note that computing the g(k)i ’s is very costly since it requires
computing the gradients related to all the data points owned
by the node and its neighbors. Moreover, the g

(k)
i ’s need

to be re-computed at the new model w(k) at each iteration.
Instead, we propose to estimate in each iteration the g

(k)
i ’s

using the already computed gradients for the update step in
(3). Therefore, at each iteration, the random walk has a double-
fold objective: (i) update the model in each iteration and (ii)
refine the estimates of the g

(k)
i ’s by adjusting the RW level

of exploitation vs. exploration using tools from the theory of
sleeping multi-armed bandit.

V. SLEEPING BANDIT FOR RW NODE SAMPLING

The multi-armed bandit (MAB) problem [16], [47] is a
decision framework that features a set of N arms, where each
arm i ∈ [N ] has an unknown cost c(k)(i) at round k. A player
selects a sequence of arms i(0), i(1), ... up to the final round
T (also called called horizon) of the algorithm. The goal is to
design an arm selection strategy to minimize the accumulated
regret R(T ) over the total number of rounds T :

R (T ) =

T∑
k=1

(
E
[
c(k)

(
i(k)
)]

− min
i∈[N ]

E
[
c(k) (i)

])
. (7)

The first term in the regret, E
[
c(k)

(
i(k)
)]

, is the average
cost of the arm selected by the player. The second term,
min
i∈[N ]

E
[
c(k) (i)

]
, is the “best” arm with the minimum cost

MAB RW Learning on Graph
Arm Node
Action Select the next node in the RW
Cost Variance of the local gradient at the selected

node as shown in (8)
Regret Gap between the accumulated variance and

the minimal variance under the optimal transi-
tion probabilities in full information setting as
shown in (9)

TABLE I
OUR PROPOSED ANALOGY BETWEEN THE SLEEPING MAB AND THE

RANDOM WALK DESIGN PROBLEMS.

that could have been selected were the costs known. The
expectation is taken over the selection strategy and the cost
randomness.

Our work is based on establishing an analogy between MAB
and RW. This allows us to use results from the vast literature
on MAB to design the RW in order to speed up the learning
process. To that end, we think of each node as an arm, and
visiting a node in the RW as selecting an arm in the MAB
problem. What is not clear in this analogy is what the cost
of visiting a node and updating the model is. Based on the
discussion in section IV and the the upper bound in (6),
minimizing the accumulated variance of the gradient serves
to tighten the convergence guarantees. Thus, we propose the
cost of visiting a node i, at a given round k in our Random
Walk algorithm, to be:

c(k)(i) =
∑

ξi,j∈Di

1

n2

∥∥∥∇Fi

(
w(k); ξi,j

)∥∥∥2
2
. (8)

However, this analogy between “standard” MAB and RW
cannot be fully established here. That is because in MAB
any arm can be selected at any time. Whereas in RW only
neighboring nodes can be visited in each iteration. To take
into account the graph topology, we consider a variant of the
standard MAB called sleeping MAB, where in each iteration
only a subset or arms is available (the rest are sleeping) [30],
[36], [37]. Moreover, the available nodes to select from are
the ones that are connected to the currently visited node. In
Table I, we summarise this analogy between MAB and RW.

Within this sleeping multi-armed bandit framework, our
goal is to minimize the regret given the available arms
and approach the best node sampling strategy denoted by
π : 2[N ] → [N ], which is a mapping from a set of available
arms N (k) to a selected arm. The goal is to minimize the
following regret

R (T ) =
T∑

k=1

(
E
[
c(k)

(
i(k)
)]

−min
π

T∑
k=1

E
[
c(k)

(
π
(
N (k)

))])
,

(9)

where the cost c(k) is defined in (8), the expectation is taken
w.r.t. the availabilities and the randomness of the player’s
strategy, and N (k) is the set of available nodes at time k
which consists of the neighbors of the currently visited node.
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Algorithm 1 Sleeping MAB Random Walk SGD

1: Input: Exploration parameter λ(k). Learning parameter
η =

√
logN
NT . Horizon T. Graph G(E, V ).

