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Preface 

Nowadays, people pay more attention to their physical health because the accel-
erated pace of life and increasing work pressure have compelled many people to 
adapt to a sedentary lifestyle. Such sedentary lifestyles often lead to many chronic 
illnesses (e.g., obesity), which negatively impact people’s quality of life. Thus, it is 
important to continuously pay attention to people’s health conditions and provide in-
time actions. The traditional way of healthcare requires patients to perform hospital 
visits or wear dedicated devices, which are intrusive and costly. Consequently, 
solutions providing a low-cost, long-term, non-invasive health monitoring system 
are highly desirable. Mobile technologies have recently demonstrated success in 
many application domains, including pervasive computing, Internet of Things (IoT), 
smart homes, etc. The integrated sensor modalities and wireless communication 
capabilities make mobile technologies a promising way to address healthcare needs 
that traditional approaches cannot offer. This book intends to provide comprehensive 
analyses and state-of-the-art designs of low-cost, long-term, and non-invasive 
health monitoring systems from different perspectives by leveraging mobile sensing 
technologies. 

In this book, we show how to utilize wireless signals and mobile technologies 
to facilitate smart healthcare in addition to their original capabilities. In particular, 
we introduce the identification of many kinds of activities exploiting the prevalence 
of WiFi infrastructure. We extract channel state information (CSI) in WiFi signals 
to achieve fine-grained activity recognition. Furthermore, a personalized fitness 
assistant system in home/office environments has been designed using the existing 
WiFi infrastructure. Since millimeter wave (mmWave) technologies have already 
been integrated into WiFi standards, they become a promising solution to enhance 
the resolution and accuracy of wireless-based smart healthcare systems. Along this 
direction, the personalized fitness assistant system has been further enhanced by 
using a single commercial-off-the-shelf (COTS) mmWave device to demonstrate 
its capability to handle more complex scenarios in indoor environments, including 
dynamic environment changes and multiple people. We then study another essential 
healthcare component, eating habit monitoring, which can facilitate dietary behavior 
analysis and nutrition study. The designed system provides environment-invariant

v



vi Preface

eating behavior monitoring. Moreover, we find that mobile devices (e.g., smart-
phones and smartwatches) can be extended for smart healthcare in addition to their 
original usage. We again develop a personalized fitness assistant system for people 
carrying mobile devices to help them achieve fitness goals while minimizing the 
chances of injury. The system dynamically depicts comprehensive short-term and 
long-term workout pictures of the user’s exercises using wearable mobile devices. In 
addition to its original usage of measuring physiological signals, photoplethysmog-
raphy (PPG) sensors are exploited to facilitate advanced healthcare applications. 
Specifically, we demonstrate that built-in PPG sensors on wearables can enable 
finger-level gesture recognition, sign language interpretation, and continuous user 
authentication. 

Fairfax, VA, USA Xiaonan Guo 
Philadelphia, PA, USA Yan Wang 
New York, NY, USA Jerry Cheng 
Piscataway, NJ, USA Yingying (Jennifer) Chen 
November 2023
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Chapter 1 
Introduction 

1.1 Background 

The advent of mobile sensing technologies has facilitated widespread connectivity 
among different devices, including smartphones, tablets, voice assistants, wireless 
sensors, and smart appliances. This integration has transformed many aspects of 
daily life and enabled a wide range of applications such as mobile healthcare 
monitoring, activity recognition, and user authentication. 

In particular, long-term healthcare-related applications employing mobile sens-
ing technologies are crucial in promoting personal well-being. Notably, the porta-
bility of mobile devices, coupled with their wearability around the clock, offers 
continuous monitoring capabilities. These applications are crucial for vulnerable 
demographics of young children and people suffering from chronic diseases such 
as obesity, paralysis, or respiratory illnesses. Therefore, sensing methodologies 
for long-term mobile health monitoring have become essential in diverse research 
spanning areas such as activity recognition, fitness assistance, dietary tracking, and 
vital signs monitoring. 

To support these functions, various forms of techniques in mobile devices have 
been developed, each with unique usage potential. Traditionally, health monitoring 
was primarily conducted in hospitals. These institutions utilized specialized sensors 
like electrocardiograms or glucometers to track specific aspects of an individual’s 
health, in order to provide comprehensive evaluations. In comparison, choices 
for home-based monitoring used to be quite limited. Nowadays, users can utilize 
personal devices such as smartphones or wearable devices to enable the wide 
adoption of long-term mobile health monitoring in their daily lives. This evolution 
has been enabled through the integration of diverse sensors. The proliferation 
of WiFi has interconnected numerous mobile devices, thereby conferring upon 
each device the ability to offer mobile sensing capabilities. Furthermore, inherent 
sensors like accelerometers and microphones within mobile devices can augment 
the sensing capabilities even further. 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
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2 1 Introduction

1.1.1 Advanced Mobile Sensing Technologies 

1.1.1.1 WiFi-based Technologies 

Fine-grained Channel State Information (CSI) has been proposed as a more accurate 
wireless sensing strategy utilizing WiFi signals. Unlike Received Signal Strength 
(RSS), CSI not only indicates path loss over distance but also aggregates multipath 
effects such as scattering and fading. This makes CSI more sensitive to changes 
in signal propagation caused by human body movement, including subconscious 
motions associated with breathing [18, 24, 25, 30, 41, 42]. In comparison to RSS, 
CSI contains a larger set of values, including amplitude and phase information, 
for orthogonal frequency division multiplexing (OFDM) subcarriers. Separate 
subcarriers can span different frequency ranges and, thus, experience slightly 
different multipathing effects while propagating from the WiFi endpoint devices. 
This information provides more fine-grained details of the wireless channel than 
RSS. Consequently, CSI has enabled WiFi signals to become a promising sensing 
modality for healthcare applications. 

1.1.1.2 mmWave-based technologies 

As mmWave technologies are integrated into WiFi standards, they also emerge as 
a promising solution to enhance the resolution accuracy in wireless-based smart 
healthcare systems. mmWave signals have higher frequencies than traditional WiFi 
signals (i.e., 2.4 and 5 GHz). They typically operate in the tens to hundreds of 
GHz range and thus can utilize a broader bandwidth [45]. Although mmWave 
signals have limitations in penetrating materials and long-range transmissions due 
to shorter wavelengths, their sensitivity to environmental changes can be highly 
advantageous in fine-grained sensing. Such features allowmmWave signals to detect 
subtle movements caused by heartbeat and breathing, making them an excellent 
choice for advanced smart health applications. Futhermore, the smaller antenna 
array used in mmWave transmission allows these systems to remain portable and 
easy to integrate into mobile healthcare sensing systems. 

1.1.1.3 Inertial Sensor-based Technologies 

Motion sensors, including accelerometers, gyroscopes, and magnetometers, can 
detect linear accelerations, rotational rate, and force along 2–6 degrees of freedom, 
depending on levels of sophistication. Furthermore, motion sensors find frequent 
utilization in commercial items like smartphones and wearable devices. These 
sensors are often integrated into Inertial Measurement Units (IMUs) to adhere to 
compact size prerequisites. To maintain high accuracy, accelerometers, gyroscopes, 
and magnetometers can be utilized jointly, with each performing a different 
function. Accelerometers function by generating electrical charges, which are
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proportional to the force of vibration or contraction, based on the piezoelectric 
effect [19]. Since the mass of the device remains constant, the generated charge 
is proportional to the acceleration and can be utilized to derive linear indications 
of position, such as velocity or distance. Gyroscopes, on the other hand, provide 
additional information on the axis of rotation by measuring low-current electrical 
signals produced by an internal rotor [35]. These sensors are susceptible to 
accumulating errors over time, which can result in a drifting effect when further 
calculations are made using flawed measurements. 

Data from motion sensors is one of the most straightforward and comprehensible 
metrics, and as a result, many basic mobile health monitoring systems utilize this 
data to provide a quantifiable trace of an individual’s physical activity [32, 34]. 
Studies have demonstrated that patterns in motion data can indicate periodic motions 
and gestures associated with walking, running, stretching, breathing, and other 
activities [10]. This data can be gathered using standalone sensors or by utilizing 
existing devices such as smartphones, smartwatches, and fitness trackers [14, 26]. 

1.1.1.4 PPG-based Technologies 

Photoplethysmography (PPG) is an optical technique that measures blood volume 
changes through light reflection or absorption from the skin and underlying tissues. 
A typical PPG setup involves shining single-frequency light from an LED onto the 
skin and measuring the absorbed or reflected light with a photodiode [33]. Tradition-
ally, PPG data is instrumental in determining heart rates, pulse oximetry, and heart 
rhythm irregularities. In existing health monitoring systems, PPG measurements are 
known to be susceptible to body motion artifacts, which generate interference in 
blood volumes and reduce system performance. However, recent studies showed 
that such motion artifacts can be leveraged to analyze muscle movements, expand-
ing the use of PPG to more smart healthcare-related applications, including sign 
language interpretation and user authentication. 

1.1.2 Mobile Healthcare Systems 

1.1.2.1 Daily Activity Recognition 

Activity recognition plays a crucial role in long-term mobile healthcare systems, 
particularly in monitoring Activities of Daily Living (ADLs). It allows for non-
intrusive tracking of a patient’s routine activities and physical state, providing 
valuable insights into their health and well-being. Furthermore, the significance 
of activity recognition extends to being a foundational element upon which other 
functionalities such as fitness monitoring, eating tracking, and more are constructed. 
By identifying pre-defined patterns in sensory data, activity recognition can monitor 
a user’s daily tasks, such as eating, dressing, and moving around [4, 20], as well as
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their postures [2, 31]. It can also detect potential health risks, such as falls [5]. This 
information not only offers a comprehensive view of the patient’s daily functioning 
and independence but can also aid in early detection and prevention of health issues. 

Smartwatches [37], sensor networks [44], and mobile phones [37] are all devices 
that can be used for device-based activity recognition. These devices can be 
worn or carried by the patient, allowing for easy tracking of their body motions. 
Additionally, hardware such as mobile phones and WiFi access points can be 
repurposed for device-free activity recognition [43, 47], enabling the monitoring 
of patients at a distance. 

Integrating activity recognition into mobile healthcare systems, particularly for 
monitoring Activities of Daily Living (ADLs), can significantly enhance mobile 
healthcare. This technology allows healthcare providers to understand a patient’s 
daily routines and physical habits, enabling them to offer personalized care based on 
the patient’s unique lifestyle and needs. By tracking these daily activities, early signs 
of potential health issues can be detected, allowing for timely intervention before 
they escalate into serious problems. This proactive approach not only improves 
patient outcomes but also enhances the quality of life for patients by promoting 
independence and maintaining their daily functionalities. 

1.1.2.2 Fitness Assistance 

Different from regular activity recognition, smart fitness assistance systems place 
emphasis on providing personalized guidance and support to users during their 
fitness activities. These systems often integrate wearable devices or smartphone 
applications that collect data related to heart rate, calorie expenditure, distance 
covered, and other relevant metrics. By processing this information, smart fitness 
assistance systems can offer real-time feedback, exercise recommendations, and 
progress tracking to enhance the effectiveness of workouts and improve overall 
fitness levels. 

Sustaining fitness is a vital aspect for individuals engaged in activities such as 
regular gym visits and the general public. The dynamic nature of exercise calls for 
portable sensing solutions to accurately monitor and adapt to their active routines. 
As users may be moving quickly in larger public spaces such as gyms or outdoors, 
fitness assistance systems tend to prefer small, device-based solutions [28, 48]. 
However, device-free methods can still function well in indoor scenarios [46, 50]. 
With the increasing demand for personalized healthcare, smart fitness assistance 
systems have the potential to become an essential component in the overall mobile 
healthcare ecosystem. 

1.1.2.3 Daily Dietary Tracking 

One of the primary concerns for nutritionists is to develop and verify adherence to a 
daily dietary plan for their clients [17]. With the increasing stress at work and fast-



1.1 Background 5

paced lifestyles, people are more prone to forming unhealthy habits, particularly 
unhealthy eating habits, which can lead to various illnesses. According to a survey 
by the World Health Organization, more than 1.9 billion adults worldwide are 
overweight, and 650million are obese. These people are at risk for dietary health 
problems [23]. Therefore, finding solutions to diet-related issues is an urgent matter, 
and efficient daily dietary tracking is a necessity. 

Monitoring eating behaviors, such as food types, quantities, and eating speed, 
can provide valuable insights into an individual’s diet and health status. Traditional 
methods for tracking daily dietary intake require self-reporting from the users [7, 12, 
13, 16, 40]. However, self-reporting can be inconvenient and inaccurate due to the 
user’s lack of experience in recording nutritional content or forgetfulness in making 
timely log updates. 

To address these limitations, there have been a recent surge of research on 
automatic dietary monitoring. Vision-based approaches that use cameras to capture 
food information, such as photos or videos of meals, have been proposed [38]. Kong 
et al. [22] suggest using the user’s mobile device to take photo strings or short videos 
to perform automatic dietary assessment. Zhu et al. [49] provide an image analysis 
method to recognize eating and evaluate food amount and type. O’Liughlin et al. 
[29] explore the feasibility of using the Microsoft SenseCam [15] to estimate dietary 
energy intake in various sports populations. 

Beyond just relying on vision-based techniques, the prevalence of wearable 
devices integrated with diverse sensors has surged, serving as effective tools 
for tracking daily dietary intake. This book will delve into the utilization of 
mmWave technology for the purpose of monitoring daily dietary intake, as dietary 
tracking involves capturing gestures on a smaller scale. The application of mmWave 
technology is well-suited for this task due to its capacity to offer high-resolution 
insights. 

1.1.2.4 Fine-grained Sign Language Recognition 

The demand for wrist-worn wearable devices has witnessed a remarkable surge 
since 2015, with an estimated global shipment of .101.4million units in 2019 [21]. 
This increasing popularity of wrist-worn wearables opens up exciting opportunities 
to harness diverse sensing modalities for pervasive hand or finger gesture recogni-
tion. Hand and finger gestures encompass a wide spectrum of combinations, provid-
ing rich information that can power numerous intricate human-computer interaction 
(HCI) applications. These applications include wearable controls, virtual reality 
(VR)/augmented reality (AR) systems, and automatic sign language translation. To 
illustrate the potential of automatic sign language translation, consider a wrist-worn 
wearable device like a smartwatch or a wristband. Equipped with sensors, it can 
convert sign language into audio and text, and vice versa. This technology holds 
immense promise in facilitating communication between individuals who are deaf 
or have hearing difficulties and those who are unfamiliar with sign language. A 
recent review conducted by Er-Rady et al. [6] sheds light on the existing methods of
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automatic sign language translation, which are still in their early stages. This review 
serves as a driving force for us to develop a robust finger-level gesture recognition 
system that can effectively address this challenge. 

1.1.2.5 User Identification and User Authentication 

User Identification and User Authentication are crucial components of ensuring 
secure access to systems and protecting sensitive information. User identification 
refers to the process of uniquely identifying individual users within a system or 
application. This is typically achieved through recognizing unique identifiers. User 
authentication, on the other hand, involves verifying the identity of a user to ensure 
that they are who they claim to be. This verification process is essential for granting 
access to resources or restricted areas that are exclusively designated for authorized 
users. Common authentication methods include passwords, biometric authentication 
(such as fingerprint or facial recognition), and two-factor authentication. The 
combination of robust user identification and authentication mechanisms play a vital 
role in preventing unauthorized access, protecting user privacy, and safeguarding 
sensitive data from malicious actors. 

Recently, there is a growing body of research and development focusing on uti-
lizing mobile devices for user identification and authentication. For instance, gesture 
recognition is emerging as a promising approach in this field. To establish user iden-
tity, gesture recognition algorithms analyze the unique patterns and characteristics 
of individual gestures [9, 36]. These algorithms can distinguish between authorized 
users and impostors by assessing factors like gesture speed, duration, direction, and 
shape. Furthermore, behavioral biometrics, such as keystroke dynamics [1, 3, 8] and 
gait analysis [11, 27, 39], concentrate on the distinctive behavioral patterns exhibited 
by individuals. These methods monitor factors such as typing rhythms, touchscreen 
gestures, or walking patterns to establish and authenticate user identity. 

1.2 Challenges 

In this section, we will further discuss the challenging issues in designing long-term 
mobile healthcare systems. 

1.2.1 Issues in Raw Data Collection for Mobile Healthcare 

Utilizing mobile technologies and mobile sensing for applications like activity 
recognition, fitness monitoring, eating monitoring, user identification, and user 
authentications introduce numerous data collection challenges. The complexity and 
diversity of human activities demand highly accurate and reliable sensors, yet sensor
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limitations, including signal variability, noise, and drift, often impact data integrity. 
Moreover, activities such as eating or exercising may result in drastic changes 
in body motion and physiological signals, which can further complicate data 
interpretation. When it comes to fitness tracking, the data collected from different 
individuals can vary significantly due to personal factors such as age, gender, fitness 
level, and health status, making it challenging to design universally applicable 
algorithms. For user identification and authentication applications, issues like false 
positives and negatives, and spoofing attacks are major concerns. Besides, privacy 
and security are of great importance, given the sensitivity of the data collected, yet 
ensuring these while providing seamless user experiences can be challenging. In 
addition, dealing with the large volume of data generated by continuous monitoring, 
along with battery life considerations for mobile devices, adds another layer of 
complexity to these applications. 

1.2.2 Extracting Effective Features for Designing Mobile 
Heathcare System 

Another challenges of employing mobile technologies for mobile healthcare related 
applications in feature extraction. Feature extraction is crucial for transforming raw 
sensor data into meaningful information, but achieving this reliably and accurately 
is a complex task. For applications like activity recognition and fitness monitoring, 
the dynamic nature of human activities demands robust features that can capture 
unique patterns amid a wide range of movements and physiological responses. 
Selecting the right features is equally challenging, particularly when it comes to 
recognizing diverse eating behaviors or authenticating users based on biometric 
data. The variability between individuals’ behaviors or biometric patterns requires 
the extraction of highly discriminative features to ensure accurate identification 
and authentication. Furthermore, extracted features should be resistant to noise 
and sensor errors, which is challenging given the inherent variability in mobile 
environments. Another obstacle is computational efficiency. Mobile devices have 
limited processing capabilities, so feature extraction methods need to be optimized 
to function effectively under these constraints. Finally, ensuring privacy while 
extracting meaningful features from sensitive data is a delicate balance that requires 
sophisticated strategies and protocols. 

1.2.3 Enhancing System Robustness in Practical Environments 

When designing long-term mobile healthcare system, environmental changes also 
pose significant challenges. Mobile devices are often used in diverse and dynami-
cally changing environments, which can significantly affect the quality and accuracy
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of the system. For example, activity recognition and fitness monitoring may be 
influenced by changes in lighting, weather, terrain, and user context, such as indoor 
versus outdoor activities. These changes can introduce variations in sensor data 
that may not necessarily correspond to changes in the user’s activity, leading to 
misinterpretations. Similarly, for eating monitoring, different environments like 
restaurants, homes, or offices could impact user behavior, and hence the sensor 
data. User identification and authentication systems also have to contend with 
environmental variations, such as changes in ambient noise that could affect 
voice recognition, or lighting changes impacting facial recognition. Furthermore, 
environmental factors can also affect the device’s performance itself, for instance, 
temperature fluctuations influencing battery life, or signal strength variation due 
to changes in location. Therefore, designing robust systems that can adapt and 
respond to these environmental changes remains a major challenge for mobile 
sensing applications. 

1.3 Book Organization 

The book commences with an introduction in Chap. 1 that gives an overview of 
the content, followed by a detailed discussion on the background of the topic. It 
specifically covers advanced mobile sensing technologies and mobile healthcare 
system design. This section sets the context and highlights the importance of 
the subject matter. Subsequently, the challenges and contributions to the field 
are presented, with the organization of the book succinctly outlined. The book 
then delves into detailed chapters on specific topics including contactless activity 
identification using commercial WiFi in Chap. 2, personalized fitness assistance 
using commodity WiFi in Chap. 3, multi-person fitness assistance via millimeter 
wave in Chap. 4, non-intrusive eating habits derivation using millimeter wave in 
Chap. 4, Fitness Assistance Using Motion Sensor in Chap. 6, Fine-grained gesture 
recognition and sign language interpretation via PPG on smartwatches in Chap. 7 
and continuous user authentication via PPG in Chap. 8. Each of these chapters 
starts with a background study, related works, and detailed system design with 
its implementation and evaluation. In conclusion, the book integrates cutting-edge 
technologies and novel methodologies to provide a comprehensive understanding of 
mobile sensing technologies and long-term mobile healthcare systems. 
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Chapter 2 
Contactless Activity Identification Using 
Commodity WiFi 

Activity monitoring in home environments has become increasingly crucial for 
elder care, well-being management, and latchkey child safety. However, traditional 
approaches require expensive wearable sensors or specialized hardware instal-
lations, which can be intrusive and uncomfortable. To address this issue, this 
chapter presents a low-cost system for device-free and location-oriented activity 
identification at home using existing WiFi access points and devices. The system 
leverages the complex web of WiFi links and fine-grained channel state information 
that can be extracted from them to identify both in-place activities and walking 
movements by comparing them against signal profiles. The construction of signal 
profiles can be semi-supervised and adaptively updated to account for the movement 
of mobile devices and signal calibration. Experimental evaluation in two apartments 
of different sizes demonstrates that our approach achieves a high average true 
positive rate for distinguishing a set of in-place and walking activities with only a 
single WiFi access point. Furthermore, the prototype also indicates that the system 
can work with a wider signal band (802.11ac) with even higher accuracy, making 
it a promising alternative to traditional approaches for activity monitoring in home 
environments. 

The reminder of this chapter is organized as follows: We present the research 
background in Sect. 2.1 and discuss related work in Sect. 2.2. Next, we provide the 
design of the CSI-based activity identification system in Sect. 2.3. In Sect. 2.4, we  
elaborate the designed activity recognition schemes. Then, we describe the system 
implementation in Sect. 2.5. In Sect. 2.6, we perform the evaluation of our system 
in real environments. Finally, we provide a discussion and conclude our work in 
Sect. 2.7. 
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2.1 Background 

There exist a broad range of applications that benefit from higher-level contextual 
information—an understanding of activities that persons are engaged in, not just 
their positions inside a coordinate system. For example, activity recognition is 
an essential part of a trend towards the quantified self. By tracking a sequence 
of meaningful activities and generating statistics for a person, it is possible to 
monitor well-being and suggest behavioral changes that improve health. Such 
activity tracking is arguably even more compelling for children and the elderly. In 
aging-in-place settings, it can be helpful to understand whether established routines 
are still followed since the absence of usual activities can be an important indicator 
for detecting falls and other situations needing immediate attentions. The challenge 
in activity recognition for these applications lies in finding solutions that can 
provide sufficiently accurate tracking and recognition with minimal infrastructure 
requirements and without the need to carry a dedicated device. Existing activity 
recognition solutions [13, 16, 19, 30, 38] primarily rely on dedicated tracking sensors 
worn by people or cameras, motion sensors, etc. installed in surroundings [16, 28]. 
These solutions require either significant infrastructure installation or diligent usage 
of the wearable device. More generally, some activities that are tied to particular 
places can also be inferred from location systems [4, 40], either device-based or 
device-free, but these systems cannot distinguish multiple activities that occur in 
the same place. Device-free systems do not require persons to carry any devices, 
but they require a dense placement of multiple sensors to create a mesh of wireless 
links inside the area of interest. Perhaps most related to our work is the effort to 
use detailed physical layer measurements such as Doppler shifts from one single 
wireless monitor to detect people’s movement, location, and even gestures. The 
granularity of the monitoring ranges from coarser movements (such as Wi-Vi [1]) to 
fine-grained gestures (such as WiSee [21] and WiTrack [2]). However, these systems 
all have been prototyped with USRP software radios and require a specialized 
receiver that extracts carrier wave features that are not reported in current WiFi 
systems. In addition, activity identification differs from gesture recognition in that 
the system needs to identify a more loosely defined series of motions over a period of 
time rather than a single well-defined body movement. For example, an activity such 
as cooking includes several movements to fetch, prepare, and mix ingredients that 
are not always exactly the same and do not necessarily occur in the same sequence, 
making it difficult to detect with gesture recognition techniques that are designed 
for precise single motions such as punching a boxing bag. 

This chapter explores a novel development in the design space and demonstrates 
that device-free location-oriented activity recognition is possible by (1) using the 
existing channel state information provided by IEEE 802.11n devices and (2) using 
relatively few wireless links, such as those to existing in-home WiFi devices. The 
system exploits the trend to wider bandwidths (e.g., 802.11ac), and in particular, 
the more fine-grained channel state information that is being tracked in MIMO 
communications. Whereas traditional received signal strength (RSS) measurements
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are a single quantity per packet that represents signal-to-interference-plus-noise 
ratio (SINR) over the channel bandwidth, channel state information contains ampli-
tude and phase measurements separately for each OFDM subcarrier. Due to the 
slight frequency delta, separate subcarriers experience different multipath fading. 
While such effects are often averaged out, when looking at a single average RSS 
measurement, the individual subcarrier measurements are more likely to change 
when small movements have altered the multipath environment. This essentially 
means that our system will not just detect obstructions on the direct path but can 
also take advantage of the rich web of reflected rays to cover a space. This makes 
it possible to operate with a single access point and a small set of stationary WiFi 
devices, which likely already exist or will exist soon in many buildings. 

The contributions of this chapter are summarized as follows: In this chapter, we 
demonstrate the utilization of channel state information (CSI) obtained from off-
the-shelf 802.11n devices to identify and differentiate in-place activities within a 
home, using a smaller set of transmitting devices compared to previous device-free 
localization solutions. Moreover, we develop a monitoring framework that operates 
on a single WiFi access point (AP) and its connected devices, employing profile 
matching algorithms to compare amplitude profiles with known activities. Fur-
thermore, we investigate dynamic profile construction, enabling adaptive updates 
to accommodate device movement or replacement and daily profile calibration. 
Through extensive experiments conducted in two different-sized apartments, we 
establish that a single AP with 3 connected devices can accurately distinguish 8 
walking activities between rooms (20 rounds each), 9 daily activities (50 rounds 
each), and over 100 rounds of other activities with an average detection rate 
exceeding .96% and an average false positive rate below . 1%. Even with just one 
device, the detection rate remains around .92% with a similar false positive rate. In 
addition, we demonstrate how the trend towards wider channels, such as 802.11ac, 
enhances recognition by allowing measurements over additional subcarriers. 

2.2 Related Work 

There has been active work in using dedicated sensors for activity recognition 
[13, 16, 19, 20, 28, 30, 36, 38]. Sensors can be either attached to a person’s body [13], 
or placed on target objects with which people interact [30]. For example, an 
accelerometer is attached on a human body to detect falls in Philips Lifeline [20], 
whereas a motion sensor is attached to a door to detect movement in GrandCare [28]. 
Another example of using wearable sensor is case of the acoustic sensor used in 
BodyScop for classifying activities, such as eating and coughing [38]. Vision based 
systems [16], such as Leap Motion (https://www.leapmotion.com) and Kinect [19], 
can be used to track user movements and gestures. These dedicated sensors can 
achieve fine-grained activity recognition. However, they need the installation and 
maintenance of dedicated sensors which usually entail high costs and are thus not 
scalable.

https://www.leapmotion.com
https://www.leapmotion.com
https://www.leapmotion.com
https://www.leapmotion.com
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Another body of related work is indoor localization systems which can be 
extended to activity recognition [3–6, 8, 12, 14, 17, 18, 26, 31, 33, 34, 37, 39]. These 
systems localize a wireless emitter using Received Signal Strength (RSS) [3–5, 8, 
14, 18, 34, 37, 39], OFDM channel state information [26], antenna arrays [12, 33], 
RFID tags [31], rotating anchors [6], or visible LED lights [17]. These systems 
provide various accuracy ranging from several meters (e.g., RSS-based) to sub-
meter but require people to carry a wireless emitter. This can be intrusive and 
problematic, especially for elderlies, with memory loss, who often forget to carry 
such devices. . Furthermore, they need the support of wireless infrastructure, either 
lightweight devices such as re-use multiple access points if available [4, 8, 18] or  
costly specialized devices, such as antenna arrays [12, 33]. The infrastructural cost 
of these systems thus prevents their large scale deployment. 

The radio tomography imaging (RTI) [32, 41] and device-free passive (DfP) 
localization [15, 25, 35, 40], like our system, do not require a device be attached to or 
carried by the user. The state of art RTI requires tens or hundreds of wireless sensors 
to achieve sub-meter accuracy, while DfP localization [15, 25] with four WiFi APs 
has an accuracy of several meters. Several works [10, 27] propose to distinguish 
some basic activities such as walking, crawling, standing and lying based on RSS 
using a set of receivers or USRP SDR devices. These systems are either impractical 
for roaming deployment or not accurate enough for fine-grained activity recognition. 

Recent work in using a single wireless monitor to detect human movement or 
location [1, 2, 21] can be used for activity recognition as well. The granularity 
of the activity can be inferred from these systems is either modest (such as Wi-
Vi [1]) or fine-grained (such as WiSee [21] and WiTrack [2]). However, these 
systems all require specialized WiFi monitors (e.g., USRP) for extracting the carrier 
wave. In contrast, we use an off-the-shelf WiFi device for activity recognition. 
Our method can provide fine-grained activity recognition by re-using existing 
home WiFi network and thus has much higher scalability for wide deployment. 
Furthermore, different from WiSee that focuses on recognizing well-defined, quick 
gestures, our work aims to discriminate loosely defined daily activities that involve a 
series of body movements over a certain period of time. In recognizing such loosely 
defined daily activities, we find that channel characteristics, such as the statistical 
distribution and time series, are more suitable for distinguishing between activities 
lasting a certain period of time than quick gestures. 

2.3 CSI-based Activity Identification System Design 

2.3.1 Feasibility of Using CSI for Activity Identification 

This study aims to leverage two notable trends in the realm of WiFi usage. 
Firstly, the application of WiFi has broadened, transitioning from merely facilitating 
internet connectivity for laptops to connecting a host of smart devices, such as
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televisions, game consoles, surveillance cameras, refrigerators, and loudspeakers 
to home networks and the internet. This has resulted in an augmented number of 
WiFi links within households, a subset of which employ continuous beaconing. 
Secondly, WiFi radios now offer more granular channel measurements across larger 
bandwidths. The advent of 802.11n MIMO systems necessitated more refined 
tracking of channel state information by radios. In its standard 20MHz channel, 
802.11n radios are capable of gauging the amplitude and phase for each of the 
52 orthogonal frequency-division multiplexing (OFDM) subcarriers. Furthermore, 
when operating with 40MHz channels, measurements can be obtained for 128 
subcarriers. The emerging IEEE 802.11ac standard is even anticipated to support 
broader bandwidths. These measurements essentially facilitate the estimation of the 
channel frequency response, contrasting with the traditional received signal strength 
(RSS) which provided merely a single value per packet, typically a SINR reading 
averaged over the entire channel bandwidth. 

Measuring the channel frequency response has important implications for detect-
ing and differentiating minute movements. Inside buildings, signal propagation is 
dominated by multipath, with the received signal amplitude (or strength) resulting 
from combining amplitudes of signals arriving over many different paths (scattered 
from and reflected off different objects). Since the individual signals can construc-
tively or deconstructively, combine based on their individual phase shifts, this effect 
can lead to large differences in the combined amplitude, which is commonly known 
as small-scale fading. A small change in frequency, however, can have a large effect 
on the combined signal. The amount of frequency change for a signal amplitude 
to become uncorrelated with its previous value is also known as the coherence 
bandwidth and can be estimated as .Bc = 1

D
, where D is the delay spread of 

the arriving multipath signals. Interestingly, the width of an OFDM subcarrier is 
chosen to match this coherence bandwidth to simplify receiver design. This means 
that amplitude measurements on each subcarrier will provide many uncorrelated 
combinations of the received multipath components, which increase the likelihood 
that some are affected by a small movement. A single RSS measurement over the 
signal bandwidth, in comparison, averages out many of these detailed small scale 
fading effects. 