2: Initialization: Initial control weight q(0)(i) = 1 ∀i ∈ [N ],
Initial model w(0) chosen uniformly at random from W .
Starter node i(0) chosen uniformly at random from [N ].

3: for k = 1 to T do
4: Compute P (k)(i(k−1), i) ∝ q(k−1) (i) ∀i ∈

N
(
i(k−1)

)
and P (k)(i(k−1), i) = 0 otherwise.

5: Choose a neighbor node i(k) ∼ P (k)(i(k−1), .).
6: Choose ξi,j uniformly at random from Di(k) and com-

pute ∇̂Fi(k)

(
w(k)

)
.

7: Compute the cost estimate c
(k)
i .

8: Update the model using the SGD update in (3).
9: Update the control weight q(k)(i(k)) using (10).

10: end for

Therefore, the regret function is defined as the gap between
the local variance of the local gradient estimate implied by the
our selection strategy and the minimal variance that requires
full information about the local datasets.

In [16], [30], [36], it was shown that one can achieve a
sublinear regret O(

√
T ) for sleeping MAB and it is asymp-

totically optimal. This is achieved by applying the EXP3
algorithm. Initially, the algorithm assigns equal importance to
all arms. Then, at every round, the player receives the subset
of non-sleeping arms, selects one among them, and observes
the outcome of the chosen arm. The player then updates its
cost estimation and keeps track of the empirical probability
of the appearance of a given arm in the non-sleeping set.
The goal of the player is to balance between exploration and
exploitation and gradually shifts to exploitation as the costs
estimates become more robust after playing enough rounds.

The multi-armed bandit modeling implies an algorithm de-
sign on the random walk that guarantees a sublinear decaying
of the regret in (9) such that limT→∞

Regret(T )
T = 0, thus, it

approaches asymptotically the optimal transition scheme of the
random walk.

VI. MAIN RESULTS

In this section, we summarize our main technical results.
First, we present the details of our Sleeping Multi-Armed
Bandit Random Walk SGD algorithm in Algorithm 1. Second,
we prove in Theorem 1 that the proposed algorithm has an
asymptotically optimal convergence rate.

A. Algorithm

Algorithm 1 leverages the analogy between Sleeping MAB
and RW that we established in the previous section to design
the RW learning algorithm. In the literature of Sleeping MAB
[37], there are two EXP3 versions based on the availabilities
of the arms: dependent versus independent availabilities. The
case with dependent availabilities fits our RW model since the
graph structure dictates the joint presence of any set of nodes.

In Algorithm 1, each node i keeps an accumulated control
(importance) value q(k)(i) of the observed cost up to round k.
The nodes with higher values will be favored in the selection.

For every round of the algorithm, the active node has to
take the decision to select a neighboring node to carry the
next update. In order to do that, the active node receives
the control value from each neighboring node, and does the
selection proportionally to the control value.

The selection starts with pure exploration using uniform
control values and keeps tuning with time given the observed
cost average. The selected node will turn active, samples one
data point uniformly at random, performs the update in (3)
and computes the cost estimate based on the local gradient.

Each node i keeps tracks of the empirical estimate
P̄ (k)(i) = 1

k

∑k
t=1

(
P (t)(i(t−1), i)

)
. The exploration is im-

plicitly adjusted by a decreasing exploration parameter λ(k) =√
2N+2

k ln (T )+ 2N+2

3k ln (T ). At early stage of the training λ(k)

gives less importance to the observed cost contribution. Lastly
the control value is updated as follows

q(k)
(
i(k)
)
= q(k−1)

(
i(k)
)
exp

(
−η

c
(k)
i

(
i(k)
)

P̄ (k)
(
i(k)
)
+ λ(k)

)
.