Figure 2.1 shows a motivational experiment where two different activities were 
conducted in the same location: talking on the phone and washing dishes. The 
histograms of RSS readings collected for both of these activities show relatively 
little difference. The histograms of CSI amplitudes (quantized to 20 bins) for a 
specific subcarrier, however, show very distinct distributions that can be used to 
clearly distinguish these different movements in the same location. The insight is 
that since an activity involves a series of body movements during a certain period 
of time, the distribution of CSI amplitudes is a desirable channel statistic that can 
capture unique characteristics of activities in both time and frequency domains. 

With more WiFi devices in homes and the ability to measure small changes in 
multipath rays, our intuition suggests that it might be possible to track activities 
and movements around a home with only this existing infrastructure. Device-free 
localization and activity recognition requires that at least one measurable RF ray
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Fig. 2.1 Histograms of RSS amplitude and CSI amplitude of a particular subcarrier for two 
different in-place activities at the same position: washing dishes and talking on the phone nearby 
the sink. (a) 1-bedroom apartment. (b) 2-bedroom apartment



2.3 CSI-based Activity Identification System Design 19

(a) 

(b) 

Fig. 2.2 CSI takes the advantage of multipath effects and captures the detailed changes on 
different subcarriers. (a) Existing work: link-centric using RSS. (b) Illustration of reflected rays 

travels through any location of interest, because the presence or movement of 
a human body at this position would only alter the propagation of these rays. 
Earlier device free localization system have therefore blanketed spaces with multiple 
transceivers to create a fine mesh of measurable direct links. As illustrated in 
Fig. 2.2a and b, such a measurable mesh can now also be created by all the multipath 
rays from only a handful of WiFi devices instead of requiring many additional 
devices.
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2.3.2 Contactless Activity Identification System Design 

Developing a system that can accurately recognize activities at an access point using 
CSI measurements from a limited number of WiFi links presents many challenges. 
For example, one crucial challenge is ensuring the uniqueness and robustness of 
activity profiles. CSI measurements are susceptible to signal interferences, user 
movements, and environmental changes, making it necessary for the system to 
match activity signatures or features to measurements that are both resilient to 
noise in real-world WiFi device readings and distinct enough to correspond to 
specific activities. Another significant challenge is achieving algorithm generality. 
Different activities require different types of information for successful differenti-
ation. For instance, one activity may involve walking between rooms, resulting in 
CSI measurements without obvious patterns, while another activity like washing 
dishes in the kitchen entails repetitive gestures, leading to CSI measurements with 
repetitive patterns. These varying characteristics demand an algorithm that can 
handle and identify activities with diverse signal patterns. Additionally, profile 
generation poses a challenge, particularly during system installation or when 
significant environmental changes occur. In such cases, there may be a lack of 
existing profiles for activities. Hence, the system should have the capability to assist 
in profile generation, alleviating the effort required for this process. Overcoming 
these challenges will contribute to the development of a robust and efficient activity 
recognition system based on CSI measurements. 

The basic idea of our system is to match CSI patterns against activity profiles. As 
illustrated in Fig. 2.3, the system takes as input time-series amplitude measurements, 
which can be collected at a single access point with off-the-shelf hardware (e.g., 
Intel 5300 NIC). The amplitude measurements are available for each subcarrier on 
a link and are collected over several links to mostly stationary devices (such as 
home entertainment devices or appliances). We discuss later on how the system 
might be extended to also use mobile devices when they do not move. The system 
can take advantage of CSI measurements from existing traffic across these links. 
If insufficient network traffic is available, the system might also generate periodic 
traffic for measurement purposes. This data is then preprocessed to remove outliers 
via a low-pass filter and to filter out artifacts introduces by rate adaptation, where 
the radios switch to different modulation and coding schemes. 

The core components of our system, are the Activity Identification and the Profile 
Construction and Updating. Activity identification encompasses two different 
activity matching approaches to address the generality challenge. The system dis-
tinguishes between walking activities and in-place activities. In general, a walking 
activity causes significant pattern changes of the CSI amplitude over time, since 
it involves significant body movements and location changes. An in-place activity 
(such as watching TV on a sofa) only involves relative smaller body movements and 
will not cause significant amplitude changes but present certain repetitive patterns. 
It thus first applies a moving variance thresholding technique to discriminate the 
two types of activities. The cumulative moving variance across all subcarriers can 
be expected to be greater for walking activities than in-place activities. Moreover,
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Fig. 2.3 System flow of activity recognition using CSI 

our system leverages the moving variance to segment the long-term CSI trace. Since 
the trace often contains multiple different activities over time, moving variance is 
used to determine the start and end of individual activities. 

2.4 Activity Identification Categories 

In this section, we first describe Coarse-grained Activity Determination. We then 
present In-place Activity Identification and Walking Activity Tracking components 
in our system. And we also discuss how our system can benefit from wider signal 
bandwidths using 802.11ac. 

2.4.1 Coarse-grained Activity Determination 

Since various activities cause different degrees of signal changes, we apply the 
moving variance on top of the CSI measurements to capture this difference and 
determine the category of the activity. In particular, a large moving variance 
indicates the presence of a walking activity whereas a small moving variance 
represents the presence of an in-place activity or no activity at all. The detailed 
steps are presented as follows:
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Step 1. We denote the CSI samples of P subcarriers as . C = {C(1), . . . , C(p),

.. . . , C(P )}, where .C(p) = [c1(p), . . . , cT (p)]' represents T CSI amplitudes on 
the pth subcarrier. We further denote the moving variances of the P subcarriers 
as .V = {V (1), . . . , V (p), . . . , V (P )}, where .V (p) = [v1(p) , . . . , vT (p)] are 
the moving variances derived from .C(P ). Our system can then calculate the 
cumulative moving variance of CSI samples crossing P subcarriers as . V =∑P

p=1 V (p). 
Step 2. We The next step is to examine the cumulative moving variances to 

determine whether the collected CSI samples contain a walking activity or an 
in-place/no activity. If the maximum cumulative moving variance .max(V) is 
larger than the threshold . τv , the CSI samples are determined to contain a walking 
activity, otherwise they contain an in-place/no activity. We empirically determine 
the threshold through 40 rounds of different walking activities and in-place 
activities in apartment environments. A threshold, .τv = 20, is found to be able to 
distinguish over .98% of walking and in-place activities in our experiments. 
Compared with recognizing gestures, people’s daily in-place activities do not 
have such strictly pre-defined patterns but result in a relatively stable distribution 
of CSI amplitude due to the presence of the human body and loosely defined 
body motions. In our system, segmentation is first performed in the task of 
Coarse Activity Determination by examining the CSI variance in the collected 
trace. Note that Coarse Activity Determination can be also used to identify 
the starting and ending of both walking activities and in-place activities, since 
walking activities often separate in-place activities. If the segmented CSI trace 
belongs to an in-place activity, we will further use the EMD technique [24] 
to compare the distribution of CSI amplitudes in a sliding time window with 
in-place activity profiles to identify different activities within this trace. If the 
segmented CSI trace is recognized as a walking activity, we will further identify 
the walking trajectory or the passing of doorways. 

2.4.2 In-place Activity Identification 

2.4.2.1 Activity Characteristics Analysis 

We find that an in-place activity results in a relatively stable distribution of CSI 
amplitude due to the presence of the human body and (possibly) repetitive body 
movement over time. Furthermore, different in-place activities cause different 
distributions of CSI amplitude as the location and/or the repetitive body movement 
patterns and the posture of the human body are different for different in-place 
activities. We illustrate the similarity of the CSI amplitude distribution for the same 
activity, and the difference of the CSI amplitude distribution for two different in-
place activities (i.e., cooking in a kitchen and sleeping on a bed) at a particular 
subcarrier (subcarrier 12) in Figs. 2.4 and 2.5. We observe that the CSI amplitude 
distributions are similar for the same activity at different rounds, but distinctive for
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Fig. 2.4 Histogram of CSI amplitudes on a particular subcarrier for cooking and sleeping (round 
1). (a) Cooking, round 1. (b) Sleeping, round 1 

different activities. This important observation inspires us to exploit the distribution 
of CSI amplitude to distinguish different in-place activities and shows that a 
particular in-place activity can be identified by comparing against known profiles. 

2.4.2.2 In-place Activity Classifier Design 

Based on the characteristics of the in-place activities, we employ the earth mover’s 
distance (EMD) technique, which is a well-known approach for evaluating the 
similarity between two probability distributions. The EMD calculates the minimal 
cost to transform one distribution into the other. Our classifier seeks to compare the
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Fig. 2.5 Histogram of CSI amplitudes on a particular subcarrier for cooking and sleeping (round 
2). (a) Cooking, round 2. (b) Sleeping, round 2 

distribution of the testing CSI measurements to those of the known in-place activity 
profiles by using the EMD metric. CSI measurements being tested are identified 
to contain a known activity when the resulted minimal cost (i.e., minimal EMD 
distance) is small enough. 

Specifically, at run time, our system first identifies the testing CSI measurements 
as a candidate of a particular known in-place activity if the EMD distance from 
the candidate to the known in-place activity is the minimum among the EMD 
distances to all known activities stored in the CSI profiles. Then our system further 
confirms the candidate undergoing in-place activity by comparing the resulted 
minimal EMD distance to a threshold, which can be empirically determined in 
the profile construction. The candidate known in-place activity is confirmed if the



2.4 Activity Identification Categories 25

minimal EMD distance is less than the threshold, otherwise, it will be identified 
as an unknown activity. An alternate way to determine whether the testing CSI 
measurements correspond to a known activity or not is to use an outlier detection 
method, such as the median absolute deviation (MAD) [23], to examine whether 
the resultant minimum EMD distance is within a range. To determine the range, an 
EMD distance pool containing the minimal EMD distances of previous successfully 
identified activities is needed in the profiles. We note that our system can also 
recognize the same in-place activities occurring in different locations by comparing 
the testing CSI measurements to a set of CSI profiles constructed when the same 
activities occur in different locations. In this case, the profile for an activity is a set 
of CSI profiles instead of a single CSI profile, and the testing CSI measurements are 
determined to contain the activity if it has the minimum EMD distance to any of the 
CSI profiles belonging to the activity profile. 

2.4.3 Tracking Walking Activity 

2.4.3.1 Walking Activity Characteristics 

We find that the CSI collected from walking activities is changing constantly over 
time due to body movement and change of locations. In particular, Figs. 2.6 and 
2.7 presents CSI amplitude of each subcarrier versus the packet index (i.e., time 
series) for two different walking paths in two experimental runs. We observe that 
the CSI measurements exhibit similar changing patterns for the same trajectory in 
different rounds, whereas the changes of CSI measurements over time are different 
for different trajectories. This observation indicates that the CSI pattern is dominated 
by the unique path of each walking activity. 

Furthermore, since there are always in-place activities before and after a walking 
activity, ideally we can identify the walking activity by identifying the in-place 
activities at both ends. However, the starting and ending points of the walking 
activity can be anywhere inside the space. It is possible that the two endpoints are 
not that meaningful and thus no such in-place activity profiles are constructed. To 
tackle this problem, we further build the CSI measurement profile when the person 
passes through doorways. Since, in general, a person must pass through a door way 
when walking from one room to another, they can be utilized to facilitate walking 
activity tracking. By identifying the doorway the person moves through, our system 
can determine a walking activity in high level without requiring extensive profiling 
of paths that have less meaningful starting and ending locations. 

2.4.3.2 Walking Activity Discrimination 

Walking Path Discrimination Since people may walk at different speeds for 
the same trajectory, we use Dynamic Time Warping (DTW) [22] to align the
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Fig. 2.6 Similar CSI time series pattern for same walking trajectory (round 1). (a) Trajectory 1, 
round 1. (b) Trajectory 2, round 1 

testing CSI measurements to those from known activities in the profile. We then 
identify the activity based on the similarity measures using DTW. DTW stretches 
and compresses required parts to allow a proper comparison between two data 
sequences. This is useful to match CSI samples from different walking speeds in 
real-world scenarios. In our system, CSI measurements are in a format that reports
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Fig. 2.7 Similar CSI time series pattern for same walking trajectory (round 2). (a) Trajectory 1, 
round 2. (b) Trajectory 2, round 2 

the channel metrics for multiple subcarrier groups (e.g., 30 subcarriers). To perform 
multi-dimensional sequence alignment, our system employs Multi-Dimensional 
Dynamic Time Warping (MD-DTW) [29], in which the vector norm is utilized to 
calculate the distance matrix according to:
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.d(ci, c
'
j ) =

P⎲

p=1

(ci(p) − c'
j (p))2, (2.1) 

where .C = c1, c2, . . . , cT and . C'=.c'
1, c

'
2, . . . , c

'
T are two CSI sequences for walking 

path discrimination, and P is the number of dimensions of the sequence data (with 
P=30 for CSI sample). A least cost path is found through this matrix and the MD-
DTW distance is the sum of matrix elements along the path. 

During activity identification, our system distinguishes each walking activity by 
calculating the MD-DTW distance between the testing CSI measurements and all 
the known walking activities in CSI profiles. Our system stores the segment of CSI 
measurements of known activities in profiles. If the MD-DTW distance is less than 
a threshold (i.e., considering it as a known activity), we then take the corresponding 
CSI measurements labeled in the CSI profiles with the minimum distance as the 
activity identified for the testing measurements. 

Doorway Discrimination Doorway discrimination is used to handle the case 
where the testing CSI measurements are unknown after our attempt to match them 
with the profile database. We seek to identify which doorway the person passes 
through and the corresponding walking activity can then be recognized in a high-
level. This strategy makes our system more robust in handling the case when people 
are moving freely. The possible activities are strongly tied to which doorway the 
person passes by. For example, passing through kitchen doorway in the noon time 
is very likely followed by cooking or eating. 

In particular, our system also collects CSI for profiling when people pass 
through doorways during walking activity profile construction (i.e., constructing 
doorway profiles). It then compares the testing CSI measurements using a sliding 
window approach to that of the doorway profiles. The EMD distance used the in-
place activity recognition is applied for such comparison. Therefore, distinguishing 
between passing different doorways is transformed into an in-place activities 
identification. To show the feasibility of this strategy, we conduct experiments 20 
times for each of the 8 walk trajectories (refer to Fig. 2.8) in two different-size 
apartments. Table 2.1 shows the doorway detection ratio (DR) of each trajectory 
corresponding to the doorway passed. Our approach achieves an average detection 
accuracy of over 96.25%, which is sufficient as a supplement to walking trajectory 
discrimination. 

2.5 Activity Identification Sensing System Implementation 

2.5.1 Activity Profile Construction 

In our system, we collect the CSI measurements of typical activities for profile 
construction. In particular, we use the distribution of CSI amplitude to profile in-
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Fig. 2.8 Experimental setups and the illustration of activities in two different-size apartments: (a) 
one-bedroom apartment and (b) two-bedroom apartment 

Table 2.1 Doorway detection accuracy 

1-BR Apt. Bedroom. ↔Kitchen Kitchen. ↔Bathroom 

DR 1 0.975 

2-BR Apt. Outside. ↔Bedroom1 Bedroom2. ↔Bathroom 

DR 1 0.875 

place activities and the sequence of CSI amplitude for walking activities. If multiple 
WiFi devices are available, the profile is constructed by using each WiFi device. 
Additionally, we build a profile for “empty room” (i.e., no one inside the room), 
which is a special case of an in-place activity. When constructing profiles, it is 
possible that the profile of an activity from a particular WiFi device is similar to 
the profile of “empty room” when the activity is very far away from that device.
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2.5.2 Non-profiling Clustering and Data Calibration 

2.5.2.1 Non-profiling Clustering 

After profile construction, the activity profiles may still change due to many factors. 
For example, the activity profiles may change over time due to the involved 
WiFi device being moved to another location, e.g., the desktop being moved from 
one room to another. Furthermore, the activity profiles may also get affected by 
day-to-day environmental changes. Therefore, our system requires a method that 
can adaptively update activity profiles. We design a process called non-profiling 
clustering, in which the system first utilizes a semi-supervised approach to cluster 
the daily activities from the collected CSI measurements, and then label each 
activity to produce CSI profiles. After clustering, the CSI measurements from the 
same type of activities are clustered together. Once significant changes of profiles 
are detected, our system utilizes users’ feedback (i.e., user labels each new cluster 
returned by non-profile clustering) to perform adaptive profile updating. The non-
profiling clustering is also utilized to construct CSI profiles when our system starts 
without any CSI profile. 

We next illustrate this strategy by applying clustering to profile in-place activ-
ities. Assume we have R sets of CSI samples from K different unknown activity 
instances, where each CSI sample set .Cr, 1 ≤ r ≤ R, corresponds to one particular 
activity instance with a certain number of CSI samples. Here we exploit the K-
Means clustering technique to discriminate different activity instances based on the 
EMD between CSI samples. 

In order to utilize EMD for clustering, we first calculate the EMD between any 
particular CSI sample set . Cr and all the sample sets (including . Cr itself). We then 
obtain R EMD vectors of length R, i.e., .Er = ⎾

E(Cr, C1), · · · , E(Cr, CR)
⏋
. Next,  

the K-means algorithm searches for K appropriate clusters, i.e., .S = s1, · · · , sK , 
satisfying the following equation: 

. argmin
S

K⎲

k=1

⎲

Er∈sk

|Er − μk|2, (2.2) 

where . μk is the mean value of the EMD vectors in . sk . Equation (2.2) searches for 
K appropriate clusters S that minimizes the variances of the CSI vectors . Cr in each 
cluster. 

Table 2.2 shows the results of clustering based on 400 CSI sample sets involving 
8 activity instances, where each set contains 40 CSI samples. Most of the activities 
can be differentiated from each other with the detection ratio as high as over 84% 
and an acceptable false positive rate, except for the two activities of brushing and 
bathing in the bathroom due to the small differences in their corresponding CSI 
patterns, which cannot be differentiated by clustering. 

With the relationship between the activity instances and the clusters S, the  CSI  
sample sets correctly classified are used to create new activity profiles. Furthermore,
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Table 2.2 Results of activity identification using clustering without profiles 

Empty Cook. Eat. Wash. Study. Brush. Bath. Other 

Test .s1 .s2 .s3 .s4 .s5 .s6 .s7 . s8

DR 1 0.98 0.88 0.84 0.92 0.66 0.46 0.94 

FPR 0.06 0 0.15 0.09 0 0.45 0.43 0.10 

if the profile for a particular activity instance already exists, the system adaptively 
determines whether to update the activity profile through the comparison with the 
new profile. 

2.5.2.2 Improving CSI Reliability Through Data Calibration 

Data calibration is used to improve the reliability of the CSI by mitigating the noise 
presented in the collected CSI samples. The noise sources could be the complicated 
indoor propagation, the WiFi devices’ inner noise (e.g., vibration or ring of devices), 
etc. 

Low-pass Filtering Low-pass filtering aims to remove high frequency noise 
which is unlikely caused by human activities as human activities usually have a 
low frequency range. To remove high frequency noises, we adopt the dynamic 
exponential smoothing filter (DESF) [7], since it is an exponential smoother that 
changes its smoothing factor dynamically according to previous samples. The DESF 
can remove high frequency noise and preserve the features affected by human 
activities in the CSI measurements. 

Modulation and Coding Scheme Index Filtering Besides the effects from human 
activities, we find that the modulation and coding scheme (MCS) index occasionally 
changes due to the unstable wireless channel in our experiments, could also 
influence the amplitude of CSI. To get the changing CSI patterns only affected by 
human activities, we need to remove the CSI measurements affected by a different 
MCS index (indicates different channel condition) for a pure reflection metric of 
human activities. 

Specifically, MCS index is a specification of the high-throughput (HT) physical 
layer (PHY) parameter in 802.11n standard [11]. It contains the information of 
the modulation order (e.g., BPSK, QPSK, 16-QAM, 64-QAM), the forward error 
correction (FEC) coding rate, etc, for transmitting a packet. Each 802.11n packet 
header contains a 16-bit MCS index, which can be extracted together with the 
CSI sample of each packet. In particular, we find that CSI measurements with the 
MCS index greater than 263 can make CSI measurements relatively stable in empty 
rooms even though it changes in such a range. Therefore, we filter out the CSI 
measurements with MCS value less than 263 and keep the rest of them for activity 
identification.
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2.5.3 Data Fusion Crossing Multiple Links 

WiFi usage has expanded from providing Internet access to connecting in-home 
smart devices such as TVs, refrigerators, and loudspeakers. This provides a number 
of WiFi links to capture an activity simultaneously inside home. Our system thus 
can exploit a number of WiFi links to improve the activity recognition accuracy 
based on the basic schemes. 

Assume we have L WiFi devices collecting CSI measurements independently 
and each device has J activity profiles denoted as . {al

1, . . . , a
l
j , . . . , a

l
J }, l =

1, . . . , L. The final activity recognition result is the j th activity (profile) that 
minimizes the weighted summation of the similarities between the collected CSI 
measurements and the profiles on each WiFi device, i.e., 

.a∗
j = argmin

j

L⎲

l=1

[wl
j (a

l
0, a

l
j ) × Dl

j ], (2.3) 

where . Dl
j is the EMD or DTW distance between the CSI measurements and the 

j th activity profile on the lth WiFi device; .wl
j (a

l
0, a

l
j ) is the normalized weight 

dominated by the significance of the j th activity on the lth WiFi device, which is 
defined as follows: 

.wl
j (a

l
0, a

l
j ) = 1 − X(al

0, a
l
j )

∑L
l=1 [1 − X(al

0, a
l
j )]

, (2.4) 

where . al
0 denotes the profile for empty room on the lth WiFi device, and . X(al

0, a
l
j )

is the cross correlation between the profile of the empty room and the j th activity 
on the lth WiFi device. To reduce the computational complexity, only the CSI 
measurements having significant difference from the empty room profile will be 
included in the above calculation. 

2.6 System Evaluation Using Commodity WiFi 

2.6.1 Experimental Setup 

We conduct experiments in an 802.11n WiFi network with three off-the-shelf WiFi 
devices (i.e., two Lenovo T500 laptops and one Lenovo T61 laptop) connected to 
a single commercial wireless access point (i.e., Linksys E2500) in two apartments. 
The laptops run Ubuntu .10.04 LTS with the .2.6.36 kernel and are equipped with 
Intel WiFi Link 5300 cards for measuring CSI [9]. While CSI information is only 
publicly exposed by modified drivers for several chipsets, e.g., Intel WiFi Link 5300
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and Atheros AR9390, it is internally tracked by 802.11 MIMO implementations. We 
expect more chipsets will expose such information in the near future. 

The packet transmission rate is set to 20 pkts/s. How the rate of packet trans-
mission affects the performance will be discussed in Sect. 2.6.3.5. For each packet, 
we extract CSI for 30 subcarrier groups, which are evenly distributed in the 56 
subcarriers of a 20MHz channel [11]. 

We conduct experiments in two apartments of different sizes to test the generality 
of our system. The experimental setups in these two apartments are shown in 
Fig. 2.8. The smaller one (i.e., one bedroom apartment) has the size of about 
23 .×20 ft with one bedroom, one kitchen and one bathroom, whereas the larger 
one (i.e., two bedroom apartment) is about 24 .×36 ft with two bed rooms, one 
storeroom, one kitchen, one living room, and one bathroom. It is commonly 
accepted that the presence of manifold WiFi devices in home environments is highly 
possible in the near future. To name a few existing applications: smartTVs in living 
rooms, thermostats in bedrooms, smart-refrigerators in kitchens, and waterproof 
wireless speakers in bathrooms. In our experiments, one AP and three WiFi devices 
are placed at each apartment for daily activity monitoring. 

A total of 9 typical daily in-place activities and 8 walking activities (passing 
through 4 door-ways) with different walking speeds are performed by 4 male adults 
in both apartments. These activities are listed in Table 2.3, and are shown in Fig. 2.8. 
The yellow circles show the in-place activities, whereas the red/blue lines represent 
the paths of the walking activities. Due to different conditions in the two apartments 
(e.g., having a TV in the living room or not), we have chosen slightly different 
yet still typical in-place activities to perform in the two apartments. Note that we 
find it is typical for in-place activities to occur at dedicated locations in home 
environments, for example activities in a kitchen usually just occur in front of the 
sink or stove, beside the refrigerator, or at the dining table, whereas activities in 
a living room usually occur on the couch. In our experiments, the profiles were 
generated in 1 day and testing data was collected over different days. Over the days, 
one chair was moved to a different room, coffee makers were moved around in 

Table 2.3 Codes for in-place and walking activity profiles 

Code In-place activity Code Walking activity 

a Empty apartment A Bedroom. →Kitchen 

b Cooking B Kitchen. →Bedroom 

c Eating C Kitchen. →Bathroom 

d Washing dishes D Bathroom. →Kitchen 

e Studying at a table E Outside. →Bedroom1 

f Brushing teeth F Bedroom1. →Outside 

g Taking a bath G Bedroom2. →Bathroom 

h Watching TV on a sofa H Bathroom. →Bedroom2 

i Playing video games O Other wandering paths 

j Sleeping on a bed 

o Other activities
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the kitchen and items on tables, such as bowls and bottles, were moved, as usually 
occurs in daily life. Moreover, we build the profile for the empty room when there 
is no one at home (i.e., Empty apartment (a)). To test the ability of our system on 
differentiating diverse in-place activities that occur in the same place, we experiment 
with 4 in-place activities in the one-bedroom apartment: sleeping on the bed, sitting 
on the bed, talking besides the sink, and washing dishes near the sink. Furthermore, 
the experimenter conducts several in-place and walking activities which are not 
profiled (i.e., Other activities (o)). They are used to evaluate the robustness of our 
system for recognizing unknown or random activities. 

2.6.2 Evaluation Metrics 

We use the following metrics to evaluate the performance of our system. 

Confusion Matrix The matrix provides a comprehensive overview of the classi-
fication results, illustrating the relationship between the actual activities performed 
by the user and the corresponding activities classified by our system. Each row in 
the matrix represents a specific activity performed by the user, while each column 
represents the activity assigned by our system. By examining the cells within the 
matrix, we can observe the fractions of activity in each row that were classified as 
the corresponding activity in each column. This detailed representation allows for a 
thorough analysis and evaluation of the classification performance of our system in 
relation to the user’s actual activities. 

True Positive Rate (TPR) True Positive Rate (TPR) for a specific activity, denoted 
as A, is a fundamental metric that measures the accuracy of the system in correctly 
identifying instances of activity A among the total instances of activity A performed 
by the user. It is calculated as the proportion of instances that are accurately 
recognized as activity A among all instances where activity A was actually 
performed. By quantifying the TPR for each activity, we gain valuable insights into 
the system’s ability to accurately identify and classify different activities, providing 
a comprehensive understanding of its performance in capturing the user’s actions. 

False Positive Rate (FPR) False Positive Rate (FPR) for a specific activity, 
denoted as A, is a critical metric that evaluates the system’s tendency to incorrectly 
identify instances as activity A when they are actually different activities. It is 
calculated as the percentage of instances that are mistakenly classified as activity 
A among all the testing instances that do not belong to activity A. By analyzing 
the FPR for each activity, we gain valuable insights into the system’s specificity 
and its potential to generate false alarms or misclassifications. Understanding and 
monitoring the FPR allows us to assess the system’s performance in accurately 
distinguishing between different activities and minimizing false positives, thereby 
enhancing its overall reliability and usability.
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Fig. 2.9 Confusion matrix of in-place activity identification in two different apartments. (a) 1-
bedroom apartment. (b) 2-bedroom apartment 

2.6.3 Activity Identification with Multiple WiFi Devices 

Figure 2.9 plots the confusion matrix for the in-place activities recognition in two 
apartments with three WiFi devices. In the one-bedroom apartment, 7 different 
in-place activities (see Fig. 2.9a) were performed (50 rounds for each). Another 
100 rounds of different unknown in-place activities (i.e., others) are preformed to 
evaluate the ability of detecting unknown activities. Similarly, in the two-bedroom 
apartment, 7 different in-place activities as shown in Fig. 2.9b (each one has 50 
rounds) and 100 rounds of unknown activities are performed. For the one-bedroom 
apartment, the average accuracy of identifying in-place activities is .97% with a 
standard deviation of .5.66% whereas in the two-bedroom apartment, the average 
accuracy of identifying in-place activities is .97.38% with a standard deviation of 
.4.31%. 

Figures 2.10 and 2.11 plot the confusion matrix for the walking activities 
identification and doorway passing detection in two apartments. As shown in
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Fig. 2.10 Confusion matrix of walking activity identification in 1-bedroom apartment 
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Fig. 2.11 Confusion matrix of walking activity identification in 2-bedroom apartment 

Fig. 2.8, 4 trajectories for each apartment are performed, and 20 rounds for each 
trajectory. Similar to that of the in-place activity experiment, we performed 20 
rounds of random walking activities (i.e., walking in the apartment but no passing 
through predefined doorways) in each apartment as others. For the one-bedroom 
apartment, the average accuracy is .97% when identifying these 4 walking activities. 
Our system can also achieve high accuracy of detecting doorway passing with an 
average accuracy of .99.17%. For the two-bedroom apartment, the average accuracy 
of identifying walking activities is .94%, and the passing doorway can be detected 
with an accuracy of .95.83%. The above results show that the system can distinguish 
a set of in-place activities and walking activities with high accuracy by using only 
a single WiFi access point in two apartments of different size. Our system can thus 
have potential to support lots of emerging applications such as elder care, well-being 
management, and latchkey child safety. 

2.6.3.1 System Robustness Validation 

We next evaluate the robustness of our system by studying the false positive rates 
(FPRs) of identifying different activities in two apartments. Figures 2.12b and 
2.13b show that overall the designed system has very low false positive rates
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(a) 

(b) 

Fig. 2.12 True positive rate and false positive rate, in-place and walking activity recognition in 
1-bedroom apartments. (a) TPR, 1-bedroom apartment. (b) FPR, 1-bedroom apartment 

for identifying different activities in two apartments—an average FPR of about 
.0.6%. The walking activities have higher FPRs which are around .0.8% for both 
apartments. This is primarily because it is hard to follow exactly the same trajectory 
every time, and people’s body movements maybe different from time to time when 
walking, such as the sequences of waving arms and alternating two legs. We also 
observe that the FPRs for identifying all activities are ranging from 0 to .2.5% in 
both apartments with an average TPR as high as .97% as shown in Figs. 2.12a and 
2.13a. The results indicate that our system is robust in identifying both in-place and 
walking activities in two apartments of different sizes.
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(a) 

(b) 

Fig. 2.13 True positive rate and false positive rate, in-place and walking activity recognition in 
2-bedroom apartments. (a) TPR, 2-bedroom apartment. (b) FPR, 2-bedroom apartment 

2.6.3.2 Activity Identification with Single WiFi Device 

To further show the capability of the system in activity recognition with limited 
WiFi devices at home, we experiment with only one WiFi device connecting with 
one single AP. This is a challenging scenario as with only one AP and one WiFi 
device, the signal affected by the human body may become very weak after going 
through several walls. We place the WiFi device at one of the previous locations 
to sense the activities in both apartments. We find that our system is capable of 
identifying activities accurately when placing a single AP at an appreciate location. 
In particular, Figs. 2.12a and 2.13a show that the TPRs of identifying both in-place
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and walking activities are in general over .90% with FPRs less than . 5% in the one-
bedroom apartment. 

In the two-bedroom apartment, most in-place activities have TPRs over .90% and 
FPRs less than . 2%, except the activity sleeping. This is because sleeping involves 
little body movements, thus having less effects on altering multipath environments. 
In addition, Figs. 2.12b and 2.13b show that the TPRs for walking activities G and 
H are 0 because they do not generate large moving variances and are classified as 
empty room in the pre-constructed profiles. This is because with the WiFi device 
and the AP separated by several walls, the conducted activities that are far away 
from either the WiFi device or the AP will have little effect on altering the multipath 
environment. Besides G and H , the other two walking activities E and F still have 
TPRs over .90% with FPRs less than . 3%. 