(10)

B. Convergence Guarantees

Theorem 1. Under assumptions 1, 2 and 3, for a connected
graph G, particularly for γ(k) = 1

kq for 1
2 < q < 1, the

convergence rate of Algorithm 1 is as follows:

E
[
F
(
w̄(T )

)
− F (w∗)

]
≤

c.D2

ln(1/µG) +N.E + 1
2R+ 3C∗

T 1−q
,

where,
w̄(T ) =

∑T
k=1 γ(k)w(k)∑T

t=1 γ(t) , C∗ = minp
∑T

k=1 Ep

[
c(k)(i)

]
,

R = 1
2

∥∥w(0) − w∗
∥∥2
2
, and E =

∑T
k=1 γ

(k)
(

1
2k + 1√

k

)
.

Moreover, c is a constant function of the convexity constants
and the step size and µG is the spectral norm of the transition
matrix defined in Section VII.

The first order contribution of Theorem 1 is to characterize
the convergence rate approaching O( 1√

T
) of our proposed ban-

dit random walk SGD algorithm. This proves its asymptotic
optimality given the lower bound O( 1√

T
) in [48]. To better

understand its significance, one must compare it with other
first-order random walk algorithms, such as uniform node
sampling. For all these algorithms, one can get a similar bound
as in Theorem 1 with the same constants (depending on the
data and graph topology, etc.). The only difference would be
in the constant C∗ which is the cumulated variance of the
gradients corresponding to the optimal sampling strategy p∗.
Any other node sampling strategy p will lead to a higher
constant C and a looser bound. Of course, here we are
optimizing the upper bound which we are taking as a proxy
for the actual performance. Our numerical results in Section
VIII substantiate our theoretical conclusions and show that our
proposed algorithm outperform other baselines.
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VII. PROOF OUTLINE

We outline here the different steps needed to establish the
result in Theorem 1. The details can be found in the Appendix.
First, we state the results on the regret rate of the sleeping
multi-armed bandit selection scheme used in Algorithm 1.
Furthermore, we show that the multi-armed bandit random
walk is strongly ergodic which is an essential assumption for
the convergence of our algorithm.

Lemma 2 (Regret Rate of Sleeping Multi-Armed Bandit Sam-
pler). Let C∗ = minp

∑T
k=1 E

[
c(k)(i)

]
is the minimal cost if

the optimal transition scheme is known. Under algorithm 1,
The multi-armed bandit sleeping algorithm approximates the
optimal cost asymptotically as follows

lim
T→∞

1

T

(
T∑

k=1

E
[
c(k)(i(k))

]
− 3C∗

)
≤ 0,

The proof follows the multiplicative weight approach for
EXP3 algorithms introduced in [15].

Next, we state the definition on Strongly Ergodic Non-
Homogeneous Random Walk [49]. The sleeping multi-armed
bandit algorithm guarantees that this property applies on the
sequence of employed transition, which in the end guarantees
the convergence stated in Theorem 1.

Definition 2 (Strongly Ergodic Non-Homogeneous Random
Walk [49]). A non-homogeneous random walk, with uniform
starting distribution p(0), is called strongly ergodic if there
exists a vector p∗ such that for all m ≥ 0,

lim
k→∞

∥∥∥p(m,k) − p∗
∥∥∥ = 0.

Lastly, we present the result on the rate of convergence of
the transition probability distribution.

Proposition 3 (Convergence Non-Homogeneous Strongly Er-
godic Random Walk). The non-homogeneous random walk in
Algorithm 1 is strongly ergodic. Thus, it exists a stochastic
matrix P such that limk→∞

∥∥P (k) − P
∥∥ = 0. Moreover, it

exists a stochastic matrix Q such that
∥∥P k −Q

∥∥ ≤ cβk
2 ,

where β1 = 1 > β2 ≥ ... ≥ βN are the eigenvalues of the
matrix P . Moreover, it exists a function g(k) = O(

√
k) such

that
limk→∞ min

{
1/µk

G , g (k)
}∥∥P (0, k) −Q

∥∥ = 0, where 1 <

1/µG <
√
1/β2.

VIII. SIMULATIONS

In this section, we present the numerical performance of
our proposed Multi-Armed Bandit Random Walk (RW) SGD
algorithm described in Algorithm 1.