2.6.3.3 Distinguishing Activities at the Same Location 

Given that some activities take place at the same location but with different human 
postures or body movements (e.g., sleeping/sitting on the bed), we experiment 
with such in-place activities to evaluate how well the system can distinguish these 
activities that occur in the same location. We use different numbers of EMD bins 
to test the impact on the resolution of identifying activities occurring in the same 
location. Intuitively, a larger number of EMD bins can provide more detailed 
distribution information. We add two more activities that occur in the same locations 
as two of the previously considered activities. We therefore experiment with 4 
in-place activities in the one-bedroom apartment: sleeping on the bed, sitting on 
the bed, receiving calls nearby the sink and washing dishes nearby the sink. The  
system compares the measure in-place activity data against 12 profiles (the 10 
from Table 2.3 and the two additional ones). We use the worst TPR (minimum 
TPR of all activity identification) and the worst FPR (maximum FPR of all activity 
identification), to evaluate the worst-case performance with different numbers of 
EMD bins. Figure 2.14a and b show the results of identifying different activities in 
the same location. We find that the system can achieve high accuracy (over .97%) if  
the number of EMD bins is greater than 8 when different activities took place at the 
same locations. 

2.6.3.4 Activity Recognition Using Wider-band Signals 

Next we study the feasibility of extending the system to work with wider-bandwidth 
channel of 802.11ac. The bandwidth of a 802.11ac channel is 4 times wider than that 
of 802.11n. The number of available subcarriers thus increases from 56 in 802.11n to 
242 in 802.11ac. Larger numbers of subcarriers provided by 802.11ac therefore have 
potential to capture in-place activities more accurately and reliably. Since 802.11ac 
shares the same 5 GHz band with 802.11n, we use multiple 802.11n channels to
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Fig. 2.14 True positive rate and false positive rate, in worst-case with different numbers of EMD 
bins
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emulate the 802.11ac channel for CSI extraction as no handy tool is available to 
collect CSI from 802.11ac. 

In particular, we use two laptops respectively communicating with two access 
points to collect CSI measurement from two 802.11n channels (40MHZ) simulta-
neously at the 5 GHz band. The CSI measurements are off-line synchronized and 
cascaded in frequency domain to emulate the CSI measurements from a 802.11ac 
channel (80MHz). In order to make sure the two 802.11n channels share the same 
multipath effect, we use two external antennas for the laptops and place them next 
to each other. The distance between two antennas is about 2 cm, which is smaller 
than the half wavelength of the 5 GHz WiFi signal (i.e., about . 2.8 cm). Similarly, 
we take the internal antennas of the access points out and bind them together with 
the distance much less than the half wavelength of the 5 GHz WiFi signal. We 
experiment with 7 in-place activities in the two-bedroom apartment with the laptops 
in the living room and the access points in the kitchen as shown in Fig. 2.8. 

Figure 2.15 presents the performance comparison of the system with the 802.11n 
and the emulated 802.11ac channel at 5 GHz band. We find that the system results in 
higher accuracy under the emulated 802.11ac than 802.11n. This demonstrates the 
feasibility of improving the recognition accuracy by utilizing wider-bandwidth of 
802.11ac. The TPRs for all in-place activities are over .99%. With such high TPRs, 
the FPRs are still lower than . 1% even for two close proximity activities f: brushing 
teeth and g: taking a bathing. Furthermore, comparing to the performance of the 
same setup using 802.11n with one WiFi device, we find that using the 802.11ac 
channel has about . 4% improvement in the worst TPRs (i.e., increases from 94 to 
.98% for the activity i: playing video game). And the worst FPR drops to . 0.67%
under 802.11ac from .8.5% under 802.11n for unknown activities. This indicates 
that the wider channels (e.g., 802.11ac) can improve the recognition accuracy since 
it allows measurements over many additional subcarriers. 

2.6.3.5 Impact of Traffic Transmission Rate 

Since CSI is measured from each of the received packets, the higher packet trans-
mission rate (PTR) results in larger sizes of CSI measurements for characterizing an 
activity. We thus study the impact of PTR on the system performance. In particular, 
PTR is changed from 5 pkts/s to 20 pkts/s with a fixed step of 5 pkts/s. As the 
commercial access points send beacon signals at 10 beacons/s to broadcast their 
SSID and the connection information, the range of our PTR is thus reasonable 
and includes the normal transmission rate that is considered to be energy-efficient 
(10 pkts/s). Figure 2.16 shows the average TPRs and FPRs over all activities with 
different transmission rates. The increasing and decreasing trends in TPRs and 
FPRs respectively demonstrate that higher PTR would help to distinguish different 
activities. We can see that when the PTR is above 10 pkts/s, the average TPRs and 
FPRs are respectively over .92% and less than . 2%, and the improvement of the 
increased packet rate is less obvious. The results demonstrate that our system is
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Fig. 2.15 True positive rate and false positive rate of activity recognition using 802.11n or 
emulated 802.11ac channel. (a) True positive rate. (b) False positive rate
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Fig. 2.16 True positive rate and false positive rate of the system with different PTR. (a) Average  
true positive rate. (b) Average false positive rate
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capable of working with very low PTR, such as the default beacon packet rate in 
WiFi. 

2.7 Summary 

The presence of multiple individuals or pets in the home poses challenges to the 
current system, which is designed and tested for a single occupant. Detecting the 
temporary presence of additional people using existing methods and suspending 
operation during such instances could be a potential improvement. Alternatively, 
adopting different sets of profiles for multiple persons could be considered, although 
this would require an exponential increase in the number of profiles needed. Another 
approach worth exploring is isolating concurrent activities in separate spaces and 
matching them against profiles independently, by separating effects detected on 
different links. Future work should focus on addressing these challenges. Addition-
ally, the presence of pets may dynamically change the environment, and further 
signal processing would be required to remove interference in CSI caused by pets’ 
movement. As for mobile devices and environmental changes, if a device is moved, 
the system could detect the change through profile deviations or other movement 
detection techniques and trigger activity profile updates. Smaller environment 
changes could be handled similarly. The system’s constant traffic requirement 
can be managed by utilizing existing traffic measurements during periods of link 
usage and creating dummy traffic to invoke device responses when links are not 
in use. Furthermore, this work has primarily focused on activities linked to specific 
locations in the home, allowing for a limited set of profiles that combine location and 
activity information. Exploring the possibility of using profiles to detect the same 
activity in different locations, as well as distinguishing between different activities 
in the same location, remains an open question that requires further investigation. 
Additionally, considering a larger number of activities in the same location and 
assessing the impact of changes in the propagation environment would contribute 
to a better understanding of the technique’s limitations. 

In this chapter, we exploit the prevalence of WiFi infrastructure and design a 
system to perform device-free location-oriented activity identification by utilizing 
the fine-grained channel state information (CSI) available in the existing WiFi 
protocol (i.e., 802.11n). We find that CSI can capture the unique patterns of small-
scale fading caused by different human activities at a subcarrier level, which is 
not available in the traditional received signal strength (RSS) extracted at the per 
packet level. Our system benefits from the observation that many important in-
home activities occur in one or a few dedicated locations and that it is therefore 
often sufficient to collect a small number of profiles for these activities in each of 
these locations. An experiment with two pairs of activities that occur in the same 
location, however, also showed strong potential for the technique to identify a set
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of activities that occur in the same place. The designed system applies matching 
algorithms to compare the CSI measurements against known profiles to identify the 
activity. Extensive experiments in two different-sized apartments demonstrate that 
the system is effective in distinguishing a number of daily activities, and that it can 
achieve a detection rate as high as 92% with a single AP and only one WiFi device. 
In addition, we also show how trends to wider-bandwidth channels (e.g., 802.11ac) 
will enhance activity recognition performance further. 
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Chapter 3 
Personalized Fitness Assistance Using 
Commodity WiFi 

Building upon the insights gained from the exploration of activity monitoring 
using WiFi signals, this chapter now focuses on the development of personalized 
fitness assistance using WiFi signals specifically designed for home/office settings. 
Traditional approaches, which often rely on costly wearable sensors or specialized 
hardware installations, can be intrusive and uncomfortable for users. In light 
of these limitations, our research aims to provide a more affordable and user-
friendly solution. To achieve this, in this chapter, we develop a personalized 
device-free fitness assistant system that utilizes existing WiFi infrastructure in 
home/office environments. Our system aims to provide personalized fitness assis-
tance by differentiating individuals, automatically recording fine-grained workout 
statistics, and assessing workout dynamics. Using deep learning techniques, we 
perform individual identification based on workout interpretation, enabling tailored 
assistance. Our system also analyzes short and long-term workout quality and 
provides insightful workout reviews for users to enhance their exercises. We ensure 
system robustness through a spectrogram-based workout detection algorithm and 
a Cumulative Short Time Energy (CSTE)-based workout segmentation method. To 
assess the performance of our system, we conducted extensive experiments with a 
significant number of participants. The results reveal a high level of accuracy in both 
workout recognition and individual identification, underscoring the effectiveness of 
our system in providing personalized fitness assistance. 

The rest of the chapter is organized as follows. We present the research 
background in Sect. 3.1 and discuss related work in Sect. 3.2. Next, in Sect. 3.3, we  
provide the design of the personalized fitness assistant system. In Sect. 3.4, we focus 
on workout recognition using WiFi. In Sect. 3.5, we delve into the personalized 
workout interpretation via deep learning. Moving forward, we describe the smart 
workout assessment using WiFi in Sect. 3.6. In Sect. 3.7, we introduce the system 
implementation and conduct the evaluation. Finally, we provide a discussion and 
conclude our work in Sect. 3.8. 
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3.1 Background 

Nowadays, people pay more attention to their physical health because the accel-
erated pace of life and increasing work pressure have compelled many individuals 
to adapt to a sedentary lifestyle. They either sit all day working on computers or 
spend long hours with phones. Such sedentary lifestyles often lead to many chronic 
illnesses (e.g., obesity), which have a significantly negative impact on the quality 
of people’s lives. As a result, people increasingly exercise regularly. However, there 
are few workout options for the work-at-home people or office workers because 
they often cannot find enough time to exercise at dedicated places (e.g., the gym). 
Thus, many people gradually resort to exercising at home/office, which is more 
convenient without space and time constraints, to exercise and maintain their health. 
Furthermore, people also like to record their exercise details to keep track of their 
fitness plans. For example, a user performs various exercises such as free weights 
with dumbbells, stretches, riding a stationary bike, and running on a treadmill. The 
corresponding exercise statistics could infer meaningful health-related information 
(e.g., calories burned). It is common for people to not always stick to their 
fitness plans due to the lack of guidance from exercise experts in home/office 
environments. Therefore, in this chapter, we take one step further to develop a 
smart exercise assistant system that facilitates personal workout monitoring and 
assessment, targeting the home/office environment. 

Traditional solutions on workout assistance rely on hiring personal coaches, 
which incur high cost, and are mostly not available in home/office environments. 
There is a new trend of utilizing smartphones and fitness trackers [11] to per-
form workout monitoring including step counting and multi-sport tracking. These 
approaches require users to wear smart devices all the time and cannot judge 
whether the users perform exercise correctly. The details on workout monitoring 
are critical to help the people correct their exercise postures, and thereby achieve 
their fitness goals. Incorrect postures may cause unnecessary injury or degrade 
the efficiency of muscle building. Recently, dedicated hardware and sensors (i.e., 
inertial sensors, RFID tags [10]) are deployed to track users’ exercise records. 
In particular, FEMO [10] proposes a free-weight exercise monitoring system by 
attaching passive RFID tags on the dumbbells and leveraging the Doppler shift 
profile. FitCoach [12] develops a workout recognition and review scheme leveraging 
the inertial sensors embedded in smartphones or smartwatches. However, it is hard 
to require people, especially seniors, to wear these devices during exercises, and 
it is desirable to automatically recognize workout and provide recommendations. 
Therefore, we seek a solution that is device-free to provide fine-grained personalized 
fitness assistance. We find that Channel State Information (CSI) [13, 14, 17, 28], 
embedded in WiFi signals, is a desirable candidate to facilitate workout interpreta-
tion and workout recommendation without attaching any devices to users. Because 
of the prevalence of WiFi infrastructures in home/office environments, it is possible 
to capture people’s activities without their participation. Furthermore, to provide a 
personalized fitness assistance, it is critical to identify each individual since people
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may choose a shared environment, either in a family environment or in an office 
space, to exercise. Therefore, our system should derive salient features that can 
perform individual identification even at a shared space. 

In order to extract unique features from CSI that can identify each individual’s 
movement, we resort to deep learning technique, which have demonstrated their 
capability in other fields such as image processing [27, 31] and natural language 
processing [9, 22]. We believe the multi-layer design in deep learning [16, 23] could 
provide distinctive features for individual identification and workout interpretation. 
Furthermore, people perform non-workout activities throughout the day such as 
typing in front of computers and answering phone calls, so it is important that 
the designed system has the capability to distinguish workout activities from 
non-workout ones. We intend to differentiate workout activities by searching 
for repetitive patterns in CSI readings using an autocorrelation-based method. 
Additionally, CSI is sensitive to various environmental factors (e.g., environmental 
noise and locations), thus our system should be robust to external interference other 
than workout activities. In particular, to adapt to small location changes (e.g., people 
may not always exercise at the same spot even in the same location), the exercise 
training profiles are collected around a certain range of a profile location and hence 
make the trained model more robust. Finally, the system aims to assess workout 
dynamics to boost the workout efficiency and avoid unnecessary injury. We intend 
to measure workout intensity and strength by defining two new metrics, and thereby 
provide desirable workout recommendations to users. 

To summarize, our system provides two high-level functionalities to enable 
personalized fitness assistance: 

(1) Personalized workout interpretation. We develop a Deep Neural Network 
(DNN) based model to provide personalized workout interpretation with two 
tiers of information. Specifically, in the first tier, our system will identify 
workout types and estimate workout frequencies. Then, the second tier leverages 
fine-grained latent representatives to further identify individuals. The abstract 
representation in the deeper layer of a DNN model is beneficial to our system 
in differentiating individuals because individual identification requires more 
complex knowledge than workout recognition; 

(2) Smart workout assessment. Our system analyzes and assesses a user’s work-
out in terms of its intensity and strength. Specifically, we define two new metrics 
that depict the short-term and long-term pictures of a user’s workout pattern, 
respectively. Work-to-Rest-Ratio measures the complete cycle of a repetition 
within one set and Repetition-tempo-rate represents the tempo (or speed) at 
which a user performs a repetition. Then, our system provides workout trends to 
each user in terms of these two metrics, which the user can correct the exercise 
form accordingly. This method could also be an accompaniment to just watching 
and following fitness videos [3] from professionals. 

The contributions of this chapter are summarized as follows. We have developed 
a personalized device-free fitness assistant system for home/office scenarios that 
utilizes existing WiFi infrastructure without requiring active user participation.
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This system is capable of differentiating individuals, enabling personalized fitness 
assistance with comprehensive workout analysis and smart workout assessment. To 
address the challenge of multiple individuals sharing the same space, we design 
a deep learning-based approach that leverages fine-grained latent representations 
to identify individuals on top of users’ workout interpretations. Additionally, we 
have created a quantitative workout analysis framework that can infer various fine-
grained information, such as the workout type, number of sets and repetitions, 
using a spectrogram-based method for accurate exercise segmentation. Our system 
goes beyond analysis and offers smart fitness recommendations by automatically 
assessing exercise postures and providing feedback for posture correction. It can 
also serve as an early alert system for potential physical health issues. To validate 
our approach, we deployed a system prototype using a pair of laptops and conducted 
extensive experiments involving 20 participants over a 10-month period. The results 
demonstrate the high accuracy of our system in individual identification, exercise 
recognition, and smart workout assessment. 

3.2 Related Work 

In general, activity recognition and fitness assistant systems can be broadly catego-
rized as motion sensor-based, vision-based and RF-based. In this part, we review 
existing studies and compare with our personalized fitness assistant system. 

Motion sensors (i.e., accelerometer and gyroscope) embedded in body-attached 
mobile/wearable devices have been used for both activity recognition [8, 18] and 
exercise recognition [7, 12]. Specifically, Nuactive [8] and Lasagna [18] recognize 
human activities through semi-supervised learning and deep neural networks on 
the captured motion sensor readings, respectively. Additionally, the sensors in 
customized workout gloves [7] and wearable devices (e.g., smartwatches) [12] are  
used to recognize exercise types and the number of repetitions. These approaches, 
however, require users to wear additional devices and are limited to recognize the 
exercise movements only involving upper body parts such as wrist and arm. 

To overcome the aforementioned weaknesses, a couple of studies attempt to 
recognize human activities with the help of cameras [21, 30]. These approaches 
either use unsupervised learning or pattern matching on the recorded video frames 
to achieve fine-grained activity recognition. In addition, video analysis has also been 
applied to measuring workout dynamics and providing exercise guidance [6, 24]. 
For instance, Su et al. [24] develop a workout recognition system which assists 
patients in conducting rehabilitation exercises through profile matching on Kinect 
readings. Celiktutan et al. [6] develop an exercise recognition and assessment 
scheme which tracks skeleton geometries with Kinect and quantifies the action 
goodness. However, these vision-based schemes only work when a user stays within 
the device’s line-of-sight zone and can be significantly affected by the environmental 
light conditions. In addition, video-based techniques also bring privacy concerns.
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Recently, RF-based sensing attracts a considerable attention of many 
researchers [1, 10, 20] due to the prevalent usage of wireless-enabled devices. 
WiSee [20] and WiTrack [1] can recognize human gestures and track 3D motion 
of a user using the minute Doppler shift and the round-trip time of flight (ToF) of 
wireless signals, respectively. Additionally, FEMO [10] recognizes and assesses 
free-weight workouts by attaching passive RFID tags on the dumbbells and 
analyzing the Doppler shifts of the received signals. These approaches, however, 
require dedicated devices (e.g., Universal Software Radio Peripheral (USRP), RFID 
readers) which limits their applications in practice. Recent studies have shown the 
potential of using off-the-shelf WiFi to recognize human daily activities [28, 29]. 
They examine CSI in WiFi signals to capture the environmental changes associated 
with human activity motions. Although existing WiFi based approaches show 
intriguing results in identifying general activity types (e.g., walking, standing, 
sitting), the problem of assessing workout qualities (e.g., strength, speed) and 
providing exercise feedback remains open. Additionally, comparing with the 
existing activity-recognition studies (e.g., [28, 29]), which mainly focus on 
recognizing location-oriented daily activities (e.g., cooking in a kitchen, brushing 
teeth in a bathroom), this work explores the feasibility of using WiFi to recognize 
various exercise activities at the same or nearby place and further identify the 
individual who performs the exercises. 

Different from existing work, we design and implement a device-free per-
sonalized exercise recognition and assessment scheme leveraging existing WiFi 
infrastructures. The system provides comprehensive workout interpretation, and 
differentiates individuals without active user participation. Specifically, we examine 
channel state information (CSI) embedded in WiFi readings which capture workout 
dynamics of both free weight and body stretching exercises. Moreover, a workout 
assessment algorithm is developed to evaluate exercise quality by examining motion 
speed and strength through frequency domain analysis. 

3.3 Personalized Fitness Assistant System Design 

3.3.1 Challenges in System Design 

In order to design a system that enables personalized fitness assistance using WiFi, 
a number of challenges regarding how to design mechanisms for comprehensive 
workout interpretation and smart workout assessment need to be addressed as 
follows. 

Individual Recognition In a shared environment such as a home or office, it’s 
often the case that family members or colleagues take turns participating in workout 
activities. In these settings, the need for personalized fitness assistance becomes 
apparent. Our system must have the ability to differentiate between individuals -
a task that poses quite a challenge, particularly for a device-free system designed
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to facilitate personalized fitness assistance. This difficulty arises from the fact that 
there’s no dedicated device affixed to each person to collect the necessary signals 
related to their distinct movements. For this reason, we are in pursuit of a more 
universal solution, which can accommodate a group of individuals within such a 
shared space. It’s crucial that our system possesses the capability to distinguish one 
person from another. By achieving this, we can then tailor our fitness interpretation 
and assessments to each individual, providing them with a personalized fitness 
experience. 

Fine-grained Workout Interpretation Providing fine-grained workout interpre-
tation using WiFi is also challenging. First, people perform non-workout activities 
throughout the day. Thus, the designed system should have the capability of 
distinguishing workout related activities from non-workout ones. Second, in order 
to provide fine-grained workout interpretation, our system needs to accurately 
decompose an exercise into pieces of repetitions. Thus, a robust CSI segmentation 
scheme needs to be integrated into our system. Third, our system also needs 
to handle a common situation where a user may perform workout at a slightly 
shifted location (e.g., one foot away) from the location where his training profiles 
are collected. This is challenging because CSI readings are sensitive to location 
changes, which could significantly degrade the system performance if careful design 
consideration is not taken. 

Smart Workout Assessment Improper and inconsistent workout activities may 
hinder muscle development efficiency and potentially result in avoidable injuries. 
However, creating mechanisms for workout assessments using CSI readings in a 
device-free design poses a significant hurdle. To address this, we introduce two 
workout-related metrics. One is applied at the level of individual repetitions, and 
the other considers the overall exercise to provide a holistic workout assessment. 
These assessments can provide valuable feedback to users, enabling them to make 
necessary adjustments to their postures in following exercises. The intention behind 
these metrics is to ensure that each repetition and every set is conducted correctly 
and effectively. By doing so, we aim to promote the optimal efficiency of workouts 
while reducing the risk of injuries. This way, users can fully reap the benefits of 
their workout activities without compromising their safety. 

3.3.2 Overview of the Personalized Fitness Assistance System 

In this part, we devise a personalized, device-free fitness assistant system that 
leverages the existing WiFi infrastructure. The key idea is to utilize fine-grained 
Channel State Information (CSI), readily accessible from standard WiFi devices, to 
accurately portray personalized workout statistics and assess workout dynamics. To 
this end, we first define two specific terms that characterize workout activities: rep 
and set. A rep (repetition) refers to a single, full motion cycle of a specific exercise. 
A set, on the other hand, is a sequence of consecutive repetitions. Usually, a user
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Fig. 3.1 System flow of the designed personalized fitness assistance using commodity WiFi 

is advised to perform a workout exercise consisting of several sets to efficiently 
build muscle and maintain a fit physique. Given these inherent characteristics of a 
workout, we anticipate that we can observe repetitive CSI patterns because of the 
repetitive movements from different parts of a body during workouts. Furthermore, 
minute movements of different workouts have distinct impacts on CSI and thus these 
unique features of a particular workout can be extracted via CSI analysis. 

As illustrated in Fig. 3.1, the designed system takes as input CSI readings 
which can be directly extracted from WiFi cards [14]. Our system first performs 
Workout Detection to differentiate workout-related activities from non-workout ones 
based on the discovery of periodical patterns. Specifically, it first applies a sliding 
window on the CSI time series and then removes the offset (e.g., mean, linear or 
polynomial trend) of the corresponding CSI data through Offset Removal. After  
that, Repetitive Pattern Detection further detects workout activities based on an 
autocorrelation calculation of the CSI readings. Once the workout-related activities 
are identified from CSI readings, the system will then perform Spectrogram Analysis 
by converting the CSI time series to frequency-domain. The spectrogram of CSI 
readings reflects how the workout energy of each frequency component evolves 
with time. 

Next, our system performs Personalized Workout Interpretation and Smart Work-
out Assessment. In particular, the Personalized Workout Interpretation performs
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quantitative analysis of CSI readings to produce workout statistics, which can 
be used to track if a user follows his personal fitness plan correctly. It contains 
three modules: Segmentation and Counting, Repetition Recognition and Individual 
Identification. The  Segmentation and Counting counts the exercise repetitions based 
on the cumulative power spectral density analysis of CSI spectrogram. Repetition 
Recognition provides fine-grained exercise recognition at the repetition level via a 
DNN-based method. Then, our system differentiates different individuals through 
the Individual Identification module (i.e., the deeper layer of the designed DNN 
model). 

The Smart Workout Assessment is designed to offer valuable feedback to users 
regarding their exercise routines. This system goes beyond basic fitness statistics in 
evaluating the quality of a user’s workout to maximize muscle-building efficiency 
and minimize the risk of injury. The workout assessment consists of two modules, 
Repetition Speed and Strength Estimation and Workout Review. Repetition Speed 
and Strength Estimation focus on the estimation of the workout speed and strength 
at the repetition level, which are especially useful in both quality assessment and 
abnormal workout detection (e.g., a senior may have a sudden change in his workout 
speed due to his physical health situation). Workout Review module provides 
workout recommendations to users through workout assessment at repetition level. 
Before our system is deployed, we collect the CSI traces as the training profiles 
from the experts who can perform different exercise types with standard intensities 
and strengths. Then, the system compares each repetition of users’ exercise profiles 
against their standard training profiles or experts who visit gym frequently so that it 
can provide desirable feedback to the users. 

3.4 Fine-grained Workout Recognition 

3.4.1 Distinguishing Workouts from Non-workout Activities 

In environments like homes or offices where people perform various daily activities, 
CSI readings will inevitably capture both workout and non-workout activities, such 
as typing at a computer or simply moving around the room. To provide personalized 
fitness assistance effectively, it is crucial for our system to distinguish between these 
different types of activities. To recognize the unique CSI features from workout-
related activities, we conduct a preliminary experiment in an office setting with a 
specific individual. This individual’s activities were recorded in a sequence. The 
person first types at a table, then walks to a location to perform five repetitions of 
standing biceps curls. Following this, he walks back to the same table and continue 
typing. Figure 3.2 presents the corresponding CSI amplitude for one subcarrier 
(specifically, the 5th subcarrier), with each activity’s timeframe clearly marked. 
From this experiment, we can observe clear repetitive patterns in the CSI readings 
during workout activities, which are notably absent during non-workout activities.
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Fig. 3.2 CSI of a series of activities 

This distinction illustrates the potential for our system to identify and separate 
workout activities from other types of movements effectively, an essential step in 
achieving personalized fitness assistance. 

Based on these observations, we design a method to detect workout activities by 
identifying repetitive patterns in Channel State Information (CSI) readings using the 
autocorrelation method. Autocorrelation measures the similarity between a signal 
and itself at a given lag. Therefore, if a repetitive pattern exists, we expect to see 
a local maximum. Here’s how the detection process of repetitive patterns works: 
Our system first applies a sliding window to the time series of CSI amplitude. 
For instance, Fig. 3.3a illustrates an 8-second sliding window containing raw CSI 
readings associated with a workout. We then remove the offset (e.g., mean, linear 
trend, or polynomial trend) of the raw readings within this window. To do this, we 
fit a low-order polynomial to the raw CSI data and subtract it, along with the mean 
value, from the raw CSI readings. Figure 3.3b denotes the data after offset removal. 
Figure 3.3c shows the results of repetitive pattern detection. Then, a peak (i.e., local 
maximum) detection algorithm is adopted with an empirical threshold (i.e., . 0.2 in 

this example) to derive the number of repetitions by .Nr = Np − 1

2
, where . Nr is the 

number of repetitions and . Np is the number of peaks from autocorrelation. Finally, 
the workout is detected within the specific sliding-window when . Nr is larger than a 
threshold T . Here we assume the workout activities have at least 3 repetitions, thus 
T is fixed at 3 in our prototype system if not mentioned otherwise. 

3.4.2 Recognizing Exercise Repetitions 

Once workout activity has been detected, our system aims to recognize each 
exercise repetition to further generate detailed workout statistics. These statistics, 
such as the number of sets and repetitions, are integral to understanding the
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Fig. 3.3 An example 
illustrates the process of 
workout detection. (a) 
Workout raw data. (b) Offset 
removal. (c) Repetitive 
pattern detection 
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Fig. 3.4 The process of exercise repetition recognition. (a) Spectrogram of lateral raise. (b) 
Corresponding Cumulative Power Spectral Density (CPSD). (c) The process of exercise repetition 
recognition 

effects of an exercise routine (e.g., calories burned). They are critical in guiding 
users to design, follow, and adjust their fitness plans. In our design, we opt for 
spectrogram analysis over time-domain analysis, which is often adversely affected 
by the presence of interferences, noises, and consistent CSI fluctuations. To verify 
the effectiveness of spectrogram analysis, we conducted a series of preliminary 
experiments where volunteers performed four sets of “lateral raises” with five 
repetitions per set. The corresponding spectrogram in the time-frequency plane 
reveals a clear repetitive pattern of workout activities as depicted in Fig. 3.4a. We 
then implement a Cumulative Short Time Energy (CSTE) method to offer detailed 
workout statistics and further accurately segment each exercise at the repetition 
level. Specifically, our system first aggregates all power spectral density (PSD) along 
the frequency dimension in the spectrogram, as demonstrated in Fig. 3.4b. Next, 
the energy of the cumulative PSD is accumulated again in short sliding window to 
further make each repetition more distinguishable. Given the accumulated PSD, the 
normalized short time energy (STE) [4] is derived as:



60 3 Personalized Fitness Assistance Using Commodity WiFi

.Esqr =
∞⎲

i=−∞
[V (i)W(n − i)]2, (3.1) 

where .V (i) is cumulative PSD, .W(n) is the windowing function, and n is the frame 
shift of samples. Our system identifies all the peaks (i.e., local maximum points) 
on the normalized STE as shown in Fig. 3.4c, and the number of peaks represents 
the number of repetitions. Further, we segment each repetition by searching both 
left and right-hand side of each peak to find zero energy points, and the CSI 
data between two zero points corresponds to a repetition. We also cluster multiple 
repetitions into one exercise set if these peaks are far away from others as a user 
normally takes a longer rest between two consecutive sets. Note that, our system 
leverages CSI, which provides fine-grained information of wireless channel, and 
thus it is sensitive to body movement. Therefore, both upper and lower body 
movement show significant changes in our spectrogram analysis. 

3.5 Personalized Workout Analysis Using Deep Learning 

In this section, we present a method based on Deep Neural Networks (DNNs) 
to discern various types of exercises and connect them to their respective users 
in a common space. The sophisticated patterns generated by DNNs [26], are 
both stable and resilient to minor alterations in input signals. This attribute suits 
our system’s requirement for a hierarchical setup. Therefore, the designed DNN 
structure involves two hidden layers, each including an autoencoder and a softmax 
classifier as show in Fig. 3.5, for workout interpretation and individual identification, 
respectively. Since each set of workout usually involves multiple repetitions, our 
system performs repetition-level workout recognition more frequently than set-
level individual identification. Furthermore, to reduce computational cost, instead of 
using the second layer hidden representatives, we leverage the feature abstractions 
from the first hidden layer to recognize the workout type of each repetition. Specif-

Input 

Hidden Layer 2: 
(100 units) 

Individual Identification 

Workout Interpretation 

Ex 1 Ex 2 Ex K 

Hidden Layer 1: 
(200 units) 

Softmax 1 

Softmax 2 

Fig. 3.5 Illustration of the designed DNN architecture
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ically, the input vector of DNN consists of features extracted from 30 subcarriers of 
raw CSI data. At each hidden layer, the autoencoder learns hidden representations 
from the input vector, and the softmax classifier, which is connected at the end 
of autuencoder, builds the activity/individual classification model together with the 
autoencoder with labeled instance. The autoencoders are trained in an unsupervised 
fashion while the softmax layer is trained with the labeled representations extracted 
from the autoencoders. 

Compared to conventional classifiers like the support vector machine (SVM), 
our approach using a two-layer DNN can reliably distinguish both workout types 
and individual identities, notwithstanding the influence of variations in wireless 
measurements. Typically, Channel State Information (CSI) readings are complicated 
by the complex shifts in signals caused by slight changes in the propagation path. 
These shifts are difficult to suppress using a single feature space transformation, 
such as SVM. Consequently, traditional classifiers like SVM and logistic regression, 
which require test data to be situated near the hyperplanes learnt from sample 
profiles, are less effective in reliably identifying individuals and recognizing 
workouts. To address this, we build a DNN model with multiple hidden layers. 
This model is capable of capturing robust feature abstractions [25], and reducing 
the multi-path effect. We further compare our DNN-based method with four other 
traditional classifiers, including k-nearest neighbors (k-NN), decision tree, random 
forest and SVM, and discuss the results. 

3.5.1 CSI Feature Extraction 

To capture the unique characteristics of each type of exercises, it is necessary to 
extract reliable and efficient features from CSI measurements as the input vector 
of a DNN model. Since the raw CSI measurements are sensitive to environmental 
changes, the impact of such ambient interference will be eliminated through 
obtaining reliable features. In addition, using the features extracted from the raw CSI 
measurements as input of the DNN model also reduces the computational overhead 
of our system. There are 8 time domain features extracted from each subcarrier, 
including maximum, minimum, mean, kurtosis, skewness, variance, median and 
standard deviation. Such CSI features are extracted from 30 subcarriers within a 
single exercise segment, and thus the length of the input vector X is .8 × 30. In  
addition, the designed system adopts a high sampling rate of 1000Hz to ensure the 
sufficient granularity on capturing human exercise dynamics. 

3.5.2 Unveiling Latent Representations with Autoencoders 

Given the extracted CSI features, our DNN model first recognizes the exercise 
type and then identifies individual through analyzing the hierarchical latent rep-
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resentation derived from the input vector. Figure 3.5 illustrates our DNN structure 
consisting of a two-layer stacked autoencoder [26] with two corresponding softmax 
classifiers. To determine the number of neurons in each hidden layer, our system 
iterates through various number of neural units and selects the number that provides 
the highest cross validation accuracy. The designed DNN structure takes CSI 
features set X as the input vector and encodes features into hierarchical latent 
representations (i.e., .yi(i = 1, 2)) through activation functions . fi (i=. 1, 2), where 
the function outputs can be utilized for workout/identity classification. 

The neural units in each DNN layer learn a set of latent representations from 
the CSI feature inputs in an unsupervised fashion. Specifically, the two hidden 
layers have 200 and 100 neural units, respectively, and force the network to learn 
a compressed and sparse representation of the inputs through setting the number of 
hidden units fewer than the number of inputs n. 

The hidden units in each autoencoder map the input vector X into a set of latent 
representations Y through the following equation: 

. Y = σ(wX + b), (3.2) 

where .σ(·) is a logistic sigmoid function formulated as .σ(z) = 1
1+e−z , and w and b 

characterize the weight and bias of the autoencoder, respectively. The autoencoders 
are trained by minimizing the reconstruction errors between X and Y . Particularly, 
to train an autoencoder, we initialize weights and bias with random numbers. Then, 
the optimization function . 𝚪 in the autoencoder training is defined as follows: 

. 𝚪(X,X') = 1

K

K⎲

k=1

(Xk − Xk
')2 + λ × Ωweights + β × Ωsparsity , (3.3) 

where K is the number of training samples and . X' represents the reconstructed 
sample from Y using a decoder function. We use .Ωweights and .Ωsparsity to denote 
the parameters of . L2 regularizer and sparse regularizer [19], which prevent low 
output values of the neural units. And . λ and . β are the coefficients of . L2 regularizer 
and sparse regularizer. Specifically, we denote .λ = 0.002 and .β = 4 for controlling 
mean squared error for the optimization function . 𝚪. In order to limit the training 
time while preserving low reconstruction errors for the units in hidden layers, we 
train the DNN model leveraging a learning rate of .10% and 300 epochs in an 
unsupervised manner. 

3.5.3 Personalized Identification and Workout Analysis 

Recognizing individual identities amidst exercise interpretation poses a consid-
erable challenge given the similarities in the gestures people employ across a 
single type of exercise. Nevertheless, we have discovered that various individuals
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execute non-identical micro-gestures, which can be detected and differentiated using 
Channel State Information (CSI). Figure 3.6 presents the CSI measurements for 
two users partaking in two different exercises. Small variations can be observed 
in the CSI measurements of two users conducting the same exercise, attributable 
to the unique characteristics of each user, such as body shape and distinctive 
behaviors, which uniquely influence the CSI measurements. Thus, we can rely on 
CSI feature representations to identify each individual. Specifically, we construct 
the two-layer DNN model by stacking one autoencoder layer on the top of another. 
Each autoencoder layer outputs latent representations which are abstractions of 
the input CSI features. Given the feature representations from the two layers, we 
use two SoftMax [5] functions to perform individual identification and workout 
Interpretation. The first SoftMax function takes the layer 1 hidden representations 
as input and recognizes exercise type, while the second SoftMax layer is attached to 
the second autoencoder and identifies the individual identity. The SoftMax functions 
are defined as follows: 

. P(Cn|Y ) = P(Y |Cn)P (Cn)
∑n

j=1 P(Y |Cj )P (Cj )
, (3.4) 

where .P(Cn|Y ) represents the conditional probability of user identity label . Cn given 
a hidden latent representations Y , and we denote the prior of the same label as 
.P(Cn). .P(Y |Cn) indicates the likelihood of the representations Y given class . Cn. 
The values of .P(Cn|Y ) are constrained by .

∑N
n=1 P(Cn|Y ) = 1. Each SoftMax 

function outputs the probability distribution over N profiled users/exercises. Each 
SoftMax layer is trained through minimizing a mean squared error function, which 
is defined as: 

. E = 1

n

n⎲

j=1

k⎲

i=1

(tij − yij )
2, (3.5) 

where n is the number of observations, and k is the number of users. . tj i is 
the element of a ground truth matrix for training samples and . yij is the hidden 
representations for the j th observation. Then, we use an optimized function . n =
argmaxn∈NP (Cn|Y ) to find a predicted class for the latent representations Y . The  
training process of Softmax layer runs 400 epochs with the learning rate fixed at . 0.15
in a supervised manner to control the training time while preserving classification 
accuracy. 

3.6 Repetition-level Smart Workout Assessment Design 

Correct exercise postures will not only reduce the possibility of injury, but also 
increase the efficiency of muscle building. In addition, any incorrect exercise form 
may cause some physical health-related problems, especially for the elderly. In this
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Fig. 3.6 CSI amplitudes of two users performing two types of exercises. (a) Spectrogram of lateral 
raise. (b) The process of exercise repetition recognition
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Fig. 3.7 Spectrogram of one repetition 

section, we will discuss smart workout assessment based on the analysis at repetition 
level to help users retain correct exercise postures and thereby achieve their fitness 
goals. 

The Anatomy of a Repetition To perform workout assessment, we first need 
to have an in-depth understanding of a workout repetition. Basically, a repetition 
normally consists of a series of body movements from an initial position to a final 
position and then back to the initial position as shown in Fig. 3.7. The figure shows 
the spectrogram of a repetition with corresponding movements. In our example, the 
movement contains concentric contractions (i.e., cause muscles to shorten, thereby 
generating force) and eccentric contractions (i.e., cause muscles to elongate in 
response to a greater opposing force). Good exercise repetitions need to keep a 
constant rhythm (i.e., the time ratio between concentric contractions and eccentric 
contractions in our example). 

Workout Review and Recommendation In order to achieve effective exercise and 
avoid injury, it is crucial to customize personal fitness plans by fitness professionals. 
Such fitness plans often try to regulate the exercise by following the Frequency, 
Intensity, Time, and Type (FITT) [2] principle of training, which is a set of 
guidelines that instruct users to set up exercise routines fitting their goals and fitness 
levels, while maximizing the effects of exercises. Specifically, Frequency refers to 
the frequency of exercise undertaken; Intensity refers to the intensity of exercise 
undertaken; Time refers to the time a user spends exercising; Type refers to the type 
of exercise undertaken.
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Traditionally, a fitness coach or trainer at gym can keep watching each exercise 
repetition of a user, and provide advice based on the FITT principle. However, many 
people who work full time do not have much time to exercise at dedicated place (i.e., 
the gym). Instead, they often choose to exercise at home or at the office. The smart 
workout assessment module fills the gap between users’ needs and fitness plans to 
meet the FITT principle by providing fine-grained, personalized fitness information, 
and intuitive feedback to users. The module will automatically provide assessments 
and recommendations, which relies on the measurement of WiFi CSI readings while 
users are performing exercises. Our system mainly focuses on perceiving Intensity 
and Time, because these two guidances are closely related to exercises in repetition-
level. Based on the FITT principle and the anatomy of a rep, we define two metrics 
as follows. 

Work-to-Rest Ratio Workout time in repetition-level reflects how much time is 
spent on a repetition of a set. It measures the complete cycle of a repetition within 
one set. To gain efficient muscle building, a user should maintain a consistent ratio 
between the time of repetitions and the resting time afterwards. Thus, we define the 
work-to-rest ration as: 

. Rw2r = T
(i)
w

T
(i)
r

,

where .T (i)
w is the time duration for the ith workout and .T (i)

r is the time duration of 
the rest followed by the  ith workout. 

Repetition Tempo Ratio (RTR) Workout intensity usually indicates how much 
energy is consumed, which can be reflected by a relative percentage of a user’s 
maximum endurance. Specifically, we define the intensity as a ratio between the 
energy from an initial position to a final position. According to the analysis of the 
anatomy of a repetition, we found that this ratio can be measured through measuring 
the time duration from an initial position to a final position, and the time duration 
of from the final position back to the initial position in a repetition. Thus, we define 
the repetition tempo ratio as follows: 

. RRT R = T i
i2f

T i
f 2i

,

where .T i
i2f is the time duration from an initial position to a final position of the ith 

repetition and .T i
f 2i is the time duration from the final position back to the initial 

position of the ith repetition. 

Workout Posture Recommendations Based on the assessment results, our system 
next will provide reasonable workout posture recommendations to help the user 
to correct exercise gestures. The basic idea is to compare the exercise assessment
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results of normal users with the ones obtained from expert users in term of the new 
metrics. 

Specifically, our system not only provides the trend of these twometrics across all 
repetitions, but also shows the upper and lower bounds of the metrics obtained from 
expert users. Then a user can have a visualized view of his workout assessment and 
check whether repetition is correctly performed or not. Figure 3.8 plots the workout 
assessment for a user after he finishes 12 repetitions of lateral raise. The user can 
observe how each of his repetitions is performed based on work-to-rest ratio and 
can find the .7th, 8th, 9th repetitions are over the upper bound as shown in Fig. 3.8a. 
Figure 3.8b provides a different view of each repetition by examining the repetition 
tempo ratio. The user will find the 5th repetition is over the upper bound and the 
10th repetition is below the lower bound. Based on the visualized feedback, the user 
can adjust his subsequent repetitions by paying attention to those repetitions that 
are poorly done. In particular, for those repetitions beyond the upper bound of a 
standard workout, the user needs to extend the rest time after the repetitions, while 
for those over the upper bound of repetition tempo ratio, the user can increase the 
intensity from the initial position to the final position. 

3.7 System Implementation and Evaluation 

3.7.1 Experimental Methodology 

Experiment Setup To evaluate the performance of our system, we have developed 
a prototype using a pair of Dell E6430 laptops, each outfitted with an Intel 
.5300 802.11n WiFi Network Interface Card (NIC). These laptops act as WiFi 
transceivers. Specifically, both the transmitter and receiver are configured to operate 
under Monitor mode with a fixed packet rate of 1000 packets/second at a frequency 
band of 5 GHz. It is important to note that each CSI measurement of the captured 
packet consists of 30 subcarriers, represented in the form of a complex value. This 
setup allows us to adequately test the robustness and efficiency of our proposed 
system. 

Data Collection We carried out our experiments with the assistance of 20 volun-
teers. All of these individuals were college students aged between 22 and 35, among 
whom 18 are male and 2 are female. We collected their exercise training profiles 
at multiple points, each located within a foot’s distance from a predetermined 
profile location. The volunteers’ workout activities were monitored and analyzed 
in three distinct indoor locations. Notably, the dimensions of these locations were 
6 × 4m,  8.3 × 6.6m, and 7.3 × 3.6m respectively, reflecting common room sizes 
such as a living room, a spacious family room, and a typical office space. To 
validate the robustness of our system, our volunteers were asked to perform 10 
popular indoor exercises, encompassing free-weight workouts, body stretches, and 
aerobic exercises. Each volunteer was requested to perform 20 sets of each type of
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Fig. 3.8 Workout assessment for each repetition based on two metrics. (a) Work-to-rest ratio. (b) 
Repetition tempo ratio
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exercise per week, with every set comprising of 15 repetitions. This rigorous testing 
environment was designed to evaluate the performance of our system in real-world 
conditions thoroughly. 

In total, we collect 3013 segments of CSI measurements that are associated with 
workout activities from the volunteers. For each round of data collection, we ask 
volunteers to stay in the room for 20min. During this period of time, a volunteer 
mimics the scenarios of work-at-home or in the office. Specifically, each volunteer 
is required to perform workout-related activities for 10min and any other activities 
(e.g., with or without repetitive pattern) for the rest of the time. Therefore, the 
collected CSI readings could include both regular daily activities (e.g., sitting on a 
chair at work, typing and walking around) and exercise activities from the volunteer. 
The time duration ratio of the regular daily activities and exercise activities is around 
1 : 1. The design of such a data collection process is to demonstrate that our fitness 
assistant system has the capability of distinguishing workout-related activities from 
daily activities. 

Evaluation Metrics To quantify the performance of our system, we define four 
metrics as follows. 

Precision Precision is a metric used to gauge the performance of our system in 
terms of its positive predictive value. Specifically, for a given workout type w, 
precision is defined as the fraction of sets correctly recognized as workout w (true 
positives) out of the total number of sets predicted as workout w (true positives plus 
false positives). In mathematical it is defined as: 

. precisionw = NT
w

NT
w + MF

w

,

where NT 
w represents the number of instances accurately identified as workout 

w, and MF 
w denotes the number of sets incorrectly identified as workout w that 

correspond to different workouts in reality. 

Recall Recall, also known as sensitivity or true positive rate, is another performance 
measure that represents the ability of the system to correctly identify positive cases. 
For a workout w, recall is defined as the proportion of sets correctly identified as 
workout w (true positives) out of all sets that are actually of workout w (all actual 
positives). This is calculated as: 

. Recallw = NT
w

Nw

.

F1-Score The F1-score is a metric that provides a singular measure for the accuracy 
of a system by combining both precision and recall values. It is the harmonic 
mean of precision and recall, and its value ranges between 0 and 1. A value of 1 
implies perfect classification accuracy. In our multi-class scenario, the F1-score for 
a particular workout w can be computed using the formula:
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. F
(w)
1 = 2 × precisionw × recallw

precisionw + recallw
.

Confusion Matrix The confusion matrix is a tabular representation that shows the 
classification results of the system. The columns of the confusion matrix represent 
the actual class (workout type or identity), while the rows represent the predicted 
class by our system. Each cell in the matrix represents the percentage of sets 
correctly classified for each exercise type or identity. This matrix is particularly 
useful in understanding the performance of the classification system, as it provides 
a clear picture of both the correct predictions and the types of errors made. 

3.7.2 Personalized Workout Analysis and Individual 
Recognition 

Workout Interpretation We first examine the performance of workout inter-
pretation based on our DNN model. Figure 3.9a shows the confusion matrix 
of 10 different workout exercises performed by all volunteers at three different 
environments. We observe that the average recognition accuracy is around . 93%
and the standard deviation is .2.6%. Particularly, we find the 8th workout (i.e., pile 
squat) has a slightly lower accuracy than other types of workout. This is because 
pile squat involves whole body movement which makes the CSI stream vary a lot 
from time to time. But our system can still maintain over .89% accuracy. In addition, 
as shown in Fig. 3.9b, we find that the corresponding precision, recall and . F1 score 
are all around .93%. The results show that our DNN-based model can achieve high 
accuracy in workout recognition and thereby confirm the robustness of our system 
under different environments. Moreover, we investigate workout interpretation 
performance of a two-layer neural network, which has the same architecture as the 
two-layer model but leverages the hidden representatives extracted from the second-
layer for workout recognition. As shown in Fig. 3.10, we find that the average 
recognition accuracy is around .91.1% and the standard deviation is .4.6%. Such 
recognition accuracy is lower than that of our DNN model, because a two-layer 
model is over-complicated for our workout recognition task. It demonstrates that 
our system can recognize exercise types with sufficient high accuracy and low 
computational complexity leveraging hidden representatives derived from the first 
layer of the DNN model. 

Individual Identification Next, we perform individual identification by using our 
DNN model. In Fig. 3.11, the confusion matrix presents the overall accuracy of 
individual identification. We find that our system always achieves high identification 
accuracy across all the volunteers. Particularly, the accuracies for all the individuals 
are over 92% and the standard deviation is 3.34%. This result validates that
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Fig. 3.9 Accuracy of exercise recognition with the DNNmodel. (a) Exercise recognition accuracy. 
(b) Precision/recall/F1-score 

our system can identify individuals with high accuracy and therefore, supports 
personalized fitness assistance. Although the DNN model is sufficiently distinctive 
in a relative large user population (i.e., 20 people in our current experiments), it
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Fig. 3.10 Accuracy of exercise recognition with a separate two-layer DNN model. (a) Exercise  
recognition accuracy (b) Precision/recall/F1-score 

is not yet clear what the maximum number of users that can be identified by our 
system. However, our results of 20 people are promising, and this user population 
size is sufficient for most of the use cases in home or office environments.
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Fig. 3.11 Individual identification accuracy 

3.7.3 Personalized Smart Workout Assessment 

Our system offers smart workout assessments by comparing each user’s exercise 
patterns with those of expert users, according to the two metrics. Based on 
this comparison, we generate personalized recommendations for each user. The 
benchmarks used for comparison are the upper and lower bounds of the two metrics, 
which are calculated from the performance of the expert users. For this project, 
we engaged 20 volunteers who each received a workout assessment and made 
adjustments to their exercise techniques according to the feedback provided by our 
system. In a more specific experiment, we engaged 6 expert users—individuals who 
regularly attend the gym and have prior training experience—to perform three sets 
of exercises with ten repetitions per set for each workout type. We then established 
the upper and lower bounds for each specific metric, setting the upper bound as 
the highest value attained by any of the six expert users, and the lower bound 
as the lowest value. This personalized feedback system received positive reviews 
from all participants, validating its effectiveness. The volunteers confirmed that 
our system can accurately analyze workout forms, provide useful feedback, and 
help them make necessary adjustments for improvement. Through this system, 
users can optimize their workouts, correct their form, and minimize the risk of 
injuries. Additionally, the system promotes a greater understanding of the individual 
user’s workout dynamics, contributing to a more effective and satisfying exercise 
experience.
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3.7.4 Impact of Monitoring Device Placements 

We study the workout interpretation and people identification scheme by placing 
the wireless transmitter and receiver at different heights. Specifically, we examine 
three cases where the transceivers are placed at equal heights, . 0.2, . 0.8 and . 1.3m, 
corresponding to the floor, the table, and the top of a cabinet. Furthermore, we also 
study some real-world scenarios, where the heights of transmitter and receiver are 
unequal (i.e., 1.3–0.2m and 0.2–1.3m). 

Figure 3.12a shows the workout recognition accuracy for five different exercises. 
We observe that our DNN workout recognition algorithm achieves comparable 
high performances with various transceiver placements. In general, the average 
recognition accuracies for the five pairs of transceiver heights are .94.7, .99.7, 
.97.3, .99.6, .98.9%. Specifically, we find that the recognition performances for 
three transceiver heights (i.e., 1.3–0.2m, 0.8–0.8m, and 0.2–0.2m) achieve over 
.94% for all five exercises. In addition, we observe that when the transceivers are 
placed at the height 1.3–1.3m, exercise 1 and 2 have relatively lower recognition 
accuracy compared with most of the other transceiver heights. This is because 
both exercise 1 and 2 involve a gesture of raising the dumbbells to the height 
of the transmitter (i.e., . 1.3m), resulting in similar multipath and line-of-sight 
effects. Thus, the CSI readings of these two exercises are very similar and thus the 
recognition performances are slightly degraded. Beside workout recognition, we 
also present the individual identification accuracy in Fig. 3.12b. It is encouraging 
that the identification accuracies for the five cases with equal transceiver heights are 
all over .97%. The results confirm the designed DNN model is robust to different 
transceiver heights on workout recognition and people identification. 

3.7.5 Impact of Monitoring Device Distances 

Furthermore, we also study the workout recognition performance under various 
transceiver distances, which correspond to different room sizes. We show both the 
exercise recognition and people identification accuracy of five different exercises in 
Fig. 3.13. As shown in Fig. 3.13a, our algorithms can achieve good performance 
for most of the exercises with different transceiver distances. Specifically, the 
average recognition accuracy for the four distances are: .97.8, .98.9, .96.6, .95.0%. 
In particular, for the case of the distance 2, 3, and 5m, the recognition accuracies 
for the five exercises are all over .94%. For the transceiver distance of 7m, some  
exercises (i.e., Ex1 and Ex4) have relative lower recognition accuracy due to the 
weak signal strength at such a distance. Figure 3.13b shows the people identification 
accuracy for the four cases of different transceiver distances. We can find that the 
identification accuracies are all over .99% which validate the reliability of our people 
identification algorithm at different distances between transmitter and receiver.
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Fig. 3.12 Impact of transceiver height on exercise recognition and individual identification. (a) 
Workout recognition. (b) Individual identification
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Fig. 3.13 Impact of transceiver distance on exercise recognition and individual identification. (a) 
Workout recognition. (b) Individual identification
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3.7.6 Impact of User Location Shift 

Finally, we study the impact of location shift if workout profile and testing data 
are collected at slightly different locations (e.g., one foot away). An opportunistic 
profile construction technique is adopted to build the user’s workout profile at 5 
different locations within a certain area, where the user deliberately changes his 
location when performing the same exercise. As a comparison, we also build another 
workout profile without opportunistic profile construction (i.e., a user’s profile 
collected from the exact same location only). We present the experimental results for 
both with and without the opportunistic profile construction as shown in Fig. 3.14. 
Figure 3.14a reports the workout recognition results in a confusion matrix, and we 
observe low average recognition accuracy around .32% without opportunistic profile 
construction. By contrast, with the opportunistic profiles, the workout recognition 
results significantly improved from 32 to .92% as shown in the confusion matrix in 
Fig. 3.14b. This comparison further confirms the robustness of our system. 

3.7.7 Performance of Different Classifiers 

We further compare the DNN model with other four traditional classifiers, including 
k-nearest neighbors, decision tree (DT), random forest (RF) and support vector 
machine (SVM). Each classifier is evaluated using 10-fold cross-validation, and 
the parameters of each classifier are tuned to achieve the best performance. We 
can observe in Fig. 3.15 that the DNN-based classifier achieves the best workout 
recognition and individual identification accuracies among the five classifiers. As 
shown in Fig. 3.15a, for workout recognition, the other four classifiers have average 
accuracies of 87, 58, 79, .81%, respectively. And for individual identification 
accuracies as depicted in Fig. 3.15b, the four classification models have average 
accuracies of 90, 88, 83, .87%, which are less effective than the designed DNN 
model. Moreover, we observe that the DNN model obtains the lowest variances 
of . 3.1 and .1.9% for workout recognition and individual identification respectively. 
Thus, our DNN model maintain consistent performance in the cross-validation 
process. This is because the linear-classifiers fail to mitigate the impacts of non-
linear value variations introduced by propagation path changes. Therefore, we adopt 
the DNN model for both workout recognition and individual identification tasks in 
this work. 

3.8 Conclusion 

The propagation strength of waves between a transceiver pair is governed by the 
Fresnel zone. This zone comprises a sequence of concentric prolate ellipsoidal 
regions between a transmitting and receiving antenna. We designate the area within
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Fig. 3.14 Improvement of workout recognition accuracy with opportunistic profile construction. 
(a) Without opportunistic profiles. (b) With opportunistic profiles
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Fig. 3.15 Comparison of different classifier. (a) Workout recognition. (b) Individual identification
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the 12th Fresnel zone as the Sensitive Region. This is because RF signal transmission 
between a transceiver pair predominantly occurs within the first 8–12 zones [15]. 
The radius of the Fresnel zone at point p can be explicitly determined by: 

.rn =
/

nλd1d2

d1 + d2
, (3.6) 

where . rn is the radius of the nth Fresnel zone at point p, . λ is the wavelength, . d1
and . d2 are the distance from the transmitter and receiver to p, respectively. For a 
standard room dimension, we assume a user stands equidistant from both ends of 
the Line of Sight (LoS) path, such that .d1 = d2. In our system deployment within 
common living or office spaces, the distance from the user to any device is typically 
between 2 and . 4m. Using  Eq. (3.6), we derive . r12 (the radius of the .12th Fresnel 
zone) to lie between . 1.2 and .1.7m. This indicates that, for standard room sizes, the 
radius of the sensitive region is less than .1.7m.Moreover, in real-world settings such 
as offices and homes, which are frequently occupied by multiple individuals, the 
Channel State Information (CSI) dynamics related to one user’s workout pattern can 
be influenced by the daily activities of those around them. However, our theoretical 
analysis on the Fresnel zone suggests that interference from nearby individuals 
should be minimal, provided they move outside the designated sensitive region. 

In this chapter, we explore the potential of utilizing ubiquitous WiFi signals to 
enhance the effectiveness of exercise routines in home and office environments. 
Our objective is to provide users with personalized, detailed workout statistics, 
including workout type, number of sets, and number of repetitions, as well as 
dynamic assessments related to workout intensity and strength. In our research, 
we demonstrate that the widespread availability of WiFi signals can be leveraged 
to create a personalized fitness assistant suitable for individuals working from 
home or in office settings. To achieve this goal, we have developed a device-free 
personalized fitness assistant system that utilizes CSI (Channel State Information) 
measurements, which are readily obtainable from existing WiFi infrastructure. Our 
system not only provides fine-grained workout interpretation but also incorporates 
smart workout assessments. Specifically, our system employs a deep neural network 
(DNN)-based model to accurately interpret workouts and conduct comprehensive 
workout analysis. By extracting fine-grained latent representations, we are able to 
further differentiate individuals. Additionally, our system evaluates workout quality 
by analyzing both short-term and long-term performance, enabling users to receive 
valuable workout reviews. These reviews help users improve their subsequent 
exercises and minimize the risk of unnecessary injuries. To validate the effectiveness 
of our system, we conducted extensive experiments involving 20 volunteers across 
three typical indoor venues. The results of these experiments indicate that our 
system achieves high accuracy rates, with over 93% accuracy in identifying workout 
types and over 97% accuracy in associating individuals with their workouts, using 
only a single pair of WiFi transmitter and receiver. These promising outcomes
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suggest that our system has the potential to greatly enhance personalized fitness 
assistance, while also being adaptable to various application scenarios, ultimately 
benefiting people in their daily lives. 
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Chapter 4 
Multi-person Fitness Assistance via 
Millimeter Wave 

The next generation of WiFi incorporates integrated millimeter-wave technology, 
which leverages high-frequency radio waves in the millimeter range to enable 
wireless data transmission. The key advantages of mmWave over traditional WiFi 
frequencies (such as 2.4 and 5 GHz) are its wide bandwidth and directional 
characteristics. Recently, there is a growing trend in employing mmWave signals for 
fitness monitoring, driven by their wide bandwidth and directional characteristics. 
In this chapter, we present a millimeter-wave-based fitness monitoring system that 
offers personalized and environment-independent monitoring with reduced training 
requirements in a multi-person scenario. To address limited training data, we employ 
a GAN-assisted method that achieves satisfactory performance. Additionally, we 
develop a domain adaptation training framework to enhance system robustness and 
enable deployment in new environments with minimal training efforts. Our system 
utilizes a unique Spatial-Temporal Heatmap feature for personalized workout 
recognition and incorporates a point-cloud-based method for concurrent multi-
person workout monitoring. Extensive experiments demonstrate that our system 
achieves high accuracy in workout recognition and user identification. 

The rest of the chapter is organized as follows. We present a research background 
in Sect. 4.1 and discuss related work in Sect. 4.2. In Sect. 4.3, we provide a 
fundamental study of mmWave radar and its feasibility for fitness monitoring. We 
then proceed to present the design of the multi-person fitness assistant system 
via millimeter wave in Sect. 4.4. In Sect. 4.5, we describe the use of Generative 
Adversarial Networks (GAN) to reduce training efforts. Next, we elaborate the 
system implementation and provide system evaluation in Sect. 4.6. Finally, we 
discuss and conclude our work in Sect. 4.7. 
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4.1 Background 

Nowadays, many people perform physical exercises regularly at home for con-
venience, safety, and flexibility. Though there are various at-home workout and 
fitness programs available to help users achieve certain fitness goals, the lack of 
professional guidance and monitoring can make this process less effective. For 
example, you might not be able to do the exercises in correct positions and forms; 
your workout is not consistent or imbalanced between aerobic and strength training. 
Therefore, it is important to have an in-home fitness monitoring system that can 
track the exercise process of users and give them useful suggestions. 

Traditional camera-based fitness monitoring may raise serious privacy con-
cerns [3, 7], while sensor-based methods require users to wear dedicated devices [1, 
16]. Some researchers propose to utilize WiFi signals for non-intrusive fitness mon-
itoring [8, 27]. However WiFi signals are sensitive to interference and surrounding 
environment changes. In recent years, millimeter wave (mmWave) signals have 
emerged for activity recognition since they enable higher-resolution sensing given 
their short wavelengths and high bandwidths. In addition, mmWave has already 
been integrated into the next-generation WiFi standards (i.e., IEEE 802.11ad). 
For example, human skeleton systems are proposed to capture human postures 
[24, 31, 33]. However, these systems require extra cameras (e.g., Microsoft Kinect) 
to provide accurate joint locations. Moreover, some activity recognition systems 
have shown satisfying performance for one-person scenarios [23, 26, 29]. Since, in 
reality, multiple persons may be present in a shared space, a system suitable for 
concurrent workout scenarios is desired for fitness monitoring. 

Although mmWave has the potential to offer higher signal resolution comparing 
to traditional RF-based approaches, mmWave-based solutions still face technical 
challenges and obstacles for real deployment. First, existing mmWave-based meth-
ods need to collect enough amount of data for training machine learning models 
up to a satisfactory level of accuracy [2, 23, 31]. For example, they require users 
to repeat the activity moves many times. This makes it inconvenient and time-
consuming for practical usage. Second, the trained machine learning models are 
environment-specific and re-training processes are required before they can be 
applied to a new environment [18, 22, 24]. Third, even in the same environment, 
users can work out in different spots. These small changes in locations can have a 
significant impact on the system performance [14, 26]. In summary, it is essential to 
develop a multi-person fitness monitoring system robust of environmental variations 
with light efforts in training data collection. 

Toward this end, we design and develop a mmWave-based personalized fitness 
monitoring system using only a single COTS mmWave device. The system inte-
grates modules of workout recognition, user identification, multi-user monitoring, 
and training effort reduction. Specifically, our system records mmWave signals 
reflected from human bodies and captures fine-grained workout information, such as 
workout types, repetitions, and participants. For workout recognition and user iden-
tification, a new spatial-temporal heatmap is designed to capture workout dynamics
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using various activity characteristics (i.e., velocity, range of movements, and time 
duration). For multi-person monitoring, we utilize a clustering-based method to 
construct a spatial-temporal heatmap for each user based on the reflected signals. 
We then develop deep neural network models to extract unique high-dimensional 
features from the heatmaps to perform the workout and user identification tasks. 

In addition, we develop a generative adversarial network (GAN) to synthesize 
a large number of virtual workout segments based on a small number of segments 
collected from real users. By adding these virtual segments to training data sets, our 
system achieves better system performance. Furthermore, because in practice there 
are variations in users’ face orientations, locations, and environments (e.g., different 
rooms, furniture placements, etc.), we define these types of variations as domains 
and develop a domain adaptation framework to learn the domain-independent 
feature representations to improve the robustness of our system. We also design 
a method to mitigate environmental impacts and eliminate static components in 
the mmWave signals. This lays the groundwork for adapting the system to new 
environments. 

The contributions of this chapter are summarized as follows. We design and 
implement a fitness monitoring system using a single COTS mmWave device. 
The designed system integrates workout recognition, user identification, multi-
user monitoring, and training effort reduction modules. To reduce training efforts, 
we develop a domain adaptation framework that mitigates the impacts caused by 
domain characteristics embedded in mmWave signals, thus reducing the amount 
of training data needed from different domains. We also employ a GAN-assisted 
method to achieve better workout recognition and user identification when only 
limited training data from the same domain is available. For personalized workout 
recognition, we explore a unique spatial-temporal heatmap feature that integrates 
multiple workout features such as range of movement, velocity, and time duration. 
Additionally, we develop a clustering-based method to derive a spatial-temporal 
heatmap for each user, enabling multi-person workout monitoring. We implement 
a prototype of the system and evaluate its performance using 14 types of full-body 
workouts and over 7000 workout segments from various real-world scenarios. Our 
system achieves average accuracies of .97% in workout recognition and .91% in user 
identification with small training data (e.g. 10 repetitions per workout type). When 
training is performed with only one repetition per workout type, the accuracies 
moderately drop to .85% in workout recognition and .81% in user identification. 