A. Baseline Algorithms

We compare the performance of our algorithm to three
baselines, namely: (1) Uniform Random Walk, (2) Static
Weighted Random Walk, and (3) Adaptive Weighted Random
Walk.

a) The Uniform Random Walk: This algorithm assigns
equal importance to all nodes in the network [17] imitating
uniform sampling in centralized SGD. We implement the
Metropolis Hasting (MH) decision rule to design the transition
probabilities, so the random walk converges to a uniform
stationary. The MH rule can be described as follows:

1) At the kth step of the random walk, the active node i(k)

selects uniformly at random one of its neighbors, say j,
as a candidate to be the next active node. This selection
gets accepted with probability

au

(
i(k), j

)
= min

(
1,

deg
(
i(k)
)

deg (j)

)
.

Upon the acceptance, we have i(k+1) = j.
2) Otherwise, if the candidate node gets rejected, the ran-

dom walk stays at the same node, i.e., i(k+1) = i(k).
b) Static Weighted Random Walk: This algorithm assigns

a static importance metric to each node that is proportional to
the gradient-Lipschitz constant of the local loss function [42],
[50]. The random walk is designed by the MH again with a
stationary distribution that is proportional to the local gradient-
Lipschitz constants. In order to achieve that stationary, the
probability of acceptance looks as follows:

aw

(
i(k), j

)
= min

(
1,

Lj

Li(k)

deg
(
i(k)
)

deg (j)

)
. (11)

c) Adaptive Weighted Random Walk: In this algorithm,
we adapted the importance sampling scheme that is used in
[38], [40] for centralized settings. The importance is computed
for each node i as the average of of gradients computed so far

at that node which is at time k,
∑k

t=1:i(t)=i
∥∇̂Fi(w(t))∥2

2

ni,k
, for

ni,k is the total number when node i has been active up to k.
We call it the pure Exploitation scheme.

B. Datasets and Comparison

Our simulations are run on both synthetic dataset and on
real benchmarks to confirm our theoretical results. They show
that a bandit based random walk in decentralized learning
consistently outperforms existing random walk baselines that
uses static or exploitation based importance estimation.

Synthetic Data. For each node i, we sample the dataset Di

from a a normal distribution with N ([µi,1, µi,2], σI2). We
assigned manually a label to each node dataset such that half
the nodes has the label yi = 1 and the other half has the
yi = −1. We run our simulations on an Expander graph which
known to be sparse (The Margulis-Gabber-Galil graph). 2.

MNIST dataset and Fashion-MNIST. We run experiments
on the MNIST dataset and the Fashion-MNIST to train a multi-
class logistic regression model. We divide the data among the
nodes as follows: for a level s% similar data, each client has
s% of its local dataset drawn i.i.d. from a shared poll of data.
The remaining (100− s)% by sorting according to label [28].

2We call the generator function of the Python library NetworkX v2.8 [51].
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Table II and Table III report the results for different level of
similarity from fully homogeneous to fully heterogeneous to
highlight how different similarity levels affect the convergence
of our algorithm vs. the oblivious uniform algorithm. Table II
is on the MNIST dataset. The gap between both algorithms
becomes wider once the system turns more heterogeneous.
Table III is on the Fashion-MNIST dataset. The gap between
both algorithms becomes more significant as the system turns
into more heterogeneous state 3.

Fig. 3. Classification model trained on a Synthetic dataset distributed over
an Expander graph of 100 nodes.

Fig. 4. Classification model trained on the Synthetic dataset. The same dataset
is been distributed over a Expander graph of size 100 nodes and 200 nodes.

Fig. 5. Classification model trained on the Synthetic dataset. The local dataset
size has been augmented from 20 to 200 in a Expander graph of size 100.

To elaborate on how our algorithm performs given the
graph structure, we consider multiple scenarios of simulations

3The fact that the ratio between the number of iterations of the two
algorithms is constant (roughly 2) is an artifact of the data and is not
reproducible for other datasets. See for example Table III which is on
the Fashion-MNIST dataset that shows an increasing ratio with decreasing
similarity.

Fig. 6. Multi-class MNIST dataset of 10 classes distributed over 100 nodes
with 0% similarity on Expander graph.

Similarity 0% 10% 100%
Uniform RW SGD 202 87 61
Bandit RW SGD 138 44 34

TABLE II
NUMBER OF ROUNDS TO REACH 0.45 TEST ACCURACY FOR LOGISTIC

REGRESSION ON MNIST AS WE VARY THE LEVEL OF SIMILARITY.
BANDIT RW SGD IS CONSISTENTLY FASTER THAN UNIFORM RW SGD.

Similarity 0% 10% 100%
Uniform RW SGD 124 90 66
Bandit RW SGD 82 69 54

TABLE III
NUMBER OF ROUNDS TO REACH 0.45 TEST ACCURACY FOR LOGISTIC

REGRESSION ON FMNIST AS WE VARY THE LEVEL OF SIMILARITY.
BANDIT RW SGD IS CONSISTENTLY FASTER THAN UNIFORM RW SGD.

Probability of Connectivity 0.1 0.5 0.8
Uniform RW SGD 202 128 94
Bandit RW SGD 138 103 90

TABLE IV
NUMBER OF ROUNDS TO REACH 0.45 TEST ACCURACY FOR LOGISTIC

REGRESSION ON MNIST AS WE VARY THE GRAPH CONNECTIVITY
PARAMETER. BANDIT RW SGD IS CONSISTENTLY FASTER THAN

UNIFORM RW SGD. AS WE DECREASE THE PROBABILITY OF
CONNECTIVITY, THE INCREASE IN THE NUMBER OF ROUNDS IS LESS

SIGNIFICANT FOR THE BANDIT ALGORITHM.

where we use an Erdos-Renyi with different probabilities of
connectivity that go from sparser to denser. Table IV measures
the performance given the probability of connectivity in the
graph.

APPENDIX

Optimal Sampling. Here is a sketched proof on the optimal
sampling. Consider the optimization problem in hand which
can be formulated as follows:

min
∑
i∈[N ]

g
(k)
i

(
w(k)

)
p(k) (i)

,

such that p(k) (i) ∈ (0, 1)∀ i, and
∑
i

p(k) (i) = 1.

The optimality conditions of the Lagrangian expression of the
problem above gives the following:

−
g
(k)
i

(
w(k)

)
(p(k) (i))2

+ η = 0 and
∑
i

p(k) (i) = 1,
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where η is the Lagrange multiplier. Thus, by a simple algebraic

manipulation, we get p(k) (i) =

√
g
(k)
i (w(k))∑

j

√
g
(k)
j (w(k))

.

Definition 3. The local loss function Fi for each node i ∈ V
has an Li-Lipschitz continuous gradient; that is, any w,w′ ∈
W , there exists a constant Li > 0 such that

∥∇fi (w)−∇fi (w
′)∥2 ≤ Li ∥w − w′∥2 .

Lemma 4. Under assumptions 1, 2 and 3, the Random
Walk SGD algorithm, that uses the update in equation 3 for
transition matrix P , has the following rate of convergence.

E
[
F
(
w(T )

)
− F (w∗)

]
≤ O

( T∑
k=1

γ(k)

)−1 T∑
k=1

E
[∥∥∥∇̂Fi(k)

(
w(k)

)∥∥∥2
2

] .

In order to prove Lemma 4 and Theorem 1, we present
some technical results that we use in the proof. The proof
techniques are essentially inspired by the work of [21] and
theya are adapted to the assumptions and setting of this work.

Lemma 5 (Convexity and Lipschitzness). If Fi is a convex
function on an open subset Ω ⊆ R, then for a closed bounded
subset W ⊂ Ω, there exists a constant Di ≥ 0, such that, for
any w1, w2 ∈ W ,

|Fi (w1)− Fi (w2)| ≤ Di ∥w1 − w2∥2 .
We define D = sup

i∈V
Di. Therefore,

|Fi (w1)− Fi (w2)| ≤ D ∥w1 − w2∥2 .
A proof for Lemma 5 can be found in [52].