4.2 Related Work 

In general, activity recognition and fitness monitoring systems can be classified into 
three categories: camera-based [3, 25], sensor-based [1, 16],and radio-frequency 
(RF) signal-based [8, 26]. In this part, we will review existing works and compare 
them with the designed mmWave-based fitness monitoring system.
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A couple of camera-based systems have been proposed to recognize human 
activities and perform fitness monitoring [3, 7, 25]. These works use cameras to 
capture images or videos and apply image-processing algorithms to extract motions 
or user identities. However, camera-based methods may raise privacy concerns. 
To address this weakness, sensor-based systems have been developed [1, 9, 16]. 
These works explore various non-intrusive sensors like gyrometer [9], ECG [16] or  
FSR sensor [1] to collect different types of signals for further analysis. However, 
sensor-based approaches require users to wear sensors or other devices, which is 
inconvenient for senior people or during complex activities. 

To overcome the above limitations, researchers recently propose to exploit 
RF-based methods (e.g., WiFi and mmWave). WiFi-based approaches [8, 27] 
use off-the-shelf WiFi devices to infer activities and users’ identifies. However, 
being easily influenced by surrounding environments remains the main limitation. 
Compared with WiFi signal, mmWave has been proven to be robust for activity 
recognition due to the antenna directionality and stability. Some researchers propose 
to build human skeleton systems to capture human postures [24, 31–34]. However, 
these systems require special cameras (e.g., Microsoft Kinect) to provide accurate 
joint locations. Extra devices requirements and privacy concerns might limit the 
widespread deployments of these approaches for in-home fitness monitoring. 
Besides, many activity recognition works have shown satisfying performance for 
single-user scenarios. [10, 12, 22, 23, 26, 28, 29]. However, multiple family members 
may perform workouts simultaneously in a shared space. Thus, a system that works 
in concurrent scenarios is desired for fitness monitoring. To address this weakness, 
researchers propose approaches [2, 11, 14, 18, 30] that could track multiple people 
simultaneously. However, these approaches usually require users to repeat dozens 
of times (e.g., 30 times) of the same gesture or activity in the training stage, which 
is time-consuming and labor-intensive to build a module including multiple types 
of workouts. Furthermore, training and testing data might be different in terms 
of people’s orientations, locations, and environments, thus requiring significant 
training efforts. In addition, it is still desired to have a system that could identify 
people along with activities to provide personalized fitness monitoring. Thus, 
existing mmWave-based approaches are not suitable for in-home fitness monitoring. 

Compared with existing work, our system enables low-effort personalized fitness 
monitoring using a single COTS mmWave device. We integrate multiple modules 
including workout recognition, user identification, multi-user monitoring, and 
training effort reduction into a single system. We develop a domain adaptation 
framework to reduce the efforts of training data collection from different domains 
and also develop a GAN-assisted method to achieve better performance. Further-
more, we design unique features to enable personalized workout recognition and 
develop a clustering-based method for multi-user monitoring.
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4.3 Millimeter Wave Fundamental and Preliminaries 

4.3.1 mmWave Radar Principle 

The millimeter-wave (mmWave) radar system is a critical technology employed 
for detecting and tracking objects using frequency-modulated continuous-wave 
(FMCW) signals. The particular operating range of these radar systems corresponds 
to the millimeter wavelength, enabling them to transmit and receive signals within 
the millimeter range, as documented by [21]. The central function of the mmWave 
radar system is the emission of distinctive signals termed as ‘chirps.’ A chirp is 
characterized as a sinusoidal wave, the frequency of which undergoes a linear 
increase over time. This property makes chirps highly beneficial for radar appli-
cations as they allow precise determination of range, velocity, and other attributes 
of detected objects. Each chirp’s properties can be defined using three primary 
parameters: bandwidth (B), duration (T c), and slope (S). The bandwidth of a chirp 
is the frequency range that it covers, which directly influences the resolution of the 
radar system. In contrast, the duration (T c) refers to the temporal length of a single 
chirp cycle. The slope of a chirp, on the other hand, delineates the rate at which 
the frequency of the chirp increases linearly over time. It is an important parameter 
that affects the separation between targets in the range and Doppler domains. Post 
transmission, the radar system waits for the return of these signals as they bounce 
off objects within the radar’s coverage area. The returned chirp, upon interception, 
is then mixed with a reference copy of the original transmitted signal. The mixing 
process involves combining the properties of the two signals to produce a resultant 
waveform known as the Intermediate Frequency (IF) signal, as explicated by [13]. 
The IF signal is instrumental in radar applications as it carries crucial information 
about the detected object, including its range and relative speed. By processing and 
analyzing this IF signal, the radar system can extract valuable insights about the 
surroundings, contributing significantly to applications like autonomous driving, 
weather radar, and air traffic control among others. 

To facilitate fitness monitoring via mmWave, we first need to understand how a 
target affects the IF signal. A target object in front of the radar produces an IF signal 
with a constant frequency tone of .2dS/c. The distance between the target and radar 
can be calculated as .fIF ·c

2·S , where c is the speed of light. Besides, the target with 
a moving speed v should have different phases across two consecutive chirps. The 
phase difference . ω measured across two consecutive chirps can be used to estimate 
the velocity of the object through . λ·ω

4π ·Tc
, where . λ is the wavelength. Furthermore, 

different distances from the object to different antennas on the radar result in phase 
differences. The measured phase difference . ω across different antennas can be used 
to estimate the AoA of the object using .sin−1 (

λ·ω
2πl

)
, where l is the distance between 

neighboring antennas.
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Fig. 4.1 Spatial-temporal heatmaps of three different workouts of two users 

4.3.2 Feasibility Study of Using mmWave for Fitness 
Monitoring 

To demonstrate the feasibility of fitness monitoring via mmWave, we conduct 
experiments with two participants performing different types of workouts (e.g., 
leg raises, squats, and crunches) in front of a mmWave device (i.e., AWR1642), 
respectively. Although we can measure the distance, velocity from mmWave signals 
separately, integrating multiple workout features to represent human dynamics is 
important since it exhibits the differences among various workouts more clearly. In 
this research, we develop spatial-temporal heatmaps to enable personalized fitness 
monitoring. As shown in Fig. 4.1, in a spatial-temporal heatmap, the horizontal axis 
represents the time duration of a workout repetition while the vertical axis represents 
the range of movement. The velocity is represented by color. We observe that 
spatial-temporal heatmaps of different workouts present different patterns, which 
demonstrate the feasibility of workout recognition. Moreover, comparing the first 
line and second line of Fig. 4.1, we also observe that when different people perform 
the same workout, spatial-temporal heatmaps would be different due to people’s 
various heights, strengths, and figures. This observation confirms the feasibility of 
using the designed heatmaps for personalized workout fitness monitoring. 

4.4 Multi-person Fitness Sensing System Design 

The main goal of this work is to perform personalized workout monitoring by 
examining the dynamics of mmWave signals. As shown in Fig. 4.2, our system takes 
as input the mmWave signals reflected from human body. It first performs signal
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Fig. 4.2 System overview of multi-person fitness assistance via millimeter wave 

processing to derive the velocity, distance, and AoA information of the users. Then, 
the system mitigates the impact from environments by subtracting signals reflected 
off static objects (i.e., tables and walls). To aggregate the spatial, temporal, and 
velocity features of human activities, we construct spatial-temporal heatmaps. Such 
signal representation integrates different activity characteristics (i.e., velocity, range 
of movements, and time duration) that facilitate both workout recognition and user 
identification. For multi-user monitoring, we utilize a clustering-based method to 
construct a spatial-temporal heatmap for each user based on the reflected signals. To 
detect workout activities from other daily activities, we design a workout detection 
method based on the repetitive velocity pattern of workouts in time domain. 

We develop deep learning models to perform workout recognition and user 
identification, respectively. An extractor is used to learn feature representations, 
which amplifies the distinctive workout or user characteristics. A classifier is then 
utilized to identify workout type or user identity. Furthermore, a domain adaptation
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framework is developed to handle the differences between training and testing 
datasets and enhance the robustness of our system. In addition, we develop a 
generative adversarial network (GAN) to enable better system performance when 
limited training data is available. We employ GAN to synthesize a large number of 
virtual workout segments based on a small number of segments collected from real 
users and improve the performance of our system by adding these virtual segments 
to the training dataset. 

4.4.1 Spatial-temporal Signal Representation 

Signal Preprocessing To capture fine-grained workout information, we first per-
form range-FFT and doppler-FFT signal processing on the raw data to derive 
distance and velocity measurements, respectively. Specifically, an FFT (i.e., range-
FFT) is performed on the received data to convert the time domain signal into 
the frequency domain signals which indicate different objects with various peaks. 
In order to detect the velocities of objects in the sensing area, we further apply 
another FFT (i.e., doppler-FFT) on the range-FFT signals. After that, we could 
derive a doppler-range heatmap, which shows the strength of the frequency response 
(indicated by color) and the velocity (doppler index) of the object at a specific 
distance (range index) of one frame. As shown in Fig. 4.3a, when a user is 
performing workouts in front of the device, the doppler-range heatmap could capture 
high-frequency responses. However, since static objects (e.g., furniture and walls) in 
the environments can also reflect mmWave signals, it is still hard to extract signals 
from humans. 

Environmental Impact Mitigation To mitigate the environmental interference, 
we develop an environmental impact mitigation method by filtering out non-moving 
objects in doppler-range domain. Specifically, when there is no user performing 
workouts in the detected area, we observe that the doppler-range heatmap of the 
static objects (e.g., walls and furniture) remains consistent over time as shown 
in Fig. 4.3b. This motivates us to mitigate static impact by subtracting the time-
invariant frequency responses. Specifically, we collect mmWave signals in a static 
environment for a short period (e.g., 1 min) to estimate the time-invariant frequency 
response from static objects. We further eliminate noise signals by removing 
frequency responses with low intensity from the dopper-range domain based on 
an empirical threshold. Through these procedures, as shown in Fig. 4.4a, it is clear 
to see the frequency responses caused by human activities in the denoised doppler-
range heatmap. 

Spatial-Temporal Heatmap Construction Although doppler-range heatmaps 
could capture velocity information in different ranges, it is insufficient to describe 
the process of the workout, because it does not contain temporal information, such 
as the time duration of each repetition and the velocity variations in time domain.
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Fig. 4.3 (a) Doppler-range heatmap when one user is performing workout in the detection area; 
(b) Doppler-range heatmap when no user is in the detection area 

To integrate multi-dimensional features, we propose to construct spatial-temporal 
heatmaps. Specifically, we accumulate the velocity of every distance in every 
doppler-range heatmap together as follows:



92 4 Multi-person Fitness Assistance via Millimeter Wave

Fig. 4.4 (a) Doppler-range heatmap after environmental impact mitigation; (b) Spatial-temporal 
heatmap of four repetitions 

.Vq,t =
D⎲

p=1

(Ip,q,t ) × vp,t , p ∈ [1,D], q ∈ [1, R], (4.1)
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where Ip,q,t is the intensity of a frequency response in the doppler-range heatmap, 
p is the doppler index, q represents the range index, and t is the frame index. vp,t is 
the velocity corresponding to a doppler index p in frame t. Then we normalize the 
derived Vq,t and transfer the original instantaneous velocity-distance relationship to 
a more comprehensive spatial-temporal heatmap which describes the process of a 
workout as shown in Fig. 4.4b. 

4.4.2 Clustering-based Separation of Multiple Users 

Multiple family members may perform workouts together in a shared space. In 
such cases, our system needs to be able to monitor multiple people’s workouts 
concurrently using a single device. This is challenging as the mmWave signals 
reflected from different peoples might be mixed. We take two users’ concurrent 
workouts as an example. When two people are performing workouts at the same 
distance to the mmWave device, the reflected signals from each person are hard to be 
differentiated in the range domain, because of the same measurements in distance. 
Thus, it is difficult to separate each user’s workouts based on their distance in the 
spatial-temporal heatmap. Furthermore, when users are performing workouts at the 
same time, it would be even harder to separate different users’ workouts because of 
the overlapped spatial-temporal heatmaps of two users. 

In developing a method to separate the reflected signals from different users, 
we find that when people perform workouts, each people should have their own 
space to allow every part of the body to move adequately. This makes the reflected 
signals from different people separable in the two-dimensional spatial Cartesian 
coordinate system. Based on this idea, in this section, we develop a clustering-
based method to achieve multiple people fitness monitoring based on different users’ 
spatial information as shown in Fig. 4.5. Specifically, we generate the point cloud 

Fig. 4.5 The flow of multi-user separation
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graph in the two-dimensional spatial Cartesian coordinate system via applying an 
FFT (angle-FFT) on the doppler-FFT signals. In particular, given a point in the 
doppler-range domain with range index q, doppler index p, measured distance d, 
and AoA (. θ ), taking the position of the device as the origin, we could derive the 
spatial coordinate of the point as follows: 

.

x(p,q) = d(p,q) × sin θ(p,q)

y(p,q) = d(p,q) × cos θ(p,q),
(4.2) 

where x and y are x-axis and y-axis coordinate, respectively. 
We accumulate the point cloud graphs of every frame in a sliding window 

(i.e., 10 s) and separate the accumulated point clouds into different clusters via an 
unsupervised clustering method (i.e., DBSCAN). It detects the number of users by 
counting the number of clusters in the detected area. When more than one cluster 
(the number of points in each cluster should be more than an empirical threshold 
.Pmax) are detected in the area, our system confirms the existence of multiple users. 
Next, for each cluster, we map all points in the cluster back to the doppler-range 
domain based on Eq. (4.2). A spatial-temporal heatmap for each user can be derived 
based on the doppler-range heatmap of every frame in the sliding window using 
Eq. (4.1). We note that this point cloud-based method could also be applied in 
more complex scenarios with more than 2 users since multiple users’ reflected 
signals can still be detected and separated in the spatial Cartesian coordinate 
system. 

4.4.3 Exercise Pattern Segmentation and Clustering 

After constructing spatial-temporal heatmaps for every user, we focus on distin-
guishing the workout from non-workout activities. There is an observation that 
workout activities usually have repetitive patterns in the spatial-temporal domain 
while non-workout activities do not. The reason is that fitness activities consist of 
consistent motions that usually be repeated multiple times. Based on the observa-
tion, we propose to detect workouts by searching for the repetitive patterns via a 
sliding window. Specifically, we accumulate the velocities from all the distances in 
a frame to transfer the spatial-temporal heatmap to one-dimensional data. Then, an 
auto-correlation-based method is used to find the repeating pattern by comparing the 
similarity with itself at a time lag. A peak (i.e., local maximum) detection algorithm 
is adopted with an empirical threshold (i.e., . 0.2) to derive the number of peaks N . 
The workout is detected within the specific sliding window (i.e., 10 s) when N is 
larger than .Nmin. We set .Nmin to be 5 in our prototype system [4]. 

To facilitate accurate workout recognition and user identification, we need to 
determine the segments of mmWave signals that only contain the repetitions of 
workouts. In this section, we determine each workout repetition according to their
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time duration and range of movement in the spatial-temporal heatmap. Specifically, 
we utilize a threshold to set the points in the heatmap with a low absolute velocity 
to zero. The threshold is selected from empirical studies. Then, we use DBSCAN 
to separate the points into different clusters based on the coordinates of the points 
in the heatmap. To segment each repetition more accurately, we design a dynamic 
segmentation algorithm that determines the 2D window size of each repetition 
according to its time duration and range of movement in the spatial-temporal 
heatmap. As shown in Fig. 4.4b, for each repetition, we find the coordinates of 
minimum and maximum points in the frame-distance plane. Then, we derive the 
window size based on the differences between the coordinates of the extreme points. 
We scale up the size of the window by a constant (i.e., . 1.2) which is empirically 
determined to ensure robustness. 

4.5 Reducing Training Effort 

4.5.1 Reducing Training Effort in Cross-domain Deployment 

To reduce the training efforts for cross-domain deployments and improve the robust-
ness of our system, we develop a domain adaptation framework. This framework 
uses the spatial-temporal segments obtained from previous processes as input. The 
data is first converted into a feature extractor. Based on the feature representations, 
a classifier is developed to predict the workout or corresponding user. To mitigate 
domain characteristics (e.g., user’s face orientation, location, and environment) 
embedded in feature representations, a discriminator that can differentiate domains 
is developed to help optimize the feature extractor. By optimizing the feature 
extractor to “fool” domain discriminator but also support workout/user classifier, 
the framework can facilitate the deployments across different domains and improve 
robustness. Figure 4.6 shows the structure of the proposed domain adaptation 
framework. 

Fig. 4.6 Domain adaptation framework for training effort reduction



96 4 Multi-person Fitness Assistance via Millimeter Wave

Designing Workout Recognition and User Identification Model The feature 
extractor has three convolutional layers, each with a .3 × 3 filter and a ReLU 
activation function. Each convolutional layer is followed by a max-pooling layer 
with a stride of 2 and a filter size of .2×2 to downsample and reduce data redundancy. 
After the process of 3 rounds of up-sampling and down-sampling, a 64-dimension 
feature map is obtained. Then, a flatten layer is integrated to reduce the feature 
map into a one-dimension array. Given an input data D, the feature extractor 
produces feature representations .R = F(D,Θf ), where F represents the feature 
extractor and .Θf represents its trainable parameters. Based on the derived feature 
representation R, a neural network consisting of two dense layers is followed to 
classify the inputs into several classes (e.g., different types of workouts). We train 
two classifiers with same structure to differentiate workouts and user identities, 
respectively. Given the input representation R, the classifier predicts the label as . Yc. 
We optimize the classifier by minimizing the cross-entropy loss between the ground 

truth . Ỹc and the predicted label . Yc as .Lc = LCE

⎛
Yc, Ỹc

⎞
, where .LCE represent the 

cross-entropy loss function. 

Domain Adaptation Training To reduce the amount of training data collected 
from different domains, we use domain adaptation training [6] to transfer our system 
to new domains. Specifically, we develop a domain discriminator to make the 
feature representations similar between different domains. The proposed domain 
discriminator consists of two dense layers. It takes the feature representations R 
as inputs and predicts the domain labels . Yd (e.g., original environment or a new 
environment). We optimize the discriminator with the cross-entropy loss between 

the ground truth domain . Ỹd and the predicted domain . Yd as .Ld = LCE

⎛
Yd, Ỹ '

d

⎞
. 

To make the extracted features domain-independent, we design an adversarial loss 
as .Ladv = Lc − λLd , where . Lc is the classification loss and . Ld is the discriminator 
loss. We set domain loss . Ld to negative since we would like to train the feature 
extractor to maximize the domain loss. The factor . λ is selected to control the balance 
between the transferability and distinguishability of the extracted features. 

4.5.2 Reducing Training Effort Using Generative Adversarial 
Networks 

In this part, we deveop a novel approach employing a Generative Adversarial 
Network (GAN) to significantly enhance user identification and workout recog-
nition, particularly in scenarios characterized by limited domain-specific training 
data availability. The use of GANs in the field of machine learning presents a 
powerful tool to generate synthetic data, thereby addressing data scarcity issues. 
Generative Adversarial Networks have been widely applied across a diverse range 
of applications, given their potent ability to model and mimic complex data 
distributions. From human identification [20] to sophisticated healthcare systems
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[5, 17], GANs have consistently demonstrated promising results, extending beyond 
traditional expectations and setting new benchmarks in the respective fields. One 
of the key features of GANs is their capacity for synthetic data generation, 
significantly reducing the required effort for model training. In our work, the 
primary focus is to exploit the capabilities of GANs to augment the training data 
specifically for workout recognition tasks. With the assistance of GANs, we aim 
to generate additional synthetic data instances that are representative of different 
types of workouts. This approach will considerably enrich our training dataset, 
thereby contributing to the development of a robust user identification and workout 
recognition system, especially in scenarios where data availability from the same 
domain is limited. 

Workout Data Generation Using GAN The GAN used in our work is composed 
of two sub-networks: a generator G and a discriminator D. As shown in Fig. 4.7, 
G aims to learn the distribution of the real workout segments to synthesize virtual 
data. D tries to discriminate whether a workout is real or synthesized. G and D 
compete with each other to achieve their goals, which leading to a two-player mini-
max game. The overall value function .V (D,G) is defined by: 

.min
G

max
D

V (D,G) = log(D(x)) + log(1 − D(G(n))), (4.3) 

where x represents a real workout, n represents a noise vector. .G(n) is synthesized 
workout generated by G. .D(·) is discriminator’s estimation that the data is a real 
workout. The basic training process of GAN is described as follows: G tries to 
maximize the probability that a synthesized workout is discriminated as real by 
minimizing the generator loss function .LG = − log(D(G(n))). On the other 
hand, D tries to maximize the probability that the real and virtual workout are 

Fig. 4.7 Structure of the GAN for workouts generation
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classified correctly by maximizing the discriminator loss . LD = − log(D(x)) −
log(1 − D(G(n))). G and D are trained in turn to optimize each other by updating 
parameters of their networks. The final state is a Nash equilibrium where the 
generated workouts are similar to the real ones, and the discriminator fails to identify 
whether the workouts are real or not. 

GAN Implementation and Visualization In the system, both G and D are 
implemented by convolutional neural networks (CNN). G has 5 transpose convo-
lutional layers. D has 6 convolutional layers followed by a flatten layer. After the 
competing of the generator and the discriminator, our GAN network eventually 
generate a large number of high-quality synthesized workouts. Even when users 
only perform a small number of repetitions in real-life scenarios, with the assistance 
of the generated workout dataset, the system can be well-trained offline and thus 
guarantee a good workout recognition and user identification performance online. 
To give an overall evaluation of the quality of the GAN-generated workouts, we 
generate virtual workouts based on a small number of real workouts (i.e., one 
repetition per workout type). Then we utilize t-SNE [15] to visualize the similarity 
between real and GAN-generated workouts. Specifically, GAN-generated and real 
workouts are firstly converted by the feature extractor. Then, t-SNE is applied to 
the extracted high-dimensional feature representations for dimension reduction. 
Finally, the feature embedding of each workout is obtained and illustrated in a 
2-D plane as shown in Fig. 4.8. We observe that the feature embedding of the 

Fig. 4.8 Distributions of real (circle) and generated (triangle) workouts. Each color represents one 
workout type
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GAN-generated repetitions overlap with the real ones from the same workout type 
but have no overlap with those from different types. This indicates that the GAN-
generated repetitions are similar to real repetitions and can increase the insufficiency 
of workout training data. 

4.6 System Implementation and Evaluation 

4.6.1 Experimental Setup 

mmWave Devices We build a prototype of the proposed system using a single 
mmWave device, TI AWR1642 [19], which integrates a .2 × 4 antenna array. 
The device operates in a frequency range between 77 and 81GHz. The sampling 
rate is fixed at 100 frames per second and each frame has 17 chirps. A TI 
DCA1000EVM [35] data capture card is used to collect data from the mmWave 
device and send data to a dell laptop for deep model inference. 

Fitness Data Collection We recruit 11 volunteers aged from 20 to 44 with various 
heights from 162 to 185 cm and weights from 50 to 86 kg. The volunteers are asked 
to perform 14 typical indoor workouts as shown in Table 4.1. The workout data are 
collected from four different environments (e.g., lounge, corridor, and classroom). 
We place the mmWave device on a table with a height of 60 cm and the ground 
truth videos are recorded by a camera. For multi-user scenarios, volunteers are 
randomly separated into different groups with size from 2 people to 4 people to 
perform workouts concurrently. During the workouts, all the volunteers are required 
to keep a reasonable distance from others (e.g., 3 m) to avoid physical touch. During 
an 8-month survey, we ask each of the volunteers to conduct 20 repetitions for each 
type of workout. Unless mentioned otherwise, 10 segments are used for training the 
model, and 10 segments are used to evaluate the performance. In total, we collect 
over 7000 segments from the volunteers. 

Evaluation Metrics To assess the efficacy of our system, we introduce the 
following evaluation metrics: Workout Recognition/User Identification Accuracy, 
which represents the likelihood that workouts or user identities are accurately 

Table 4.1 14 common 
in-home full-body workouts 

W1 Crunches W8 Squats 

W2 Elbow plank and reach W9 Burpees 

W3 Leg raise W10 High knees 

W4 Lunges W11 Turning kicks 

W5 Mountain climber W12 Chest squeezes 

W6 Punches W13 Side leg raise 

W7 Push ups W14 Side to side chops



Fig. 4.9 (a) Workout recognition performance of our system with sufficient training data (e.g., 
10 repetitions per workout); (b) Workout recognition performance without GAN-assisted method 
when only one real repetition per workout is available; (c) Workout recognition performance with 
GAN-assisted method
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Fig. 4.9 (continued) 

discerned by our system, and the Confusion Matrix, which offers a visualization 
depicting the percentage distribution of each workout identified, encompassing both 
the accurate workout and alternative possibilities. 

4.6.2 Performance of Workout Recognition 

We first examine the performance of our system for workout recognition. As 
demonstrated in Fig. 4.9a, when training data is sufficient (i.e., 10 repetitions per 
workout per user), our system can achieve an average workout recognition accuracy 
of .97.69%. Moreover, the recognition accuracy of all workout types is above .87.5%. 
However, in real-life scenarios, it is usually not practical to ask every user to perform 
large amounts of workout repetitions of every workout type. For example, when 
people could only provide a limited amount of repetitions (e.g., one repetition 
per workout type), a workout recognition system usually could not achieve good 
performance. In such condition, as shown in Fig. 4.9b, the system’s average workout 
recognition performance is .80%, and the average recognition accuracy for some 
workout types (i.e., w7, w10, and w13) is even lower than .65%.
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Fig. 4.10 Impact of the number of workout segments in training set (e.g., .1R + 9G represents 1 
real workout repetition with 9 synthesized repetitions) 

To deal with such conditions, we utilize GAN to generate a large number 
of virtual workout segments based on the limited amount of real workout data 
and utilize these segments to improve the capability of our system. As shown 
in Fig. 4.9c, with the GAN-generated workout segments, the workout recognition 
system could achieve better performance with an average accuracy of .85%. We  
also notice that the recognition performance for all 14 workouts is increased by 
at least . 3%. Some workouts (w3, w6 and w8) reach a performance of higher than 
.90% recognition accuracy. This result not only demonstrates that our system could 
achieve satisfying workout recognition performance with a small amount of real 
workout training data, but also proves the effectiveness of the proposed GAN-
assisted method. 

We further explore the minimum number of GAN-generated segments that the 
system needed to achieve satisfactory performance. Figure 4.10 shows that the 
average workout recognition accuracy (marked by red points) gradually increases 
from 74 to .79% when the number of GAN-generated segments of each workout 
category increases from 1 to 9. However, when more than 9 generated segments 
are added to the training dataset, the overall accuracy has no obvious further 
improvement. The result demonstrates that 9 GAN-generated repetitions for each 
workout/user category is sufficient for our system to achieve obvious performance 
improvements, thus we use 9 GAN-generated repetitions as our default settings. 

4.6.3 Performance of User Identification 

We then examine the performance of our system for user identification. As is shown 
in Fig. 4.11a, when training data is sufficient, the user recognition accuracy of all 
volunteers is higher than .83%. The average accuracy of all users is .92% and the 
highest accuracy can reach up to .98.33% (U2). We also notice that the performances 
for some users (e.g., U6) are slightly lower than others, this is because this user 
has similar body shape and workout patterns with other users. This result shows 
that our system can identify different users with high accuracy and thus supports 
personalized workout recognition.
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Fig. 4.11 (a) User recognition of our system with sufficient repetition training data (e.g., 10 
repetitions per workout); (b) User recognition without and with our GAN-assisted method when 
only one repetition per workout is available
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Similar to workout recognition, we further explore the user identification per-
formance of our system when only limited workout data is available. Specifically, 
we utilize only one repetition per workout per user to train the user classifier. In 
such conditions, the system only achieves an average user recognition performance 
accuracy of .72% (marked by the red point) as shown in Fig. 4.11b. However, with 
the proposed GAN-assisted method, the user identification performance of our 
system is boosted to an average accuracy of .81%. We also notice that the highest, 
median, and quartile values of user identification accuracy are all improved over 
. 5%. These results demonstrate that our GAN-assist method has the potential to be 
utilized in other RF-based recognition systems to achieve better performance. 

4.6.4 Performance of Multi-person Fitness Monitoring 

Multiple family members might perform workouts concurrently at home. Our 
system enables multi-user monitoring by using a clustering-based method. To 
evaluate the performance of our system for multi-user fitness monitoring, we ask 
multiple people with different group sizes (i.e., 2, 3, and 4) to perform workouts 
and present the result in Fig. 4.12a. Specifically, in two-user cases, when sufficient 
training data is available, our system could achieve a workout recognition accuracy 
of .95% and a user identification accuracy of .90%. When group size increase to three 
people, our system could achieve a workout recognition accuracy of .90.3% and user 
identification accuracy of .88.57%. Even when there are four people performing 
workouts concurrently, our system can still achieve workout recognition accuracy 
of .85.55% and user identification accuracy of .84%. This result demonstrates that 
our fitness monitoring system can be applied in family scenarios where generally 
there will be no more than 4 persons performing workouts together. 

Moreover, when family members could only provide a limited amount of 
repetitions, with the help of our GAN-assisted method, we still observe obvious per-
formance improvements of our system in different scenarios. As shown in Table 4.2, 
the workout recognition and user identification accuracy in three scenarios have 
an average improvement of .5.83% and .6.12%, respectively. This result proves 
that our GAN-assisted method facilitates the practicability of applying our system 
for family workout monitoring with low training efforts. We further evaluate the 
impact of distance among users in multi-person scenarios. We ask two volunteers 
to perform workouts concurrently with a distance of 2, . 2.5, and 3m between each 
other, respectively. As shown in Fig. 4.12b, our system achieves higher than . 90%
accuracy in both workout recognition and user identification for all 3 scenarios. 
Note that the distance among users is selected based on the workout type and the 
users’ heights to avoid touching each other.
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Fig. 4.12 (a) Workout recognition and user identification performance in multi-person scenarios 
with sufficient training data. (b) Impact of distance among users on workout recognition and user 
identification performance
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Table 4.2 The performance of workout recognition and user identification in multi-person 
scenarios when only one repetition per workout training data is available 

Two users Three users Four users Average improvement 

Workout recognition without 
GAN-assisted 

72.73% 69.62% 60.55% 5.83% 

Workout recognition with 
GAN-assisted 

77.00% 73.15% 70.25% 

User identification without 
GAN-assisted 

69.56% 69.18% 58.25% 6.12% 

User identification with 
GAN-assisted 

75.93% 71.66% 67.75% 

Fig. 4.13 (a) Different relative locations between the user and the device; (b) Different face 
orientations relative to the device 

4.6.5 System Transferability to Different User Locations 

People might have different locations relative to the devices between the training 
and testing datasets. We first evaluate the transferability of our system to different 
locations. Specifically, we set the point in front of the device with a distance of 
. 2.5m as the original point. We collect workout data from 6 new locations (i.e., 
each has a distance ranging from 15 to 90 cm to the original point) with an interval 
of 15 cm as shown in Fig. 4.13a. We use workouts collected at original point as the 
source domain and all the workouts collected at other locations as the target domain. 
In addition, to evaluate the transferability of our system to users’ different face 
orientations, we also set the direction that faces the device as the original orientation. 
The volunteers are asked to perform workouts at the same location with 7 different 
face orientations (i.e., . 0◦ to .90◦ with an interval of . 15◦) as shown in Fig. 4.13b. 
Workouts collected at . 0◦ are used as the source domain while workouts collected at 
other orientations are chosen as the target domain.
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Fig. 4.14 Different environments between the training and testing datasets 

We evaluate the performance of our system via training the deep learning 
model with workouts collected from the source domain and adapt the model to 
the target domain using the domain adaptation framework. For comparison, we 
also examined the deep learning model without domain adaptation. As shown 
in Fig. 4.15a, we observe that without domain adaptation, the performance of 
workout recognition is low (i.e., .75.25% across different locations and . 61.37%
across various orientations). Our domain adaptation framework boosts the system’s 
workout recognition performance on new locations and orientations to .89.5 and 
.84.45%, respectively. The result demonstrates that the proposed domain adaptation 
method can alleviate the impact of different locations/orientations between training 
and testing data on our system. 

4.6.6 System Transferability to Different Environments 

To evaluate the transferability of our system to different environments, we collect 
workout data from 4 different rooms with various furniture layouts: a lounge with a 
size of .7×4m2, a corridor with a size of .10×4m2, and two classrooms with the size 
of .6×8m2 and .10×10m2, respectively, as shown in Fig. 4.14. In each environment, 
the data are collected with the same location and face orientation relative to the 
device. Workouts collected in one environment is chosen as the source domain 
while workouts collected in another environment is selected as the target domain. 
We test all 6 source-target evaluation pairs and present the result in Fig. 4.15b. We
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Fig. 4.15 (a) Workout recognition without and with domain adaptation (DA) across different 
relative locations and face orientations; (b) Workout recognition without and with domain 
adaptation across different environments (e.g., A–B represents training data from Environment 
A and testing data from Environment B) 

observe that with the help of domain adaptation framework, our system achieves 
.86% workout recognition accuracy with an average .4% improvement compared 
with not using domain adaptation. We also note that our system still achieves good 
transferability across different environments even without using domain adaptation 
training which validates the effectiveness of our environmental impact mitigation 
methods. The above results show that our system can be easily deployed across
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different room environments. This type of flexibility is essential to the practical 
fitness system deployment in everyday life. 

4.7 Summary 

In this chapter, we present a novel multi-person fitness monitoring system that 
utilizes a single Commercial Off-The-Shelf (COTS) mmWave device. Our system 
seamlessly integrates several essential modules, including workout recognition, user 
identification, multi-user monitoring, and training effort reduction, into a unified 
framework. To address the issue of extensive training requirements, we have devised 
a domain adaptation framework that effectively reduces the need for collecting 
large volumes of training data from various domains. By mitigating the impact 
of domain-specific characteristics embedded in mmWave signals, our framework 
minimizes the data collection efforts. Furthermore, we have developed a GAN-
assisted method to enhance user identification and workout recognition even when 
the availability of training data from the same domain is limited. To achieve 
personalized workout recognition, we propose a novel spatial-temporal heatmap 
feature that seamlessly integrates multiple workout characteristics. Additionally, 
we have devised a clustering-based approach for concurrent workout monitoring, 
enabling efficient tracking and analysis of multiple workouts. Through rigorous 
experimentation involving 14 typical workouts with the participation of 11 indi-
viduals, we have demonstrated the effectiveness of our system. Remarkably, our 
system achieves an impressive accuracy of 85% and 81% for workout recognition 
and user identification, respectively, by utilizing just one sample of each workout 
and user. 
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Chapter 5 
Non-intrusive Eating Habits Monitoring 
Using Millimeter Wave 

The potential applications of mmWave technologies are vast and diverse. In 
this chapter, we aim to explore the feasibility of harnessing millimeter wave 
technology as an unobtrusive method for eating habits monitoring. The significance 
of maintaining good health is intrinsically linked to dietary habits. An unhealthy 
diet can be a precursor to an array of health complications such as obesity, 
diabetes, heart diseases, and an increased risk of cancers, etc. To aid individuals 
in keeping track of their dietary behaviors, it is crucial to implement an effective 
monitoring system. However, conventional sensor-based and camera-based dietary 
monitoring systems have limitations. They either require users to wear specialized 
devices, or might raise privacy concerns. Similarly, while WiFi-based methods 
have demonstrated reasonable performance in specific cases, they have their own 
set of constraints. Wireless signals often carry environment-specific information, 
thereby impacting the accuracy of monitoring eating activities. To overcome these 
challenges, we propose to implement a millimeter wave-enabled eating behavior 
monitoring system that operates independently of any environment. Our system 
introduces an innovative approach that mitigates the influence of the surroundings 
by analyzing mmWave signals in the Doppler-Range domain. This allows us to 
achieve meticulous monitoring of eating behaviors, facilitated by the construction 
of a Spatial-Temporal Heatmap through the integration of multiple measurements. 
Consequently, we can differentiate between dietary activities performed with 
various utensils such as forks, knives, spoons, chopsticks, or even bare hands. 
Moreover, we leverage unsupervised learning-based 2D segmentation and an eating 
period derivation algorithm to accurately estimate the duration of each eating 
activity. Additionally, our system showcases the potential to infer food categories 
and determine eating speed. Extensive experiments involving over 1000 eating 
activities demonstrate the effectiveness of our system, achieving high accuracy in 
dietary activity recognition with a low false detection rate. 

The reminder of this chapter is organized as follows. We present the research 
background in Sect. 5.1, followed by a review of existing work in Sect. 5.2. In  
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Sect. 5.3, we discuss the system design for non-intrusive eating habits derivation 
using millimeter wave. Subsequently, Sect. 5.4 provides detailed information on 
environment-invariant eating monitoring. The system implementation and evalua-
tion will be covered in Sect. 5.5. Finally, we conclude the chapter with a summary 
in Sect. 5.6. 

5.1 Background 

Dietary is an important activity in people’s daily lives since it is closely related to 
individuals’ health conditions. Centers for Disease Control and Prevention (CDC) 
shows that an unhealthy diet can cause obesity, diabetes, heart diseases, as well as 
increase the risk of over 13 types of cancers [2]. A recent study [3] has shown that 
unhealthy diet contributes to approximately 678,000 deaths each year in the U.S. 
Thus, it is necessary to develop a monitoring system that can help individuals keep 
tracking their dietary behaviors and offer them useful suggestions. 

Eating behavior monitoring can provide essential information (e.g., food cat-
egories, eating speed) for dietary behavior analysis and provide useful recom-
mendations if poor dietary behaviors are detected. Traditional eating monitoring 
systems [4, 7] use cameras to take images or videos of users to track their dietary 
information. However, those vision-based methods may raise potential privacy 
concerns from collecting images or videos of users. In contrast, recent studies [1, 13] 
propose to use wearable sensors for dietary monitoring. Though sensor-based 
methods do not raise privacy concerns, they require users to wear one or multiple 
sensors during eating. Therefore, this kind of methods is not only inconvenient but 
also impractical. 

All the aforementioned shortcomings of existing systems contribute to the 
emergence of device-free monitoring systems such as WiFi-based methods. Lin 
et al. propose WiEat [5], which utilizes channel state information extracted from 
WiFi devices to recognize different dietary activities. However, as WiFi signals 
are sensitive to surrounding environments and are vulnerable to interference, more 
stable and stronger signals are desired for eating monitoring tasks. Recent years 
have witnessed the success of using mmWave signals for posture estimation [8] 
or activity recognition [9]. This is because mmWave signals have more stable and 
higher-resolution with shorter wavelengths and stronger directivity. In this chapter, 
we propose to design an eating behavior monitoring system via mmWave techniques 
which have already been integrated into the new generation WiFi standards (i.e., 
IEEE 802.11ad). 

In order to utilize mmWave signals for eating behavior monitoring, several 
challenges should be addressed in practice. First, people usually eat in different 
places (e.g., dining room, living room) every day. Traditional WiFi-based eating 
monitoring systems that are trained in a specific environment will typically not 
work well when being applied in a different environment. To solve this problem,
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in this work, we propose an environmental impact mitigation method by subtracting 
the static component from every frame in the Dopper-Range domain. Our eating 
monitoring system is environment-invariant and can be applied to new environments 
without extra training. Moreover, in the real world, people might perform non-
eating activities throughout the day. Hence, we develop a dietary activity detection 
method to detect eating activities automatically based on the repetitive velocity 
pattern of eating activity in the time domain. Furthermore, fine-grained eating 
behavior monitoring requires differentiation among eating activities with various 
utensils (e.g, eating with a fork or spoon). However, different dietary activities 
are hard to be distinguished since they all involve hand movements with similar 
ranges. To address this problem, we construct Spatial-Temporal Heatmap by 
integrating velocity information from every distance measurement in the Doppler-
Range domain and combining them with time information. Besides, we utilize 
an unsupervised learning-based 2D segmentation algorithm to facilitate accurate 
dietary activity recognition. We further develop a deep neural network to extract 
the unique characteristics of every eating activity and classify them based on the 
utensils used (i.e., fork, fork&knife, spoon, chopsticks, bare hand). In addition, to 
further derive detailed dietary behavior information, we estimate the eating period 
of every eating activity and infer the eating duration and speed of meals. 

The contributions of this chapter are summarized as follows. As far as we know, 
our system is the first eating behavior monitoring system using a COTS mmWave 
radar sensor. Our proposed system constructs unique environment-invariant Spatial-
Temporal signal representations that integrate velocity, time duration, and range 
of movement information. It has the capability of eliminating environmental 
impact from static objects and differentiating eating activities from daily activities. 
Additionally, we develop a fine-tuned deep neural network to facilitate accurate 
dietary activity recognition. Extensive experiments involving six individuals and 
over 1000 eating activities demonstrate that our system achieves dietary activity 
recognition with an average accuracy of 97.5% and a false detection rate of 5%. 

5.2 Related Work 

Traditional eating monitoring systems widely use Vision-based methods [4, 7]. Such 
methods use cameras to take images or videos when users eat meals for further 
analysis. DietCam [4] exploits photos or videos taken by commercial mobile devices 
to perform dietary monitoring. Another system developed by O’Loughlin et al. [7] 
exploits Microsoft SenseCams to capture videos and estimate the dietary energy 
intake. Such vision-based methods usually raise potential privacy concerns since 
the camera may capture users’ private information such as social relationships and 
location privacy. 

Some existing work tend to use wearable sensors for dietary monitoring to avoid 
potential privacy concerns in vision-based methods. Amft et al. [1] use a condenser
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microphone to detect air-conducted vibrations caused by chewing to determine food 
textures. Zhang et al. [13] propose an accelerometer-based wearable device attached 
to users’ wrists to detect eating activities based on the three-dimensional kinematics 
movement model. Though sensor-based methods may not have privacy concerns, 
users are required to wear one or multiple sensors during eating. Therefore, they are 
both inconvenient and impractical. 

Recently, radio frequency (RF) signals have been proposed to address the above 
limitations. As a prevalent RF sensing modality, WiFi signals have shown initial 
success in many activity recognition applications. Wang et al. develop E-eyes [12], 
which exploits WiFi signals to provide device-free human activity identification. 
Lin et al. develop WiEat [5] that can achieve high accuracy in device-free dietary 
monitoring using commercial WiFi devices. However, WiFi-based methods are sen-
sitive to environmental changes. Millimeter wave (mmWave) has been proven more 
robust than WiFi due to its high bandwidth and native beam-forming technology. 
Existing mmWave-based systems like [8] and [9] often focus on posture estimation 
or activity recognition. None of them show that their system can distinguish eating 
activities with minute differences in hand or finger movements and provide fine-
grained analysis of eating activities. This chapter develops a system leveraging 
mmWave signals from commodity mmWave devices to provide fine-grained dietary 
monitoring. 

5.3 Non-intrusive Eating Habits Monitoring System Design 

The goal of our system is to provide environment-invariant fine-grained eating 
behavior monitoring by leveraging a single commercial mmWave device. Toward 
this end, we develop a low-cost mmWave-based eating behavior monitoring system. 
The system takes as input the mmWave signals reflected from the human body. The 
system first performs signal processing to derive the velocity, distance information 
of the user’s activity from the received mmWave signals. Then, it eliminates the 
impact from environment by subtracting signals reflected off static objects. Next, 
we construct Spatial-Temporal Heatmap to aggregate the instantaneous velocity 
from every distance measurement in the Doppler-Range domain and combine them 
with time information. Such integrated multidimensional signal representation can 
facilitate fine-grained activity recognition. We propose a dietary activity detection 
method based on the repetitive eating activity patterns in the time domain to detect 
dietary activities based on the Spatial-Temporal signal representation. To further 
differentiate eating activities, we apply DBSCAN [10] to cluster and segment each 
activity, and develop a deep neural network to identify them. The last component of 
our proposed system is eating period monitoring which estimates the eating period 
of each eating activity. Such information is useful to assist various health-related 
problems, such as diabetes, heart diseases, etc. The overview of the proposed system 
is shown in Fig. 5.1.
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Fig. 5.1 System overview of eating habits derivation using millimeter wave 

5.4 Environment-invariant Eating Monitoring 

5.4.1 Spatial-temporal Signal Representation and Heatmap 
Construction 

Signal Preprocessing We first perform range-FFT and Doppler-FFT on the 
received mmWave signals to derive the distance and velocity information of a 
user’s activity respectively. Then, we derive the Doppler-Range Heatmap based on 
the instant velocity and distance measurements. As shown in Fig. 5.2, the heatmap 
indicates the strength of frequency responses of the reflected signals via the color. 
However, since static objects (e.g., furniture and walls) in the environments can 
also reflect mmWave signals, it is still hard to extract signals from the human in the 
Doppler-Range Heatmap. 

Environmental Impact Mitigation To eliminate the environmental impact men-
tioned above, we propose an environmental impact mitigation method by filtering
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Fig. 5.2 Doppler-Range Heatmap when one user is eating using a fork 

out non-moving objects in Doppler-Range domain. We note that the frequency 
responses of the mmWave signals reflected from static objects in the environment 
(e.g., walls and furniture) do not change over time. Therefore, we can eliminate the 
impact caused by static objects by subtracting the time-invariant frequency response 
from the Doppler-Range Heatmap. In particular, we collect mmWave signals in a 
static environment for a short period (e.g., 3 min) and derive the Doppler-Range 
Heatmap to estimate the time-invariant frequency response. 

Spatial-Temporal Heatmap Construction Although the denoised Doppler-Range 
Heatmap can capture the instant velocities at different distances, it is not enough to 
describe the process of the dietary activities. We propose a more comprehensive 
signal representation by constructing the Spatial-Temporal Heatmap that contains 
the temporal information of eating activities (e.g., time duration of each activity 
and variation of velocity with time). Specifically, we accumulate the velocity 
measurements of each distance in every Doppler-Range Heatmap frame and then 
present their dynamics in the time domain as follows: 

.Vq,t =
D⎲

p=1

(fp,q,t ) × vp,t , p ∈ [1,D], q ∈ [1, R], (5.1) 

where fp,q,t is the strength of a frequency response in the Doppler-Range Heatmap, 
p is the doppler index, q is the range index, t is the frame index, and vp,t is the 
velocity corresponding to a Doppler index p at frame t . Then we normalize the 
derived Vq,t to [−1, 1] and map the original 2-dimensional Doppler-Range data to a 
more comprehensive 3-dimensional Spacial-Temporal Heatmap, which presents the 
process of the eating activities as shown in Fig. 5.3.
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Fig. 5.3 Spatial-Temporal Heatmap of four eating activities using a fork 

5.4.2 Dietary Activity Detection and Classification 

Dietary Activity Detection After constructing Spatial-Temporal signal representa-
tions from mmWave signals, we perform the dietary activity detection to determine 
whether the mmWave signals contain dietary activities or not. We find that dietary 
activities usually have repetitive patterns in the Spatial-Temporal domain while non-
dietary activities do not. The reason for this observation is that dietary activities 
consist of repetitive hand and arm movements that bring food to the mouth from the 
table. As a result, we propose to detect dietary activities by searching the repetitive 
patterns in the Spatial-Temporal Heatmap using a sliding window. Particularly, we 
accumulate the velocities from all the distances at a particular time in a frame 
to transfer the heatmap to one-dimensional data. We use an autocorrelation-based 
method to determine whether the mmWave signals contain a repetitive pattern or 
not. We empirically determine that a dietary activity is detected when the number of 
peaks in the autocorrelation results is more than five. 

Dietary Activity Clustering and 2D Segmentation Once a dietary activity is 
detected, the system performs the dietary activity segmentation to focus on the 
signals related to dietary activities. The basic idea is to determine each dietary 
activity’s time duration and range of movement in the Spatial-Temporal Heatmap. 
We first remove the points with low absolute velocity from the heatmap based on 
an empirical threshold. Then, we utilize an unsupervised learning-based clustering 
method (i.e., DBSCAN) to separate the points into different clusters. We design a 
dynamic algorithm to determine the 2D window size of each activity based on its 
time duration and range of movement. Particularly, for each cluster, we determine 
the window size based on the differences between the coordinates of the edge points
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in the Spatial-Temporal plane. The box in Fig. 5.3 illustrates the 2D segmentation 
results of our algorithm. In addition, we scale up the size of the window by an 
empirical constant (i.e., 1.2) to ensure that it contains all the signals related to dietary 
activities. 

Deep Learning-based Classifier Design We choose to use neural network-based 
method for final classification since it has shown robust performance in image 
classification tasks [11]. The segments derived by the proposed segmentation 
method are first resized to images with size of 224 × 224. Our convolutional 
neural network contains nine layers. Three convolutional layers are exploited for up-
sampling, three Max Pooling layers with each follows a convolutional layer are used 
for down-sampling. After the process of three rounds of up-sampling and down-
sampling, a 64-dimensional feature map is obtained and a flatten layer is followed 
to reduce the feature map into a one-dimension array. Two dense layers at the end 
of the network will classify arrays into five categories, each category is mapped to a 
specific dietary activity. 

5.4.3 Eating Period Monitoring 

Researchers [6] have demonstrated that the speed of eating is an important factor 
for weight control. People eating quickly have a significantly higher possibility to 
develop obesity. The basic idea of eating period monitoring is to derive the accurate 
time duration of each eating activity and infer detailed eating information (e.g., 
eating period of a meal, eating speed). Given this objective, we propose an eating 
period derivation method. We infer the time duration of each eating activity based 
on calculating the interval with neighboring activities. Specifically, as shown in 
Fig. 5.3, we determine the beginning of each eating activity by searching the time 
stamp of the left edge from the 2D segmentation box. We then estimate the eating 
period of each eating activity based on the differences between consecutive time 
stamps. By estimating the time duration of each eating activity, we could further 
infer the accumulated eating period using specific utensils during a meal, which 
could be used to estimate other high-level information such as the calorie intake 
and nutrition balance. In addition, the number of eating activities during a meal and 
average eating period could also be used to detect poor dietary behaviors of users, 
such as overeating and eating too quickly. 

5.5 System Implementation and Evaluation 

5.5.1 Experimental Setup 

mmWave Devices In our experiments, we use a single TI AWR1642 commercial 
mmWave radar equipped with a .2 × 4 antenna array. The radar operates at a
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Fig. 5.4 Experiment setup 

frequency band between 77 and 81GHz with a sampling rate fixed at 100 frames 
per second. All devices are attached to a DELL G3 laptop for deep learning model 
inference. 

Data Collection We conduct our experiments by recruiting 6 volunteers (age from 
22 to 40). The profiles are collected at an office with a size of 5×3 m2. A total of five 
typical eating activities are performed by the volunteers. Over 1000 eating activity 
data are collected and the ground truths are measured and verified by camera-
based method during the experiments. As is shown in Fig. 5.4, we totally test three 
different positions and three distances (1, 1.5 and 2m) to evaluate impact of device 
positions and distances. For the evaluation of environment impact, we collect data 
under three different environments: (a). a lounge with a size of 4 × 4 m2; (b). a  
corridor with a size of 5 × 9 m2; (c). a classroom with a size of 9 × 15 m2. 

Evaluation Metrics We define four different evaluation metrics: Dietary Activity 
Recognition Accuracy which is the percentage of predicted dietary activities that are 
correctly recognized among all activities, False Detection Rate (FDR) defined as the 
ratio between the number of incorrectly classified activities and the total number of 
activities, Confusion Matrix presenting the percentage of a specific activity being 
identified among all the activities, and Estimated Error defining the difference 
between the estimated eating duration and actual eating duration for a single dietary 
activity. 

5.5.2 Performance of Dietary Activity Classification 

In this section, we first compare the overall performance of the proposed CNN-
based classification method with traditional classifiers. Figure 5.5 demonstrates the
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Fig. 5.5 Confusion matrix of dietary activity classification using CNN-based classifier 

Fig. 5.6 Performance Comparison among four traditional machine learning and CNN-based 
classifier 

overall recognition accuracy and FDR of five classifier. Our CNN-based method 
outperforms all four traditional methods and achieves .96.78% in recognition 
accuracy and .3.3% in FDR. We then show the dietary activity classification for five 
activities. As shown in Fig. 5.6, the recognition accuracy for all activities are higher 
than .90%. The accuracy of using bare hand is a little lower than other activities, 
because the body movement of using bare hand is similar to that of using spoon,
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Fig. 5.7 Impact of environment on system performance 

which may cause some confusion to the classifier. The result confirms that our CNN-
based classifier can achieve robust performance in dietary activity classification. 

5.5.3 Impact of Different Environments 

We then evaluate the impact of different environments on system performance. 
In particular, we collect data from three different environments mentioned in 
Sect. 5.5.1. We use data from one environment as the training set and data from 
the other two environments as the testing set and try different training-testing pairs. 
As demonstrated in Fig. 5.7, all of the training-testing pairs achieve classification 
accuracy over 88% and with FDR below . 9% even the training set and testing set are 
collected from different places. This result proves that our system is able to offer 
domain-invariant performance under different environments. 

5.5.4 Impact of Monitoring Device Positions 

Different positions of the device may affect the accuracy of dietary activity 
classification. We study the impact of device position on our CNN-based classifier. 
We evaluate three positions demonstrated in Fig. 5.4. As shown in Fig. 5.8, at all  
three positions, our system maintains an FDR lower than . 4%. The accuracy of 
position P1 and position P2 are slightly lower than that of default position S.
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Fig. 5.8 Impact of different positions of mmWave device in office 

This is because when the device is located at a position not facing the user, user’s 
arms are parallel to the device, causing weaker Doppler effects and vaguer Spatial-
Temporal Heatmaps. But our system still maintains an accuracy over .94%. The  
result proves that our system can still maintain a good performance in dietary 
activity classification even the device is situated at different positions. We also 
test the system at three distances (i.e., 1, . 1.5, 2m) at position S and find that the 
performance is not affected. 

5.5.5 System Performance of Eating Period Estimation 

We next evaluate the performance of eating period estimation for different food 
intake activities. In our experiments, each of the 5 activities is performed 160 
times and we collected 800 eating activities in total. As shown in Fig. 5.9, the  
average estimated error (indicated by red points) of using fork, fork&knife, spoon, 
chopsticks and bare hand are 67, 88, 141, 67 and 124ms, respectively, which are all 
within 150ms. Additionally, the estimated error for all the collected activities are all 
smaller than 400ms. The results demonstrate that our proposed system can precisely 
estimate eating period and maintain a low estimated error for different activities. 
Furthermore, by calculating the average time duration of each eating activity, we 
can estimate users’ eating speed and infer high-level information such as calories 
intake or analysis of nutritional balance. The detailed dietary information can be 
further used to assist the healing of various health problems caused by bad eating 
habits.
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Fig. 5.9 Comparison of eating period estimated error 

5.6 Summary 

In this chapter, we demonstrate the feasibility of using mmWave signals for 
detailed dietary behavior monitoring. Our proposed system utilizes a CNN-based 
approach, exhibiting robustness to varied environments without necessitating addi-
tional training. By providing a comprehensive understanding of eating behaviors, 
the system equips users with insights to rectify unhealthy dietary habits. The 
extensive experimental results affirm the efficacy of our system, with an average 
accuracy exceeding 97.5% in dietary activity recognition and a false detection rate 
of less than 5%. 
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Chapter 6 
Fitness Assistance Using Motion Sensor 

Motion sensors are now a standard feature on most wearables and smartphones, 
providing a consistent and portable tracking solution across diverse settings even in 
varied environments. Acknowledging the transformative impact of these sensors in 
enhancing users’ lifestyles (e.g., sleep monitoring and running rhythm tracking), 
this chapter explores a virtual fitness coach leveraging users’ wearable mobile 
devices (including wrist-worn wearables and arm-mounted smartphones) to assess 
dynamic postures (movement patterns and positions) in workouts. Our system aims 
to help users achieve effective workout and prevent injury by dynamically depicting 
the short-term and long-term picture of their workout based on various sensors in 
wearable mobile devices. In particular, the system recognizes different types of exer-
cises and interprets fine-grained fitness data (i.e., motion strength and speed) to an 
easy-to-understand exercise review score, which provides a comprehensive workout 
performance evaluation and recommendation. The system has the ability to align the 
sensor readings from wearable devices to the human coordinate system, ensuring 
the accuracy and robustness of the system. Extensive experiments with over 5000 
repetitions of 12 types of exercises involve 12 participants doing both anaerobic and 
aerobic exercises in indoors as well as outdoors. Our results demonstrate that our 
system can provide meaningful review and recommendations to users by accurately 
measure their workout performance and achieve .93% accuracy for workout analysis. 

The reminder of this chapter is organized as follows. In Sect. 6.1, we present the 
research background. In Sect. 6.2, we review existing work in the field. Section 6.4 
discusses the system design for fitness assistance using motion sensors. Section 6.5 
provides detailed information on system implementation. The system evaluation 
will be covered in Sect. 6.6. Finally, we conclude the chapter with a summary in 
Sect. 6.7. 
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6.1 Background 

The proliferation of wearable mobile devices (e.g., smartwatches, wrist-worn fitness 
bands, and smartphones mounted on arms) has already shown its potential on 
improving our life styles through a great number of applications in smart healthcare, 
smart home, and smart cities. An important use case of wearable mobile devices 
is providing guidelines to improve people’s daily activities, for example, tracking 
walking steps [13], monitoring sleep qualities [9], and estimating daily caloric 
intake [10]. In this work, we take one step further by answering the question: 
Whether such wearable mobile devices become powerful enough in leveraging fine-
grained sensing information to perform systematic comprehensive fitness assistance 
and prevent injuries. 

Traditionally, fitness monitoring is performed by analyzing the workout captured 
by video tapes [2] or specialized sensors [3, 4]. Chang et al. [3] track free-
weight exercises by incorporating an accelerometer into a workout glove. Cheng 
et al. [4] develop a technique that can recognize human activities by attaching 
a sensor on users’ hips. In recent years, smartphone apps, fitness trackers and 
dedicated devices, such as Sworkit (http://sworkit.com/), Fitbit (https://www.fitbit. 
com/), Garmin watch (http://www.garmin.com/en-US/) and Gym watch (https:// 
www.gymwatch.com/), show the initial success of fitness monitoring. They can 
perform step counts and log exercises based on users’ manual inputs. Additionally, 
people need to purchase dedicated sensors and wear them during exercises. Hao 
et al. [7] present a system using smartphone and its external microphone that 
detects running rhythm and improves exercise efficiency for runners. Yet the 
question whether or not mobile devices can automatically distinguish different 
types of exercises and provide fine-grained performance recommendation related 
to exercises remains open. 

Toward this end, we search for an integrated mobile solution that can perform 
systematic fitness monitoring and performance review. We propose leveraging 
wearable mobile devices to achieve the following two main aspects: 

(i) Fine-grained Fitness Data Interpretation. Recording the sensor readings on 
wearable mobile devices (e.g., smartwatch or smartphone) during workout to 
explore their capability of deriving fine-grained exercise information including 
exercise types, the number of set and the number of repetitions (reps) per set. 
The derived quantitative data can be further analyzed for inferring meaningful 
information. For example, higher level information can be obtained including 
calories burn, body fat, body mass index, etc. 

(ii) Smart Exercise Guidance. Furthermore, the derived fitness data is of great 
importance to assist the users to maintain proper exercise postures and avoid 
injuries. To build muscles and gain a healthier body, it is widely recognized that 
people should perform their workout properly and effectively. Our system aims 
to not only regulate the workouts by following the Frequency, Intensity, Time 
and Type (FITT) principle [1], but also provide detailed guidelines to review the 
user’s posture through workout and provide recommendation in keeping correct 
exercise form (e.g., in terms of speed of exercise execution and strength).

http://sworkit.com/
http://sworkit.com/
http://sworkit.com/
https://www.fitbit.com/
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http://www.garmin.com/en-US/
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http://www.garmin.com/en-US/
http://www.garmin.com/en-US/
https://www.gymwatch.com/
https://www.gymwatch.com/
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In particular, the system exploits Short Time Energy (STE) to derive fine-
grained fitness data (i.e., strength and speed of body movements) in exercises and 
recognizes different types of exercises automatically by using embedded sensors 
(e.g., accelerometer and gyroscope) on wearable mobile devices. Rooted in the 
understanding of body movements in exercises, our system develops a novel metric 
for evaluating the quality of each user’s exercises, exercise-form score. This score 
reflects the difference of strength and speed of body movements between each 
repetition of an exercise based on a reference profile. The reference profile could 
be either obtained from the user’s own sensor data or built from other people’s 
data (e.g., training coaches or members from the same fitness club) through 
crowdsourcing platforms (e.g., fitness club’s facebook, WhatsApp or WeChat). 

The contributions of our work are summarized as follows. Our system aims to 
provide comprehensive benefits for workout analysis and performance evaluation. 
It includes assessing dynamic postures automatically during both anaerobic and 
aerobic exercises, achieving precise exercise recognition without user involvement, 
calculating exercise form scores, and offering performance reviews to enhance 
the quality of workouts and prevent injuries in the short and long term. To 
ensure accurate recognition, the sensing data is aligned into the human coordinate 
system, accommodating different device and exercise orientations. The system’s 
performance has been demonstrated using smartwatches and mobile phones in 
armbands, achieving an high accuracy of for workout analysis in various gym and 
outdoor settings. 

6.2 Related Work 

Recent studies show that life experience can be improved through implementing var-
ious types of techniques using sensors and wireless technologies including activity 
recognition [4, 11, 12, 15, 17, 18] and physical exercises monitoring [3, 6, 7, 11]. 

There has been active work for activity recognition, including daily activities [4, 
11, 17] and healthcare related activities such as eating [15] and smoking [12]. 
Vlasic et al. [17] develop a full body motion capture system by using multiple 
sensors attached on a human body. Cheng et al. [4] develop a technique that can 
recognize activities without training by placing a sensor on users’ hips. These 
studies show that either external sensors or sensors embedded in wearables have 
the capability to accurately recognize human daily activities. Furthermore, video-
based technologies can capture and recognize human hand motion [14] but require 
line-of-sight. 

Another aspect of related studies focus on automatically monitoring physical 
exercises. There are mobile Apps (http://sworkit.com/), wristband (https://www. 
fitbit.com/) and solutions based on mobile devices with sensors [3, 6, 7, 11]. 
Chang et al. [3] propose to track free weight exercises by incorporating an 
accelerometer into a workout glove. In addition, Ding et al. [6] propose to recognize 
free-weight activities by attaching passive RFID tags on the dumbbells. Along this

http://sworkit.com/
http://sworkit.com/
http://sworkit.com/
(https://www.fitbit.com/)
(https://www.fitbit.com/)
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line, Hao et al. [7] propose to monitor the running rhythm by measuring breathing 
and strides with headsets and smartphones. These techniques rely on additional 
sensors or specific hardware. Most importantly, whether a workout feedback and 
guidance can be further provided to improve exercise performance still an open 
question. 

The commercial products also exhibit the trend to automate the fitness 
monitoring, such as Garmin watch (http://www.garmin.com/en-US/) and Gym 
watch (https://www.gymwatch.com/). However, Garmin watch requires explicit 
inputs from users, including the type of workout and the start/stop time. Gym watch 
requires people to purchase dedicated sensors and wear them during exercises. 
Along this trend, the proposed system utilizes existing wearable devices (e.g., 
wrist-worn smartwatches or arm-mounted smartphones) to automatically provide 
fine-grained tracking of workout and offer exercise review and guidance to improve 
fitness experience. 

6.3 Fitness Assistance via Embedded Motion Sensors in 
Wearable Devices 

6.3.1 Design Challenges and Practical Issues 

Exercise Form Correction Using Single Wearable Mobile Device It is necessary 
for the system to understand the performance of a exercise through the body 
movements, which is a challenging task to cope with by using a single wearable 
mobile device. This is because commercial mobile devices usually have limited 
low-power sensing modalities (i.e., accelerometer, gyroscope and magnetometer). 
Therefore, the system needs to be designed in such a way that can provide exercise 
form corrections based on the dynamics of sensor data resulted from the partial 
knowledge of the exercises. 