Corollary 1 (Boundedness of the gradient). If Fi is a convex
function on R, then for a closed bounded subset W ⊂ R,
∥∇Fi(w)∥2 ≤ D, ∀w ∈ W.

Proof. Taking v = w +∇Fi(w),

D ∥∇Fi(w)∥2 = D ∥v − w∥2
(a)

≥ |Fi(v)− Fi(w)|
(b)

≥ ⟨∇Fi (w) ,∇Fi (w)⟩
= ∥∇Fi(w)∥22 .

(a) follows Lemma 5 and (b) follows from Fi being convex.

Now, we present the steps of the the proof:∥∥∥w(k+1) − w∗
∥∥∥2
2

=
∥∥∥ΠW

(
w(k) − γ(k)∇̂Fi(k)

(
w(k)

))
−ΠWF (w∗)

∥∥∥2
2

(a)

≤
∥∥∥w(k) − γ(k)∇̂Fi(k)

(
w(k)

)
− w∗

∥∥∥2
2

=
∥∥∥w(k) − w∗

∥∥∥2
2
− 2γ(k)

〈
w(k) − w∗, ∇̂Fi(k)

(
w(k)

)〉
+
(
γ(k)

)
2
∥∥∥∇̂Fi(k)

(
w(k)

)∥∥∥2
2

(a) follows from W being a convex closed set, so one can
apply nonexpansivity theorem in [52].
For the next we use the convexity of Fi,

∥∥∥w(k+1) − w∗
∥∥∥2
2
≤
∥∥∥w(k) − w∗

∥∥∥2
2

− 2γ(k)
(
Fi(k)

(
w(k)

)
− Fi(k) (w∗)

)
+ (γ(k))

∥∥∥∇̂Fi(k)

(
w(k)

)∥∥∥2
2
. (12)

Re-arranging the above equation gives

γ(k)
(
Fi(k)

(
w(k)

)
− Fi(k) (w∗)

)
≤ 1

2

(∥∥∥w(k) − w∗
∥∥∥2
2
−
∥∥∥w(k+1) − w∗

∥∥∥2
2

)
+

(γ(k))
2

2

∥∥∥∇̂Fi(k)

(
w(k)

)∥∥∥2
2
. (13)

Summing (13) over k and using Assumption and the bound-
ness of W ,

∑
k
γ(k)

(
Fi(k)

(
w(k)

)
− Fi(k) (w∗)

)
≤ 1

2

∥∥∥w(0) − w∗
∥∥∥2
2
+
∑

k
(γ(k))

2
∥∥∥∇Fi(k)

(
w(k)

)∥∥∥2
2
.

(14)

Next we give some results we need on the Markov chain.
We denote by µ the stationary distribution, P is the transition
matrix and P k is the kth power of matrix P. We refer to ith

row of a matrix P by P (i, :).

Lemma 6 (Convergence of Markov Chain [53]). Assume the
graph G is connected with self-loop, therefore a random walk
is aperiodic and irreducible, we have

max
i

∥∥µ− P k (i, :)
∥∥ ≤ Cλ

(k)
P

for k > Kp, where KP is a constant that depends and λP

and λ2(P ) and C is a constant that depends on the Jordan
canonical form of P .

Corollary 2. Using the previous lemma, we get

max
i

∥∥µ− PTk (i, :)
∥∥ ≤ CλTk

P ≤ 1

2k

for T (k) = min{k,max{ ln(2Ck)
ln(1/λP ) ,KP }}.

Here, we state the next corollary on the convergence of the
random walk.