Robust Fine-grained Exercise Differentiation It is also challenging to utilize 
sensors in wearable mobile devices to correctly distinguish different types of 
exercises, since sensor readings collected from the wearable mobile devices are 
extremely noisy due to the dynamic nature of exercises. Thus, it is important to 
devise a robust exercise classifier that can eliminate the impact of noisy sensor data 
and capture the fine-grained differences between different types of exercises. 

Automated Wearing Orientation Alignment During exercises, wearable mobile 
devices may change its facing from the original direction from time to time. Such 
orientation changes result in unstable projection of user’s body movements in the 
mobile device’s coordinate system. This makes it hard for the system to determine 
the pattern of body movements. Therefore, a light-weight alignment algorithm is 
needed to transform the sensor data to that in a stable orientation to facilitate 
accurate exercise recognition.

http://www.garmin.com/en-US/
http://www.garmin.com/en-US/
http://www.garmin.com/en-US/
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Fig. 6.1 Movement in exercises can be revealed by repetitive patterns from sensor readings of 
wearable mobile devices 

6.3.2 Motion Sensor-based Fitness Monitoring System Design 

The main goal of our system is to examine the users’ dynamics (i.e., body movement 
patterns & intensities) in workouts and provide detailed workout statistics to assist 
users to achieve effective workouts and prevent injuries. 

Given that these wearable mobile devices are worn on the human body of either 
wrist or upper arm, they become desirable interfaces to sense exercise movements 
to provide detailed workout statistics/analysis. 

As illustrated in Fig. 6.1, the repetitive pattern of body movements in exercises 
can be well captured by using the inertial sensors of the wearable mobile device 
(i.e., a smartwatch). The system can automatically extract fine-grained fitness 
information (e.g., basic statistics, motion energy and performing period) without 
users’ cooperation and provides users with illustrative feedback, which can also 
be exploited to enforce the Frequency, Intensity, Time, Type (FITT) principle of 
training [1]. 

As illustrated in Fig. 6.2, our system takes time-series of sensor readings as 
input from accelerometer and gyroscope as well as quaternion, all of which are 
readily available in off-the-shelf wearable mobile devices. We first perform Workout 
Detection to filter out the sensor readings that don’t contain workout activities based 
on the presence of periodicity pattern in workout activity. The sensor readings 
that are found to contain workout activities will be served to two tasks, Workout 
Interpretation & Recognition and Workout Review/Recommendation. The Workout 
Recognition performs quantitative analysis to the sensor readings and identify dif-
ferent types of workouts based on the acceleration features that can capture unique 
repetitive patterns of different exercises. The Workout Review/Recommendation 
examines the characteristics of each rep (i.e., energy and time intervals) and provides 
the novel exercise form scores as feedback to users for performance evaluation.
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Fig. 6.2 The framework of the proposed fitness assistant system using motion sensor 

Particularly, the Workout Recognition consists of four major components: 
Quaternion-based Coordinate Alignment, Set/Rep Counting and Segmentation, 
Accel-based Feature Extraction, and Exercise Classification. The Quaternion-based 
Coordinate Alignment tackles the issue of dynamic orientation in workouts, and 
automatically rotates sensor readings to a fixed coordinate system. The Set/Rep 
Counting counts the number of sets during the workout and the number of reps 
in each set based on the magnitude of the repetitive signals resulted from workouts. 
The sensor readings are further divided into small segments corresponding to the 
detected reps. In each segment, the Accel-based Feature Extraction derives statistics 
features that capture each repetitive moving patterns of exercises from three-axis 
acceleration readings. After Workout Interpretation, the system performs Exercise 
Classification, which utilizes a profile based algorithm to determine the types of 
exercises by comparing the extracted features with those of pre-collected profiles in 
the Profiling/Crowdsourcing Database. 

In addition, the Workout Review/Recommendation aims to provide users with 
systematic fitness monitoring and performance review, which would assist the 
users to maintain proper exercise gestures and avoid injuries. The proposed system 
takes the segments of sensor readings identified in the Set/Rep Counting and
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Segmentation as inputs, and performs the Rep Energy and Time Interval Derivation 
to estimate the characteristics of body movements in exercises (i.e., strength and 
frequency of the repetitive motions). The estimated characteristics are further 
utilized by the Exercise Form Score Calculation to calculate the exercise form score 
for each rep, which is a novel metric that allows the users to easily understand their 
performance in the exercises. 

6.3.3 Fine-grained Workout Interpretation and Recognition 

6.3.3.1 Workout Detection Using Autocorrelation 

A key observation is that most regular exercises involve repetitive arm movements. 
For example, jogging and walking involve periodic arm swing, and weight lifting 
involves periodic pushing-ups. Such repetitive arm movements result in regularly 
changing values in sensor readings. In addition, the repetitive patterns from 
exercises tend to be last for a long time period simply because people normally 
adopt a set-and-rep scheme in exercise to maximize the effectiveness. Compared 
to regular exercises, non-workout activities usually don’t have such long-term 
repetitive pattern. Therefore, we propose to detect workout based on determining 
whether there are long-term repetitive patterns in the sensor readings. 

Towards this end, we adopt an autocorrelation-based approach to examine the 
accelerations resulted from exercise motions. The autocorrelation approach is a 
common technique used for detecting repetitive patterns in a time series. In par-
ticular, we first apply a moving time window with the length of w to the time series 
of accelerometer readings. For each time window, we use the Magnitude of Linear 
Acceleration (MLA) to estimate the linear acceleration (i.e., acceleration without 
gravitational acceleration) of exercise motions. The MLA based on accelerometer 
readings can be derived by the following equation: 

.MLA(i) =
/

(a(i)x)2 + (a(i)y)2 + (a(i)z)2 − g, (6.1) 

where .a(i)x, a(i)y and .a(i)z are the acceleration of the ith sample on the .x, y and z 
axis of the mobile device respectively and g is the acceleration of gravity. Note that, 
the MLA in Eq. (6.1) equals to zero when there is no motion. 

Then we calculate the autocorrelation of the time series of MLA, and use a typical 
peak finding algorithm [9] to find the number of peaks in the autocorrelation, which 
is denoted as . Np. The number of detected repetitive patterns thus can be derived 
with .Nr = (Np − 1)/2, due to the symmetric nature of the autocorrelation. Finally, to 
accommodate the noisy accelerometer readings, we use a threshold-based method 
to confirm the detected repetitive patterns are resulted from workouts. The workout 
detection results for each window can be derived by:
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Fig. 6.3 Workout detection based on a 5-second sliding window (output 1 if the number of 
repetitive patterns is larger than 3 within the window, otherwise output 0) 

.Dw =
⎧

1, Nr > ν

0, otherwise,
(6.2) 

where .Dw is a boolean value depicts whether the given sensor readings within a 
window belong to workout or not. .Dw outputs 1 when . Nr is bigger than a threshold 
value . ν. Figure 6.3 shows an example of our workout detection results with .w = 5s 
and .ν = 3, which demonstrates that our system can accurately detect the windows 
containing workouts. 

6.3.3.2 Set/Repetition Segmentation Based on STE Analysis 

After the Workout Detection, the system integrates the windows that are continu-
ously labeled as workouts into a segment. The time between any two segments are 
identified as the rest interval, which will be provided as a part of the exercise review. 
However, in order to provide fine-grained exercise performance information, our 
system needs to look into the data in each set and analyzes the data based on a 
finer-grained concept, repetition/rep. 

We devise a motion-energy-oriented approach to accurately estimate starting and 
ending time point of each repetition of the same exercise motion within a set. The 
intuition behind the approach is that each repetition usually consists of a series of 
arm movements that result in a unique pattern in terms of the accumulated motion
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Fig. 6.4 Illustration of the relationship between the arm movements in a repetition and the unique 
pattern of accumulated energy captured by a wearable mobile device (i.e., a smartphone in an 
armband) 

energy: (1) the accumulated energy starts to increase sharply from zero when the 
arm moves from an initial position to an ending position; (2) the accumulated energy 
drops a little when the arm pauses at the ending position for a very short while; 
(3) the accumulated energy starts to increase sharply again when the arm moves 
back from the ending position to the initial position; and (4) finally the accumulated 
energy drops sharply when the hand stops at the initial position for some rest. We 
found that this unique pattern of accumulated motion energy can be captured by 
the wearable mobile device through the Short Time Energy of MLA. Figure 6.4 
illustrates the relationship of the unique pattern in the accumulated energy and the 
arm movements in each repetition. 

Particularly, we adopt the Short Time Energy (STE) [5] to capture the unique 
energy pattern in the time series of MLA. The basic idea of this step is to accumulate 
the energy of the MLA in short sliding windows. 

After obtaining STE of MLA, the system applies the same peak finding algorithm 
to detect the peaks in STE. Then the system finds the local minimum point between 
two peaks as the ending point of each repetition, and the data between two detected 
ending points are defined as a segment of repetition. Figure 6.5 shows an example 
of determining the repetition segments based on the local minimum points that are 
detected in STE of MLA from a wearable mobile device (i.e., a smartwatch) when 
the user conducts 3 sets of dumbbell rasing with 10 repetitions per set. The results 
indicate that the motion-energy-based approach can accurately separate the data for 
each repetition.
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Fig. 6.5 Example of rep segmentation for 10 repetitions of dumbbell raising exercise. (a) 
Magnitude of Linear Acceleration (MLA). (b) Local minimum identified in Short Time Energy 
(STE) of MLA
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6.3.3.3 Feature Extraction and Workout Classification 

After repetition segmentation, the system aims to identify the workout type for each 
set. The basic idea is to build a database with the profiles for different types of 
workouts before the workout classification, then we use a profile-based approach to 
determine the workout type for each rep segment in the set, and further to infer the 
workout type of the entire set. 

Accel-based Feature Extraction In order to distinguish different types of work-
outs, we need to find the features that can capture the unique characteristics 
of each type of workouts. Based on our extensive feature selection studies, we 
finally determine nine statistical acceleration-based features that are most useful 
to distinguish different types of workouts, namely skewness, kurtosis, standard 
deviation, variance, most frequently appear in the array, median, range, trimmean 
and mean. To extract features without worrying about the variation of the mobile 
device’s facing orientation, we first perform the earth-reference alignment to rotate 
all acceleration data to the earth coordinate system. After the world-reference 
alignment, our system extracts the nine acceleration-based features from the 
already aligned three-axis accelerations in each rep segment to describe the body 
movements. In total, we extract 27 features (i.e., nine features per axis) for each rep 
segment. 

Light-weight Classifier The proposed system utilizes a light-weight machine 
learning based approach to identify different types of workouts based on the 
acceleration-based features extracted from each rep segment. It is light-weight 
because the system only needs to determine the workout type for the first few 
rep segments within a set, and the workout type of the entire set of repetitions 
is identified as the majority decision based on the classification results from the 
first few rep segments. Specifically, we adopt a Support Vector Machine (SVM) 
classifier [16] with radial basis function kernel. The classifier is trained by the 
pre-collected profiles of different types of workouts.. We note that we utilize the 
classification results of the first five reps to determine the workout type of the entire 
set. 

6.4 Workout Review and Recommendation 

In order to achieve effective workouts and avoid injuries, users usually seek out 
personal fitness plans provided by fitness trainers or professionals. Such fitness plans 
often try to regulate the workouts by following the Frequency, Intensity, Time and 
Type (FITT) principle of training, which is a set of guidelines that instruct users 
to set up workout routines fitting their goals and fitness levels while maximizing 
the effects of exercises. However, most of users cannot afford a full-time personal 
trainer that can coach their workouts at any time. The system fills the gap between 
users and the fitness plans based on FITT principle of training by providing
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fine-grained fitness information and intuitive feedback to users. Specifically, the 
proposed system is able to track the following basic workout statistics automatically 
including exercise type, number of reps, number of sets, time between sets, time 
between sessions (training days/week) to enforce the FITT principle of training. In 
addition, our system further provides fine-grained feedback, which is the exercise 
form score in terms of motion energy and performance period for individual rep, to 
assist users in fine-tuning their exercises gestures. 

6.4.1 Exercise Form Score Design 

Besides providing basic workout statistics to the users, the system aims to offer users 
a more intuitive way to understand their performance in exercises by comparing 
their exercise statistics to a baseline, which could be either generated based on the 
users’ own data or based on the data from croudsourcing. Towards this end, we 
define a novel metric named exercise form score, which consists of two subscores 
that respectively evaluate a user’s fine-grained performance of each rep in the 
exercise based on two important criteria as shown below: 

Motion Strength (MS) A proper exercise form should maintain the motion 
strength at a certain level. For example, too much strength may indicate that the 
user spend more energy on each rep and if the weight is too heavy, it will increase 
the risk of injury while too little strength may indicate that the user spend too less 
energy to build muscle effectively. We intuitively utilize the energy level of each rep 
to describe the motion strength, which mean a set of reps with good performance 
should maintain a stable energy level. The energy level of each rep can be estimated 
by the maximum value in obtained STE of MLA. 

Performing Period (PP) A proper exercise form should avoid too-fast or too-slow 
movements in order to effectively build muscles and prevent injuries. In this work, 
we utilize the time period of each rep to describe the performing period of each rep, 
which reflects how fast a user performs a repetition in exercises. Therefore, a set of 
reps with good performance should also have similar time periods. The time period 
of each rep can be directly obtained from the length of each rep segment after the 
segmentation. We note that the performing period provides more insights to users. 
For example, users can leverage such information for equipment weight adjustment 
(e.g., reduced speed of last few reps in a set indicates that the user may be training 
exhausted and need to decrease the weight or number of reps in next set). 

Exercise Form Score Based on these two criteria, the system defines the Exercise 
Form Score, which consists of two subscores: MS score and PP score. The subscores 
depict how the testing rep deviates from the baseline in terms of the motion strength 
and performing period, respectively. We discuss the details about the baseline in the 
next subsection. Particularly, the MS score for the ith rep is defined as:
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.Ei = A(i) − A∗

A∗ , i = 1, 2, 3, . . . , n, (6.3) 

where .A(i) is the maximum STE of the MLA of the ith rep, and . A∗ is the motion 
strength baseline. Similarly, the PP score for the ith rep is defined as: 

.Ti = I (i) − I ∗

I ∗ , i = 1, 2, 3, . . . , n, (6.4) 

where . Ii is the length of the ith rep and . I ∗ is the performing period baseline. The 
output exercise form score is a 2-tuple score that can be denoted as .< Ei, Ti >. 

The exercise form score reflects the performance of the testing rep comparing to 
a baseline. We design two baselines that are suitable in different scenarios, namely 
Personal Baseline and Crowdsouring Baseline. 

Personal Baseline We observe that users usually can perform exercises with 
standard strength and frequency at the beginning of the workout, but the quality 
of the exercises decays with time due to fatigue. Based on this observation, a good 
candidate of the baseline for evaluating the performance of a user’s workouts is the 
early portion of the user’s own reps. In particular, we derive the personal baseline by 
averaging the motion strength and performing period of the first k reps of the first 
set in the user’s sensor data. We empirically choose .k = 5 in our work. 

Crowdsourcing Baseline The personal baseline is good for short-term exercise 
performance evaluation but could be bias to the user’s own preference. For example, 
a user could feel tired at the beginning of the exercise and result in bad baseline 
for evaluating the entire exercise. To tackle this problem, we further propose the 
crowdsourcing baseline, which allows users to compare their performance with the 
baseline from exemplars (e.g., fitness coaches, bodybuilders, and amateur expertise) 
to achieve a long-term and more accurate exercise performance evaluation. The 
crowdsourcing approach is feasible because it is an increasing trend that people 
would like to share their fitness data in online social network to earn credits or build 
record, and more social platforms, such as WhatsApp and WeChat, start to provide 
the functionality allowing people to share their fitness data among friends. 

6.4.2 Workout Review Plane Design 

The system further adopts an unique view angle of the exercise form score to allow 
users to track the performance or their each rep in a illustrative way. In particular, 
we define a review plane in which the x axis and y axis are the MS score and PP 
score, respectively. According to Eqs. (6.3) and (6.4), the Original represents the 
rep having the exactly same performance as the chosen baseline, and every exercise 
form score .< Ei, Ti > corresponding to the ith rep can be mapped to a position in
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the the review plane. Apparently, the rep having its position closer to the Original 
has better performance, and the more reps close to the Original the better. 

Figures 6.6 and 6.7compares the workout reviews of two different users (i.e., 
User A an User B) in a set of lateral raising exercises (i.e., 15 reps in one set). 
Figures 6.6a and 6.7a respectively depict STE of MLA of two users’ reps, which 
shows that User A has more stable energy levels and time lengths for each repetition 
than User B. Figures 6.6b and 6.7b respectively illustrate two users’ exercise form 
scores based on their personal baselines in the review planes, which shows that 
the score points of User A are concentrated around the Original while the score 
points of User B are scattered around the second quadrant of the review plane. The 
observation indicates that User B have much higher motion strength and longer 
performing period comparing to the user’s first few reps, and thus have worse 
performance than User A. 

6.5 System Implementation 

6.5.1 Quaternion-based Coordinate Alignment 

In workout monitoring scenarios, users wearing wearable mobile devices basically 
involve three different coordinate systems as illustrated in Fig. 6.8, namely, mobile 
device coordinate, earth coordinate, and human coordinate. The sensor readings 
from a mobile device are defined in the device coordinate and thus result in non-
fixed projection of the user’s body movements defined in the human coordinate. 
In order to address this issue, the system adopts a quaternion-based approache to 
dynamically convert sensor readings from the mobile device coordinate either to the 
human coordinate or to a coordinate system having the fixed mapping to the human 
coordinate. 

6.5.1.1 Earth-reference Alignment 

For exercise recognition in a gym, the orientation of wearable mobile devices may 
change due to rotation caused by arm movement. Therefore, our system needs to 
convert sensor readings from the mobile device coordinate to the earth coordinate 
first. Specifically, we convert the sensor readings from the mobile device coordinate 
to the earth coordinate by using the quaternion-based rotation .pe = qmepmq−1

me , 
where .pm is the sensor reading vector (e.g., accelerations) in the mobile device 
coordinate, and .qme is the quaternion reading from the mobile device coordinate 
to the earth coordinate, which can be obtained from the device directly. .q−1

me is the 
conjugate quaternion of . qme. After conversion, the converted sensor readings . pe are 
in the earth coordinate and can provide stable patterns of body movements during 
exercises to enable our exercise recognition.
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Fig. 6.6 Comparison of the Short Time Energy (STE) of the Magnitude of Linear Acceleration 
(MLA) and the exercise form scores on the workout review plane of user A. (a) STE of MLA, user 
A. (b) Exercise form scores on the workout review plan, user A
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Fig. 6.7 Comparison of the Short Time Energy (STE) of the Magnitude of Linear Acceleration 
(MLA) and the exercise form scores on the workout review plane of user B. (a) STE of MLA, user 
B. (b) Exercise form scores on the workout review plan, user B
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6.5.1.2 User-reference Alignment 

We notice that using quaternion to align sensor reading from wearable coordinate 
to earth coordinate solves the different wearing orientation of wearable devices. 
Furthermore, we should also consider when people doing workout in gym with 
different facing directions. 

Specifically, we convert the sensor readings from the mobile device coordinate 
to the human coordinate by using the quaternion-based rotation .ph = qmhpmq−1

mh , 
where .pm and . ph is the sensor reading vector in the mobile device coordinate and 
the human coordinate respectively. .q−1

mh is the conjugate quaternion of .qmh, .qmh is 
the quaternion readings from the mobile device to the human coordinate, which can 
be calculated using Hamilton product: .qmh = q−1

he qme, where .qme is the quaternion 
reading from the mobile device coordinate to the earth coordinate, which can be 
obtained from the device directly. .q−1

he is the conjugate quaternion of . qhe, and . qhe

is the quaternion readings from the human to the earth coordinate, which can be 
derived from the estimated facing direction. 

More specifically, we can derive .qhe = [w, x, y, z] using the Euler angles in 
earth coordinate which is defined as: 

.
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(6.5) 

where rotation angles . φ, . θ and . ψ are the row, pitch and yaw respect to earth 
reference respectively as shown in Fig. 6.8. We assume that people are running on 
the horizontal ground and therefore . φ and . θ are equal to zero and we only need to 
calculate facing direction . ψ (i.e., yaw). 

6.5.2 Facing Direction Estimation 

We observe that in rest time and aerobic exercises, the direction of the user’s arm 
swing is usually in line with the user’s facing direction, suggesting that we can 
exploit the arm swing direction to estimate the user’s facing direction. For anaerobic 
exercise, users can simply swing their arms for a few times to assist the system for 
facing direction estimation. 

In particular, the system segments each arm swing using rep segmentation, 
then converts the acceleration readings from mobile device’s coordinate into earth
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Fig. 6.8 Three coordinate systems 

coordinate. After conversion, we can double integrate the acceleration projected 
to the x and y axes in the earth coordinate to derive the moving distance of the 
arm along the x and y axes, respectively. In this work, we define the arm swing 
direction as the counter-clockwise rotation around the z-axis from y-axis in the earth 
coordinate (i.e., North direction), which is similar to the definition of yaw in Euler 
angles. We first calculate the included angle . δ between the displacement of x-axis 
and y-axis caused by arm swing by using .δ = |

|arctan
(
sy/sx

)|
|, where . sx , . sy are the 

distance accumulated from acceleration in x-axis and y-axis respectively by using 
Trapezoidal rule [8]. Note that . δ is ranging from . 0◦ to .90◦ and then we need to 
convert it from . 0◦ to .360◦. Therefore, we need to decide the quadrant Q of arm 
swing direction, that is defined in Cartesian system where x and y are East and 
North in earth reference respectively, to convert it to . ψ ranging from . 0◦ to .360◦ as: 

.ψ =

⎧
⎪⎪⎨

⎪⎪⎩

270◦ + δ; if Q = 1,

90◦ − δ; if Q = 2,

90◦ + δ; if Q = 3,

270◦ − δ; if Q = 4,

(6.6) 

where Q can be determined based on the order of maximum and minimum values 
(i.e., peak and trough) on x and y axes of accelerometer. 

We evaluate the proposed facing direction estimation by asking a volunteer to run 
toward four different directions (i.e., north, south, east and west in earth reference). 
Figure 6.9 shows the 10-round estimation results for each direction. We find that the 
estimated results are along with the four running directions and good enough in the 
system, the little bias is caused by the fact that people swing their arms naturally 
while running which is not perfectly stick to their facing directions.
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Fig. 6.9 Facing direction 
estimation of four running 
directions: toward North (N), 
South (S), West (W) and East 
(E) 

6.5.3 Workout Profile Construction 

When users start the system for the first time, they are asked to build a profile 
database for the exercise recognition by performing the particular types of exercises. 
The system extracts the accl-based features, and asks the user to manually label 
the corresponding exercise types. We note that proposed system allows users to 
wear the wearable mobile devices with flexible facing orientation when constructing 
the profiling database, because the quaternion-based coordinate alignment always 
converts sensor readings to a coordinate system that has the fixed mapping 
relationship to the human coordinate during exercises. 

6.6 System Evaluation 

In this section, we first present the experimental methodology and metrics we 
used to evaluate the proposed system. We then evaluate the performance and 
robustness of the system using both smartwatch and smartphone during people’s 
fitness workout. 

6.6.1 Experimental Methodology 

6.6.1.1 Wearable Mobile Devices 

We evaluate the system with two types of wearable mobile devices (i.e., a smart-
phone of Samsung Galaxy Note 3 and a smartwatch of LG Watch Urbane). Both 
devices use Android and can collect sensor readings of accelerometer, gyroscope 
and quaternion vector. In our experiment, the participants are asked to wear the 
smartwatch on the wrist with their own wearing preferences and the phone is 
mounted on their upper arms using a jogging armband. During exercise, sensor 
readings are collected with the sampling rate of 100 Hz. The ground truth of workout 
statistics are recorded by a volunteer.
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6.6.1.2 Fitness Data Collection 

We recruit 12 volunteers from colleagues, friends and students. Among them, 
7 out of 12 go to gym regularly and the rest go to gym less frequently. For 
over a half year experiments, all 12 volunteers are asked to wear the smartwatch 
and smartphone simultaneously at the same arm, which is for the performance 
comparison between smartwatch and smartphone of the same exercise. In addition, 
a volunteer accompany with them to record the ground truth. Specifically, we study 
12 different exercise types. The tested exercises include both anaerobic exercises, 
including weight machines and free weights, and aerobic exercises in which around 
2 hours running is tested in both indoors (e.g., treadmill) and outdoors. In total, we 
collect over 5000 repetitions of 12 types of exercises involving 12 participants. 

6.6.2 Evaluation Metrics 

We use the following metrics to evaluate the proposed system: 

Precision Given . Ne reps of a exercise/ gesture type e in our collected data, precision 
of recognizing the exercise type e is defined as .Precisione = NT

e /(NT
e + MF

e ),where 
.NT

e is the number of instances collectedly recognized as exercise e. .MF
e is the 

number of sets corresponding to other exercises that are mistakenly recognized as 
exercise e. 

Recall Recall of the exercise type e is defined as the ratio of the reps that are 
correctly recognized as the exercise e over all reps of exercise type e. which is 
defined as .Recalle = NT

e /Ne. 

F1-Score F1-score is the harmonic mean of precision and recall, which reaches its 
best value at 1 and worst at 0. In our multi-class scenario, the F1-score for a specific 
gesture e was defined as .F (e)

1 = 2 × precisione×recalle
precisione+recalle

. 

Repetition Detection Rate Given all reps of an exercise type e, rep detection rate is 
defined as the ratio of the number of detected reps of e over all reps of e the user 
performed. 

6.6.3 Workout Recognition Using Smartwatch 

We first evaluate the performance of our system on exercise recognition using 
smartwatch. Figure 6.10a shows the confusion matrix of the recognizing exercise 
types by using smartwatch. An entry .Mij denotes the percentage between the 
number of exercise i was predicted as gesture j and the total number of i. The  
average accuracy is .95% with standard deviation .5% over all 12 types of exercises.
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Fig. 6.10 Comparison of the performance of recognizing 12 exercises between using a smartwatch 
and a smartphone. (a) Confusion matrix, smartwatch. (b) Precision/recall/F1 score, smartwatch. (c) 
Confusion matrix, smartphone. (d) Precision/recall/F1 score, smartphone
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Fig. 6.10 (continued)
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We find that recognizing results from E1 and E10 are relatively low, which are 
85 and .89% respectively. This may be caused by some volunteers who go to gym 
less frequently and cannot maintain the exercise in a correct form for all reps. 
For example, E10 (i.e., Dumbbell Biceps Curl) is free weight exercise and some 
volunteers may not maintain their arm within a fixed space all the time. For exercise 
E1 (i.e., Barbell Bench Press), some volunteers easily perform too fast or too slow 
depending on the weights. 

In addition, Fig. 6.10b presents the precision, recall and .F1 score for each 
exercise type, respectively. The average value of precision, recall and . F1 score of 
each exercise are all around .95%. Although the recall of exercise E4 (i.e., running) 
is .100%, we observe that it has the lowest precision among all 12 exercises, which 
indicates other exercises are more likely to be mistakenly classified as this exercise. 
This may be caused by the fact that arm swings are naturally moving in space and 
some volunteers freely perform some type of exercise too fast which also involve all 
axes sensor readings. The above results support that the proposed system can extract 
accurate information for exercise type recognition through wrist-worn smartwatch. 

6.6.4 Workout Recognition Using Smartphone 

We then evaluate workout recognition by using smartphone since arm-mounted 
phone have been widely used in people’s daily exercise. We present the results from 
smartphone in Fig. 6.10c and d. Results show .91% average recognition accuracy 
for exercise recognition. We find exercise E4 still has the lowest precision which 
is consistent with the results collected from smartwatch since the volunteers wear 
smartwatch and smartphone on the same arm to make fair comparison. 

Comparison Between Using Smartwatches and Using Smartphones Our sys-
tem presents high accuracy of workout recognition for both smartphones and smart-
watches. Comparing results between smartwatches and smartphones, we found that 
results obtained from smartwatches are better than results from smartphones. The 
average recognition accuracy of smartwatch is .95% whereas smartphones has a . 91%
average recognition accuracy. This observation is due to the fact that for exercise 
recognition, the space scope of the arm gesture trajectories was constrained by the 
machine for some exercise and most of the exercises require users to use their hands 
to grab and therefore the smartwatch on the wrist are close to hand and reflect more 
similar movement as machine or dumbbell. 

6.6.5 Repetition Detection Accuracy 

Finally, we evaluate the system by showing our detection accuracy for exercises. 
For workout exercise detection, the average detection accuracy reaches . 99%. The
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Fig. 6.11 Detection rate of exercise repetitions by using smartwatch 

lowest detection accuracy occurs at running exercise E4 (i.e., step detection) on a 
treadmill but it still achieves around .95% detection accuracy as shown in Fig. 6.11. 
Such relative low detection accuracy of running exercise is due to occasionally 
holding on the handrails or wiping perspiration while running. The above results 
show that our system can accurately detect reps, and such high detection accuracy 
supports that fine-grained statistical information is reliable. 

6.7 Summary 

In this chapter, we propose an integrated mobile solution that can conduct systematic 
fitness monitoring and provide performance review based on a single off-the-shelf 
wearable device (e.g., wrist-worn wearables or arm-mounted smartphones). The 
proposed system has the capability to perform fine-grained exercise recognition 
including exercise types, the number of sets and repetitions by using inertial sensors 
from wearable devices without user involvement. Two novel metrics, exercise form 
score and workout review plane, are developed to provide effective review and 
recommendation for achieving effective workout and preventing injuries. To ensure 
the system accuracy and robustness, the system uses the earth/human coordinate 
system to align and integrate sensor readings from various device orientations. 
Extensive experiments involving 12 participants doing workout for over half a year 
time period demonstrate that the system successfully takes one step forward to
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provide the integrated fitness monitoring system with over .90% workout analysis 
accuracy. By integrating other existing sensors such as shoe sensors (https://secure-
nikeplus.nike.com/plus/products/) and ankle-based belt, the system can be extended 
to monitor non-arm based exercises. In addition, our system can further reduce the 
energy consumption by utilizing location information. The system only needs to 
start sampling when detecting gym or fitness center nearby through the assistant of 
GPS and we left this part in our future work. 
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Chapter 7 
Fine-grained Gesture Recognition and 
Sign Language Interpretation via 
Photoplethysmography (PPG) on 
Smartwatches 

In addition to the application of inertial sensors in wearable devices, various other 
sensors have been utilized to broaden the scope of sensing applications. This chapter 
challenges the conventional perception of Photoplethysmography (PPG) and paves 
the way for innovative use of PPG in commercially available wearable technology. 
It pays special attention to its potential in the field of human-computer interaction, 
specifically in enabling fine-grained gesture recognition. We demonstrate that it 
is possible to leverage the widely deployed PPG sensors in wrist-worn wearable 
devices to enable finger-level gesture recognition, which could facilitate many 
emerging human-computer interactions (e.g., sign-language interpretation and vir-
tual reality). While prior solutions in gesture recognition require dedicated devices 
(e.g., video cameras or IR sensors) or leverage various signals in the environments 
(e.g., sound, RF or ambient light), this chapter introduces the first PPG-based 
gesture recognition system that can differentiate fine-grained hand gestures at finger 
level using commodity wearables. Our innovative system harnesses the unique 
blood flow changes in a user’s wrist area to distinguish the user’s finger and hand 
movements. The insight is that hand gestures involve a series of muscle and tendon 
movements that compress the arterial geometry with different degrees, resulting 
in significant motion artifacts to the blood flow with different intensity and time 
duration. By leveraging the unique characteristics of the motion artifacts to PPG, 
our system can accurately extract the gesture-related signals from the significant 
background noise (i.e., pulses), and identify different minute finger-level gestures. 
Extensive experiments are conducted with over 3600 gestures collected from 10 
adults. Our prototype study using two commodity PPG sensors can differentiate nine 
finger-level gestures from American Sign Language with an average recognition 
accuracy over .88%, suggesting that our PPG-based finger-level gesture recognition 
system is promising to be one of the most critical components in sign language 
translation using wearables. The structure of the remainder of this chapter is as 
follows: Sect. 7.1 begins by providing the research background. This is followed 
by Sect. 7.2, in which we review the current literature in the field. Subsequently, 

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024 
X. Guo et al., Mobile Technologies for Smart Healthcare System Design, 
Wireless Networks, https://doi.org/10.1007/978-3-031-57345-3_7

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-57345-3protect T1	extunderscore 7&domain=pdf
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7
https://doi.org/10.1007/978-3-031-57345-3_7


154 7 Fine-grained Gesture Recognition and Sign Language Interpretation via. . .

in Sect. 7.3, we delve into the principles of gesture recognition employing PPG 
sensors, demonstrating the potential for finger-level gesture recognition using these 
sensors. In Sect. 7.4, we address the challenges encountered during system imple-
mentation and offer comprehensive details on system design. Section 7.5 furnishes 
a thorough depiction of the system’s implementation. Section 7.6 encompasses 
the system’s evaluation. Lastly, Sect. 7.7 encapsulates the chapter with a succinct 
summary. 