10

γ(k)E
[
Fj(k)

(
w(k−T (k))

)
− Fj(k)

(
w(k)

)]
(a)

≤ Dγ(k)E
∥∥∥w(k−T (k)) − w(k)

∥∥∥
(b)

≤ Dγ(k)E

 k−1∑
n=k−T (k)

∥∥∥w(n+1) − w(n)
∥∥∥


(c)

≤ Dγ(k)
k−1∑

n=k−T (k)

E
(∥∥∥w(n+1) − w(n)

∥∥∥)
(d)

≤ D2γ(k)
k−1∑

n=k−T (k)

γ(n)

(e)

≤ D2

2

k−1∑
n=k−T (k)

(
(γ(n))

2
+ (γ(k))

2
)

≤ D2

2
T (k)(γ(k))

2
+

D2

2

k−1∑
n=k−Tk

(γ(n))
2
.

(a) follows from Lemma 5, (b) using triangle inequality,
(c) using linearity of expectation and (d) follows from the
Cauchy–Schwarz inequality.
Now taking the summation over k:∑

k

γ(k)E
[
Fj(k)

(
w(k−T (k))

)
− Fj(k)

(
w(k)

)]
≤
∑
k

D2

2
Tk(γ

(k))
2
+

D2

2

∑
k

k−1∑
n=k−Tk

(γ(n))
2
. (15)

By simply using the assumption on the step size summability,
the result is as follows:

∞∑
k=K

k−1∑
n=k−T (k)

(
γ(n)

)2
≤

∞∑
k=K

T (k)
(
γ(k)

)2
≤ 2

ln (1/λP )

∞∑
k=K

ln k.
(
γ(k)

)2
< ∞. (16)

Now, we compute the following lower bound:

Ej(k)

[
Fj(k)

(
w(k−T (k))

)
− Fj(k) (w∗) |X0, X1, ..., Xk−T (k)

]
=

N∑
i=1

(
Fi

(
w(k−T (k))

)
− Fi (w

∗)
)
P
(
j(k) = i |X0, X1, ..., Xk−T (k)

)
(a)
=

N∑
i=1

(
Fi

(
w(k−T (k))

)
− Fi (w

∗)
)
P
(
j(k) = i |Xk−T (k)

)
=

N∑
i=1

(
Fi

(
w(k−T (k))

)
− Fi (w

∗)
)
PT (k)

[
Xk−T (k) | j(k) = i

]
(b)

≥
(
F
(
w(k−T (k))

)
− F (w∗)

)
− N

2k
. (17)

(a) using Markov property and (b) using Lemma 1 in [20].

Therefore,

F
(
w(k−T (k))

)
− F (w∗)

≤ N

2k
+ Ej(k)

[
Fj(k)

(
w(k−T (k))

)
− Fj(k) (w∗) |X0, ..., Xk−T (k)

]

γ(k)E
[
F
(
w(k−T (k))

)
− F (w∗)

]
≤ Nγ(k)

2k
+ γ(k)E

[
Fj(k)

(
w(k−T (k))

)
− Fj(k)

(
w∗)
)]

∑
k

γ(k)E
[
F
(
w(k−T (k))

)
− F (w∗)

]
≤
∑
k

Nγ(k)

2k

+
∑
k

γ(k)E
[
Fj(k)

(
w(k−T (k))

)
− Fj(k)

(
w∗)
)]

≤
∑
k

Nγ(k)

2k
+

1

2

∥∥∥w(0) − w∗
∥∥∥2
2

+
∑

k
(γ(k))

2
E
[
∥∇Fi(k) (w∗)∥22

]
Next, we get a bound on

∑
k

γ(k)E
[
F
(
w(k)

)
− F

(
w(k−T (k))

)]
.

γ(k)E
[
F
(
w(k)

)
− F

(
w(k−Tk)

)]
(a)

≤ NDγ(k)E
∥∥∥w(k) − w(k−Tk)

∥∥∥
(b)

≤ NDγ(k)E

(
k−1∑

n=k−Tk

∥∥∥w(n+1) − w(n)
∥∥∥)

(c)

≤ NDγ(k)
k−1∑

n=k−Tk

E
(∥∥∥w(n+1) − w(n)

∥∥∥)
(d)

≤ ND2γ(k)
k−1∑

n=k−Tk

γ(n)

(e)

≤ ND2

2

k−1∑
n=k−Tk

(
(γ(n))

2
+ (γ(k))

2
)

≤ ND2

2
Tk(γ

(k))
2
+

ND2

2

k−1∑
n=k−Tk

(γ(n))
2
. (18)

(a) follows from Lemma 4, (b) using triangle inequality,
(c) using linearity of expectation, (d) follows Corollary 1 and
(e) follows from the Cauchy–Schwarz inequality. The upper
bound summability over k follows from previous discussion
in equation (16).
Combining with the results in (14) and (16) , we get
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E
[
F
(
w(k)

)
− F (w∗)

]
≤
∑T

k=1
Nγ(k)

2k + C.D2

ln(1/λP ) +
1
2

∥∥w(0) − w∗
∥∥2
2∑T

k=1 γ
(k)

+

(γ(0))
2∑T

k=1 E
[∥∥∥∇̂Fi(k)

(
w(k)

)∥∥∥2
2

]
∑T

k=1 γ
(k)

.

By this step we proved Lemma 4. Next we present the
essential technical results to use in the proof of Theorem 1.

Proposition 7. [Sleeping multi-armed bandit convergence
[30]] The sleeping multi-armed bandit sampling scheme
under adversarial availabilities guarantees the following:∥∥P (k) − P

∥∥ ≤ O( 1√
k
). Therefore, using Definition 1, the

random walk with transition matrices P (k) is strongly ergodic.

We state next Lemma of [49] about the convergence of
strongly ergodic random walk.

Lemma 8 (Theorem II.7 in [49]). Given strongly ergodic
non-homogenous transition matrices P (k) with a stochastic
matrix P such that limk→∞ g(2k)

∥∥P (k) − P
∥∥ =

0, given Q such
∥∥P k −Q

∥∥ ≤ cβk
2 , then

limk→∞ min
{
(1/µ)k, g (k)

}∥∥P (0, k) −Q
∥∥ = 0, where

1 < 1/µ <
√
1/β2.

Using the previous lemma, we get

max
i

∥∥∥µ− P (0, Tk) (i, :)
∥∥∥ ≤ O

(
1

2k
+

1√
k

)
(19)

for Tk = min
{
k,max

{
ln(2Ck)
ln(1/λ) ,KP

}}
. Therefore,

Ej(k)

[
Fj(k)

(
w(k−T (k))

)
− Fj(k) (w∗) |X0, X1, ..., Xk−T (k)

]
=

N∑
i=1

(
Fi

(
w(k−T (k))

)
− Fi (w

∗)
)
P
(
j(k) = i |X0, X1, ..., Xk−T (k)

)
=

N∑
i=1

(
Fi

(
w(k−T (k))

)
− Fi (w

∗)
)
P
(
j(k) = i |Xk−T (k)

)
=

N∑
i=1

(
Fi

(
w(k−T (k))

)
− Fi (w

∗)
)
P (0,T (k))

[
Xk−T (k) | j(k) = i

]
≥
(
F
(
w(k−T (k))

)
− F (w∗)

)
− N

2k
− cte.N√

k
. (20)

Finally,
T∑

k=1

γ(k)E
[
F
(
w(k)

)
− F (w∗)

]
≤

T∑
k=1

Nγ(k)

(
1

2k
+

cte√
k

)
+

C.D2

ln (1/λ)

+
1

2

∥∥∥w(0) − w∗
∥∥∥2
2
+

T∑
k=1

(γ(k))
2
E
[∥∥∥∇̂Fi(k)

(
w(k)

)∥∥∥2
2

]
.

Using previous results and the the convexity assumption,
we get

E
[
F
(
w(k)

)
− F (w∗)

]
≤

∑T
k=1 Nγ(k)

(
1
2k + cte√

k

)
+ C.D2

ln(1/λ) +
1
2

∥∥w(0) − w∗
∥∥2
2∑T

k=1 γ
(k)

+
(γ(0))

2
C∗∑T

k=1 γ
(k)

.

Employing the assumptions on the step size, we get an order
of convergence O(T 1−q) for a step size choice γ(k) = 1

kq

where 1
2 < q < 1.
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