7.1 Background 

The popularity of wrist-worn wearable devices has a sharp increase since 2015, an 
estimation of .101.4million wrist-worn wearable devices will be shipped worldwide 
in 2019 [13]. Such increasing popularity of wrist-worn wearables creates a unique 
opportunity of using various sensing modalities in wearables for pervasive hand 
or finger gesture recognition. Hand and finger gestures usually have a diverse 
combinations and thus present rich information that can facilitate many complicated 
human computer interaction (HCI) applications, for example wearable controls, 
virtual reality (VR)/augmented reality (AR), and automatic sign language transla-
tion. Taking the automatic sign language translation as an example illustrated in 
Fig. 7.1, a wrist-worn wearable device (e.g., a smartwatch or a wristband) could 
leverage its sensors to realize and convert sign language into audio and text and 
back again, which will greatly help people who are deaf or have difficulty hearing 
to communicate with those who do not know the sign language. 

Existing solutions of gesture recognition mainly rely on cameras [14, 17, 21] 
microphones [16, 18], radio frequency (RF) [5, 20, 23] or special body sensors 
(e.g., Electromyography (SEMG) [15], Electrical Impedance Tomography (EIT) 
sensor [30], and electrocardiogram (ECG) sensor [29]). The approaches using 
cameras face occlusion and privacy issues. Microphones are vulnerable to ambient 
acoustic noises. The RF-based approaches are usually known to be device-free, 
but they are very sensitive to indoor multipath effects or RF interference. Using 
special body sensors for gesture recognition is more robust to environmental noises 
but requires extra cost and manpower of installation. Recently, motion sensors in 
wearables present their great potential in hand and finger gesture recognition on the 
wrist [27, 28], but motion sensors are sensitive to body motions and are thus difficult 
to identify fine-grained finger-level gestures, such as sign language gestures. 

In this work, we propose to recognize the fine-grained finger-level gestures such 
as sign language using low-cost PPG sensors in wearable devices. We study the 
unique PPG features resulted from finger-level gestures, and carefully devise a 
system that can effectively detect, segment, extract, and classify finger-level gestures 
based on only PPG measurements. The basic idea of our system is examining 
the blood flow changes resulted from finger-level gestures based on the PPG 
measurements, which are collected by low-cost PPG sensors in wrist-worn wearable 
devices. The advantages of our approach are twofold. First, our system could be
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Fig. 7.1 Illustration of the automatic sign language translation using wearables in daily commu-
nications 

easily applied to billions of existing wrist-worn wearable devices without extra 
cost, enabling every wrist-worn wearable device to recognize fine-grained gestures 
on users’ fingers (e.g., sign language). Second, our system only relies on wrist-
worn PPG sensors, which directly obtain gesture related features without the impact 
of environmental changes (e.g., ambient light, sound, RF) and moderate body 
movements (e.g., walking, turning body, slow arm movements), thus is more robust 
in practical scenarios. 

In this study, we demonstrate the potential of utilizing PPG sensors found 
in wrist-worn wearable devices to recognize fine-grained finger-level gestures. 
Through the development of a machine-learning approach, we leverage the distinc-
tive gesture-related PPG patterns captured by these wearables on the wrist, marking 
the first work of its kind in recognizing such gestures using readily available 
commodity PPG sensors. By exploring the physical meaning and characteristics 
of PPG measurements collected from the wrist sensor, we devise a novel data 
extraction method that effectively separates minute finger movement-induced PPG 
measurements from the continuous background noise caused by human pulses. 
Furthermore, we establish the feasibility of accurately identifying intricate finger-
level gestures with subtle variations, such as those found in sign language, by 
exploiting a range of features extracted from the unique gesture-related PPG patterns
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in different signal spaces, including dynamic time warping, wavelet transform, and 
Fourier transform. To validate our approach, we conduct experiments involving 
ten participants who wear our prototype comprising two off-the-shelf PPG sensors 
and an Arduino board. The results showcase an impressive average accuracy of 
over 88% in identifying nine finger-level gestures from American Sign Language. 
These findings highlight the promising potential of our PPG-based finger-level 
gesture recognition system as a crucial component in sign language translation using 
wearable devices. 

7.2 Related Work 

In general, current techniques for gesture recognition can be broadly categorized 
into four categories (i.e., vision-based, RF-based, acoustic-based and body sensor 
based) as follows: 

A couple of vision-based approaches have been developed to recognize 
hand/body gestures with the help of cameras (e.g., Microsoft Kinect [21] and 
leap motion [17]) or visible light (e.g., LiSense [14]). However, these approaches 
are sensitive to the ambient light and may require users to have the line of sight to 
the cameras or need specific light sensing equipment installation. 

RF-based approaches have become increasingly important due to the prevalent 
wireless environments. For instance, WiDraw [23] and Wisee [20] propose to use 
channel state information(CSI) and Doppler shifts of wireless signals to achieve 
fine-grained gesture recognition, respectively. WiTrack [1] and WiTrack2.0 [2] can 
track multiple users by examining the multi-path effects of Frequency-Modulated 
Continuous-Wave (FMCW) signals. These approaches, however, either can be easily 
affected by environmental changes such as people walking or require dedicated and 
costly devices such as the Universal Software Radio Peripheral (USRP). 

Acoustic-based approaches are also explored by several studies. For instance, 
CAT [16] and FingerIO [18] track a smartphone’s motion and a finger’s dynamics 
by using audio components (e.g., multiple external speakers, device’s microphones), 
respectively. However, these approaches need occupy device’s speaker/microphone 
and external audio hardware (e.g., nearby speakers), which is not always available 
in many real-world scenarios. 

In addition, several customized wearable devices, which can be worn on users’ 
forearm or wrist, are designed to capture the hand gesture by capturing either 
Surface Electromyography (SEMG) signals [15], Electrical Impedance Tomography 
(EIT) [30] or electrocardiogram (ECG) [29]. However, these solutions need extra 
hardware supports and are not compatible with existing mobile/wearable devices. 
Another body of related work is using motion sensors in wrist-worn wearables 
to achieve hand and finger gesture recognition [27, 28]. The solution, however, is 
sensitive to body/arm motions and cannot identify fine-grained finger-level gestures, 
such as sign language gestures.
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Different from previous work, in this chapter, we propose to innovatively use the 
photoplethysmogram (PPG) sensor, which is originally used for heart rate detection 
in the most of the commodity wearable devices (e.g., smartwatch and wristband), 
to perform fine-grained finger-level gesture recognition and detection. To the best 
of our knowledge, it is the first wrist-worn PPG sensor based gesture recognition 
system. With the proposed scheme, we envision that most wearable device manu-
facturers would open the interface of PPG raw readings to developers soon. 

7.3 PPG Preliminaries and Feasibility Study 

7.3.1 Background of Wearable PPG Sensors 

During the past few years, more and more commodity wrist-worn wearables (e.g., 
smartwaches and activity trackers) are equipped with Photoplethysmography (PPG) 
sensors on their back as illustrated in Fig. 7.2. These wrist-worn PPG sensors are 
mainly designed to measure and record users’ heart rates. Specifically, a typical PPG 
sensor consists of a couple of LEDs and a photodiode/photodetector (PD), which 
detects the light reflected from the wrist tissue. The principle of PPG is the detection 
of blood volume changes in the microvascular bed of tissue. When light travels 
through biological tissue, different substances (e.g., skin, blood and blood vessel, 
tendon, and bone) have the different absorptivities of light. Usually, blood absorbs 
more light than the surrounding tissue. Therefore, by utilizing a PD to capture the 
intensity changes of the light reflected from the tissue, the wearable device can 
derive the blood flow changes in the wrist-area tissue and calculate the pulse rate or 
even blood pressure [4]. 

It is important to note that most PPG sensors embedded in commodity wear-
able devices use green LEDs as light source has much greater absorptivity for 
oxyhemoglobin and deoxyhemoglobin compared to other light sources (e.g., red 
or infrared light) [25]. We thus use green-LED PPG sensors in this work to study 
and evaluate PPG based gesture recognition. 

Fig. 7.2 Example of PPG sensors in wrist-worn wearable devices
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7.3.2 Gesture Recognition Using PPG Sensors 

The current use of PPG in wearables is limited to heart rate, pulse oximetry and 
blood pressure monitoring. Such applications only focus on examining regular 
blood flow changing patterns in the radial artery and the ulnar artery, and consider 
mechanical movement artifacts as noise [25]. In this work, we put forward an 
innovative idea of using readily available PPG in wearables for finger-level gesture 
recognition. We show that hand gestures, especially finger gestures (i.e., flexion, 
extension, abduction, and adduction), result in significant motion artifacts to PPG. 
The reason behind this is that the two major muscles controlling hand gestures [12], 
namely flexor digitorum superficialis and flexor hallucis longus, are right beside 
the radial artery and the ulnar artery as illustrated in Fig. 7.3. Any hand or finger 
gestures would involve a series of complicated muscle and tendon movements that 
may compress the arterial geometry with different degrees. Since the blood absorbs 
most of the green light, the changes of the light reflected from the wrist area 
present different degrees of disturbances of the flood flow in terms of the shapes 
and duration of PPG waveforms. Current PPG sensors in off-the-shelf wearables 
are usually equipped with two green LED and photodiodes to ensure accurate 
pulse estimation by increasing the diversity (i.e., monitoring blood flow changes 
at different locations on the wrist). In this work, we mimic this approach and utilize 
two separated PPG sensors at close but different locations on the wrist to ensure our 
gesture recognition accuracy. 

7.3.3 Feasibility Study 

In order to explore the feasibility of using PPG sensors in commodity wearables for 
finger-level gesture recognition, we conduct five sets of experiments on a sensing 
platform prototyped with two off-the-shelf PPG sensors (i.e., a photodiode sensor 

Fig. 7.3 Illustration of the finger movement related muscles in the anatomy of a human forearm



7.4 System Challenges and System Design 159

Fig. 7.4 Example of PPG readings associated with five finger-bending gestures in the feasibility 
study 

and a green LED) connecting to an Arduino UNO (Rev3) board, which continuously 
collects PPG readings at 100Hz and save them to a PC. During the experiments, a 
user wears a wristband to fix two off-the-shelf PPG sensors on the inner side of the 
wrist, and respectively bends each of his fingers as illustrated in Fig. 7.4 to emulate 
the simplest elements of sign language gestures. Specifically, in each set of the 
experiments, the user bends one of his finger 10 times with 8s between each bending. 
We record the process of the experiments using a video camera synchronized with 
the PPG measurements to determine the starting and ending time of each finger 
bending gesture. 

We extract the PPG sensor readings within the time window between the starting 
and ending points identified in the video footage of each gesture and examine their 
changing patterns. As we expected, bending different fingers result in different 
unique patterns in PPG readings. Figure 7.4 presents an example of the unique 
patterns in PPG that correspond to bending different fingers, which is from one 
out of the two sensors. Moreover, we notice that same finger movements generate 
similar patterns, which demonstrates that it is possible to utilize readily available 
PPG sensors in wearables for fine-grained gesture recognition. 

7.4 System Challenges and System Design 

7.4.1 Challenges 

In order to build a system that can recognize fine-grained finger-level gestures (e.g., 
sign language) using PPG sensors in wearable devices, a number of challenges need 
to be addressed. 

Re-using the PPG Sensors in Wearables for Finger-level Gesture Recognition 
The PPG sensors in commodity wearable devices are specifically designed for
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monitoring pulse rate or blood pressure. The blood flow changes associated 
with finger-level gestures have much shorter duration and do not have repetitive 
patterns compared to those caused by pulses. Our system thus needs to detect and 
discriminate the unique PPG patterns of different finger movements by re-using the 
low-cost PPG sensors in commodity wearable devices. 

Gesture-related PPG Readings Interfered by Pulses In this work, PPG readings 
corresponding to finger-level gestures are treated as target signals that our system 
wants to identify and examine. Therefore, the PPG readings resulted from pulses are 
considered to be the noise. Such noise always exists and sometimes has intensity 
comparable to that of the signals caused by finger-level gestures. Our approach 
should be intelligent enough to separate relevant useful signals from the complicated 
noise caused by pulses. 

Accurate Finger Gesture Recognition Using Single Sensing Modality on the 
Wrist It is also challenging to achieve high accuracy in fine-grained finger-level 
gesture recognition by using the readily available but coarse-grained wrist-worn 
PPG technique. Commodity wearable devices usually only have few PPG sensors 
that are placed very close to each other. Such layout limits the coverage of the PPG 
sensors on the wrist and the diversity of sensor readings, which could significantly 
impact the performance of gesture recognition. We thus need to explore the critical 
features of PPG readings in different domains to achieve accurate finger-level 
gesture recognition. 

7.4.2 PPG-based Gesture Recognition Sensing System Design 

The basic idea of our system is examining the blood flow changes collected 
by readily available PPG sensors in commodity wrist-worn wearable devices to 
differentiate different fine-grained finger-level gestures. Toward this end, we design 
a machine-learning approach that mainly contains two major steps: Training Phase 
and Classification Phase. As illustrated in Fig. 7.5, our system first takes as inputs 
the PPG measurements from wrist-worn PPG sensors. Then it conducts Coarse-
grained Gesture Detection and Reference Sensor Determination to determine 
whether there is any gesture being performed based on the signal energy after 
mitigating the noise from pulses. Then the system automatically determines the 
Reference Sensor, which is the sensor presenting significant (i.e. containing more 
energy) gesture-related PPG patterns compared to those related to pulses. The 
system will keep monitoring the PPG sensor if there is no gesture detected. 
Otherwise, it will further process the raw PPG measurements depending on whether 
it is in the Training Phase or Classification Phase. 

Training Phase In the Training Phase, we collect labeled PPG measurements for 
each gesture and build binary classifiers for each user. Specifically, we perform 
Fine-grained PPG Data Segmentation Using Energy and DTW to accurately extract
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Fig. 7.5 Overview of the PPG-based finger-level gesture recognition system 

the segments containing gesture-related PPG measurements between the estimated 
starting and ending points of gestures, which are obtained by examining the energy 
and dynamic time warping (DTW) distance to pulse profiles in a sliding window. 

After segmentation, our system calculates the 2D-DTW distances between every 
two segments for every gesture in 2D-DTW Profile Selection and selects three profile 
segments that are most representative for each gesture (i.e., having the minimum 
average 2D-DTW distance to other segments of the same gesture). The selected 
profile segments will be used to calculate the DTW features in the Classification 
Phase. Meanwhile, the system performs PPG Feature Extraction and Selection 
to derive a variety of features in different signal spaces (e.g., discrete wavelet 
transform, fast Fourier transform) and selects the critical features that can effectively 
capture the unique gesture-related PPG patterns for each gesture. Because the 
selected critical feature sets are optimized for each gesture, the system further 
derives a super set of the selected critical features in Feature Integration to ensure 
the system performance. Next, we perform Binary Gradient Boosting Classifier 
Construction for Each Gesture to train a binary classifier for each target gesture 
using Gradient Boosting. 

Classification Phase In the Classification Phase, our system collects testing PPG 
measurements in real time and determines which finger gesture has been performed
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based on the classification results. The system extracts the selected critical features 
from the PPG data segments in Feature Extraction based on Selected General 
Features and performs Finger-level Gesture Classification to determine which target 
gesture has been performed. Specifically, the system processes the extracted features 
using the binary gradient boosting classifiers built for target gestures in parallel. 
Each classifier generates a confidence score, and the system takes the target gesture 
having the highest confidence score as the recognized gesture. 

7.4.2.1 Fine-grained Data Segmentation 

In this section, we discuss how to achieve fine-grained data segmentation based on 
the raw PPG data segments that have been determined to contain significant gesture-
related PPG patterns through the Data Preprocess. 

Energy-based Starting Point Detection Due to the consistent existence of pulse 
signals in PPG measurements, it is difficult to remove the pulse signals without 
jeopardizing the details of the gesture-related readings, which are critical to 
characterizing the starting and ending points of a specific gesture. In order to 
accurately determine the starting point, we seek an effective detection approach to 
mitigate the impact of pulse signals. We find that the gesture-related PPG signals 
are usually stronger than those caused by pulses as illustrated in Fig. 7.6a, because 
gestures usually involve dynamics of major forearm muscles/tendons close to the 
sensor on the wrist. Inspired by the above observation, we design an energy-based 
starting point detection scheme to effectively estimate the starting of gesture-related 
PPG signals without removing the interference of pulses. 

The basic idea of our energy-based starting point detection method is to 
determine the time corresponding to the local maximum of the short-time energy 
of PPG signals. The reason behind this is that when using a sliding window with 
the same length of a signal to calculate the short-time energy of the signal, the 
energy reaches its maximum value when the signal entirely falls into the window. 
Therefore, by carefully choosing the size of the sliding window (e.g., the average 
length of target gesture-related signals), the starting point of the gesture-related 
signals would be the same time when the short-time energy of the signals reaches 
its maximum. In particular, given the data segment containing gesture-related PPG 
signals .P(t) from the Coarse-grained Gesture Segmentation, the starting point 
detection problem can be formulated as the following objective function: 

. arg max
τ

(P (τ) − 1θ)P (τ)T , (7.1) 

where .P(τ) = [p(τ), p(τ + δ) · · · , p(τ + W)], .p(τ) denotes the amplitude of the 
PPG signal at time . τ , . δ represents the PPG sensor sampling interval, W is the length 
of the sliding window, . θ is the threshold used to avoid finding the local maximum 
energy resulted from pulse signals, . 1 is an all-one vector of the same length as 
.P(τ), and T indicates the transpose operation. The above problem can be easily
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Fig. 7.6 Example of detecting starting and ending point of a gesture-related PPG measurements 
using energy and DTW. (a) PPG raw data with gesture ground truth (b) Short-time energy of PPG 
(c) Short-time DTW distance to pulse profile 

solved through simple 1-D searching within the period derived from coarse-grained 
gesture segmentation. 

Through our preliminary study on the time length of 1080 finger gestures 
performed by three users as shown in Fig. 7.7, we find that the length of gesture-
related signals has the range between .0.7 and . 1.4 s with an average of . 1.2 s.
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Fig. 7.7 Preliminary study: CDF of the duration of 1080 gestures from 3 users 

Therefore, we empirically determine the length of the sliding window as . 1.2 s 
to ensure the accuracy of our energy-based starting point detection. Note that 
the threshold . θ is user-specific and needs to be dynamically determined by the 
maximum short-time energy of the PPG signals when there is no gesture detected in 
the Coarse-grained Gesture Detection. Figure 7.6b illustrates the short-time energy 
corresponding to the PPG signals in Fig. 7.6a. We can clearly see that the energy 
peaks in Fig. 7.6b are very close to the ground truth observed from the synchronized 
video footage, suggesting that our algorithm could promisingly capture the starting 
point of gestures in the PPG measurements. 

7.4.2.2 DTW-based Ending Point Detection 

Detecting the ending point of a gesture-related signal is more challenging than 
detecting the starting point because the muscles are more relaxed at the end of 
the gesture and the corresponding gesture-related PPG signals are usually weaker 
than those at the beginning of the gesture. As illustrated in Fig. 7.6a, the PPG 
measurements around the ending point do not have significant patterns that can 
facilitate the ending point detection. However, we find that gesture-related PPG 
signals are usually immediately followed by pulse signals, which are very clear and 
easy to identify. Hence, instead of directly locating the ending point based on PPG 
readings, we design a DTW-based ending point detection scheme, which aims to 
identify the starting time of the first pulse signal following the gesture-related signal. 
We employ the dynamic time warping (DTW) to measure the similarity between the 
user’s pulse profile .Ppulse and the PPG measurements collected after the already-
detected starting point of the gesture. 

Intuitively, the time when the DTW value reaches the minimum is the starting 
time of the pulse signals and also the ending point of the gesture-related signals. 
We adopt DTW because it can stretch and compress parts of PPG measurements to 
accommodate the small variations in the pulse signals. To summary up, this ending
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point detection problem is defined as follows: 

. arg min
t

DT W(P (t), Ppulse), s.t., τ < t ≤ τ + Wp, (7.2) 

where .DT W(·, ·) is the function to calculate the DTW distance, .P(t) has the same 
definition as .P(τ) in Eq. (7.1), . Wp is the time duration for the gesture, and . τ is the 
detected starting point. After searching the DTW distances for all .P(t), we find the 
time index of the first local minimum in the DTW distances (i.e., the starting time 
of the first pulse after the gesture) as the ending point of the gesture-related signals. 
Figure 7.6c presents the DTW between a selected pulse profile and the raw PPG 
measurements in Fig. 7.6a with .Wp = 0.88 s. From the figure, we can observe that 
the time indexes of the detected first local minimum DTW values are very close 
to the ground truth of the ending time of the two gestures, which demonstrates the 
effectiveness of the DTW-based ending point detection scheme. 

The pulse profile .Ppulse can be extracted from the PPG measurements that are 
collected when there is no gesture performed (e.g., at the beginning of the training 
phase). In particular, we first detect the pulse signal peaks in the PPG measurements. 
Given the fact that a typical PPG pulse signal always has a peak, if the pulse signal 
peak is located at . tp, so the PPG measurements between .[tp − td , tp + ts] are 
identified as the user’s pulse profile. In this work, we respectively choose .td = 0.2 s 
and .ts = 0.6 s based on the duration of diastole (i.e., .0.15 .∼ 0.26 s) and systole 
(i.e., .0.44 .∼ 0.74 s) phases of the vascular system reflected in a typical PPG pulse 
signal [7], which can effectively extract all users’ pulse profile. 

7.4.2.3 Segmentation on Inconspicuous Gesture-related Patterns 

Our DTW-based ending point detection can accurately determine the ending point if 
the gesture-related PPG pattern has significant amplitudes compared to those of the 
pulse-related patterns. However, in rare cases, the gesture-related PPG patterns may 
not have significant amplitudes when the sensor is at the locations far away from the 
arteries. Note that such inconspicuous patterns are not easy to be extracted as their 
boundaries with pulse-related patterns are very vague, but they still contain rich 
information that could greatly facilitate gesture recognition. In this work, we find 
that when using two PPG sensors close to each other on the wrist, at least one of 
the sensors can generate gesture-related PPG patterns with significant amplitudes. 
Inspired by this observation, we adopt a reference-based approach to accurately 
determine the ending point for the inconspicuous gesture-related PPG patterns. 

In particular, assuming our system identifies the ending point . tR on the sensor 
R with significant gesture-related PPG patterns (i.e., Reference Sensor) using our 
DTW-based method, the system further derives the ending point at the other sensor 
D as .tD = tR + ΔT , where .ΔT is the time delay of the ending point on sensor R. 
According to our empirical study, .ΔT is nonzero and stable between two sensors 
across different gestures. Since muscles and tendons at different locations of the
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forearm compress the arteries with different pressure and duration when performing 
a gesture, the gesture-related patterns captured by the PPG sensors at different 
locations will last different time periods. Because the system can always find 
multiple gestures that generate significant PPG patterns on both sensors, .ΔT can 
be easily estimated in the Training Phase by calculating the average time difference 
of the ending points from the gestures where both sensors are determined to be 
Reference Sensors. 

7.4.3 Sign Language Gesture Classification 

In this part, we explore the PPG features that could facilitate gesture recognition 
and discuss how to build the binary classifier using Gradient Boosting and perform 
gesture classification in the Training Phase and Classification Phase. 

7.4.3.1 PPG Feature Extraction and Selection 

To capture the characteristics of unique gesture-related PPG patterns, we explore 
the efficacy of different kinds of features including typical temporal statistics 
(e.g., mean, variance, standard deviation (STD)), cross-correlation, autoregressive 
(AR), dynamic time warping (DTW), fast Fourier transform (FFT), discrete wavelet 
transform (DWT), and Wigner Ville distribution as listed in Table 7.1. The features 
can be categorized into three types: Time Domain, Frequency Domain, and Time-
Frequency Domain, which are designed to capture the detailed characteristics of 
the gesture-related PPG patterns across different frequency and time resolutions. 
While the AR Coefficients, FFT, DWT, WVD, and most of the Classic Statistics 
are all focusing on analyzing an individual sensor’s measurements, the Cross 
Correlation and 2D-DTW are promising for characterizing the unique gesture-based 
PPG patterns in terms of the relationship between a pair of sensors. Moreover, 
our Time-Frequency (TF) Domain features include three major TF types (i.e., 
non-parametric linear TF analysis (DWT), non-parametric quadratic TF analysis 
(WVD), and parametric time-varying based metric (AR)), which can well capture 
the dynamics of gestures in PPG measurements. In total, we extract 54 different 
features from each PPG sensor. Note that in order to calculate the 2D-DTW feature, 
our system first performs 2D-DTW Profile Selection in the Training Phase, which 
calculates the 2D-DTW distance between every two segments for every gesture in 
the training data and selects three segments that have the minimum average 2D-
DTW distance to other segments of the same gesture as the profile for later use in 
the Classification Phase. 

Our system further employs the elastic net feature selection method [19] in the  
Training Phase to automatically choose the most discriminative ones from our 
extracted features. In particular, the system respectively performs the elastic net 
feature selection on the PPG features corresponding to every target gesture. Based 
on the one-stand-deviation rule [9], our system keeps the most significant highly
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Table 7.1 List of extracted features 

Category Features (# of features) Description 

Time 
domain 

Classic statistics (4): mean, 
peak-to-peak, RMS, variance 

Descriptive statistics of each segment, reflect-
ing the statistical characteristics of the unique 
gesture-related patterns. 

Cross correlation between 
sensors (9) 

A vector of cross correlation coefficients 
between the segments from two PPG sensors 
based on a sequence of the lag values, char-
acterizing the relationship between two PPG 
sensors in a gesture. 

2D-DTW to gesture profiles 
(9) 

Similarity between PPG measurements from 
two sensors (i.e., 2D) and the corresponding g 
esture profiles, directly capturing the temporal 
shape characteristics of the unique gesture-
related patterns. 

Frequency 
domain 

Fast fourier transform (. <
5Hz) (6): skewness, kurtosis, 
mean, median, var, peak-to-
peak 

Statistics of frequency components in the spe-
cific low frequency band, analyzing the unique 
PPG patterns in frequency domain. 

Time-
frequency 
domain 

Discrete wavelet transform 
(4): mean, peak-to-peak, 
RMS, variance 

Statistics of the third level decomposition of 
the wavelet transform using the Harr wavelet, 
revealing the details of gesture-related patterns 
at interested time and frequency scale. 

Wigner Ville distribution [8] 
(13): first-order derivative, 
frequency and time when the 
signal reaches the maximum, 
maximum energy (.Ei

max ) /  
minimum energy (.Ei

min), dif-
ferential energy (. Ei

max −
Ei

min), .ST Di and .AV i of the 
energy within the ith sliding 
window 

Fine-grained time-frequency features with 
high resolutions, capturing details of gesture-
related patterns having short time duration. 

Autoregressive 
coefficients [26] (9)  

Time variant coefficients that can capture the 
characteristics of gesture-related patterns inde-
pendent of the patterns’ time scales. 

correlated features and eliminates noisy and redundant features to shrink the feature 
set and avoid overfitting. Next, in order to generalize the features set for classifying 
all target gestures, our system integrates the features selected for each target gesture 
and generates a general feature set . F as follows: 

.F = F(g1) ∪ . . . ∪ F(gn), (7.3) 

where .F(gn) is the selected feature set of the . nth target gesture . gn. After the feature 
selection and integration, we keep 46 Determined General Features in . F, which 
will be used in the Classification Phase. Figure 7.8 illustrates that our features
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Fig. 7.8 Example of different finger-level gestures and corresponding features. (a) Gesture  1 and  
gesture 3 (b) Gesture 2 and gesture 6
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can effectively capture different characteristics of PPG patterns for distinguishing 
different gestures. 

7.4.3.2 Gradient Boosting Tree Based Classification 

Next, we build a binary classifier for each target gesture by using the Gradient 
Boosting Tree (GBT). We choose GBT mainly because (1) GBT is famous for its 
robustness to various types of features with different scales, which is the exact case 
in our project (e.g., the mean value of the PPG signal reading of the gesture period is 
around 500, and the autoregressive coefficients are the numbers fluctuated around 0 
with value less than (1). (2) GBT classifier is robust to the collinearity of feature 
data. Because our features are heterogeneous across different domains, it may 
result in unexpected correlation or unbalance ranges that possess the collinearity. 
Therefore, GBT would eliminate the efforts to normalize or whiten the feature data 
before classification [11]. We note that among all the machine learning methods, 
such as Random Forest (RF) and Support Vector Machine (SVM), adopted for our 
classifier implementation, GBT has the best performance. 

Given N training samples .{(xi, yi)}, where . xi and . yi represent the gesture-related 
feature set and corresponding label with respect to one specific gesture (i.e., . yi = 1  
or -1 represents whether . xi is from this gesture), GBT seeks a function . φ(xi) =∑M

m=1 ωmhm(xi) to iteratively select weak learners .hj (·) and their weights . ωj to 
minimize a loss function as follows: 

.L =
N⎲

i=1

L(yi, φxi). (7.4) 

Specifically, we adopt the GBT implementation from the library of SQBlib [6] 
for gesture-related feature training. Specifically, the loss function .L(·) is chosen as 
the exponential loss .L = e−yiφ(xi ) that applies enough shrinkage (i.e., 0.1) and 
number of iterations (i.e., .M = 2000), and the sub-sampling of the training dataset 
is a fraction of 0.5. The above parameters adopted in GBT are optimized in terms 
of the speed and accuracy based on our empirical study. Once the loss function is 
determined, we next will build a binary gradient classifier .bk(· · · ) for each profiled 
gesture .gk, k = 1, · · · ,K to complete the Training Phase, and each binary gradient 
classifier will output a score for the testing feature set. The reason of using binary 
classifier is that binary classifier has high accuracy with distinguishing one gesture 
from other gestures, whereas a multi-classifier has relative lower accuracy when 
performs the same classification task [10]. 

In Classification Phase, our system uses the binary classifiers for all the gestures 
in parallel to classify previously unseen gesture-related feature set x. Specifically, 
we sum the stage score [24] of each binary classifier, and choose the label k of 
binary classifier .bk(x) with highest score as the final classification.
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7.5 System Implementation 

Coarse-grained Gesture Detection and Segmentation To facilitate the fine-
grained data extraction, our system preprocesses the raw PPG measurements to (1) 
determine whether there is a gesture performed or not based on the short-time energy 
of the PPG measurements; (2) and extract the PPG measurements that surely include 
the whole gesture-related PPG pattern. Specifically, the system first applies a high-
pass filter to the raw PPG measurements to mitigate the interference of pulses. The 
reason to use the high-pass filter is that the finger-level gestures have more high-
frequency components compared to the pulses, which are usually under 2 Hz [3]. In 
this work, we build a Butterworth high-pass filter with the cut-off frequency at 2 Hz. 
Note that we only use the filtering technique in the coarse-grained gesture detection, 
because the filter removes the low-frequency components of both pulse and gesture-
related signals, which negatively impact the gesture recognition accuracy. Then the 
system decides whether there is a gesture performed or not depending on if the short-
time energy of the filtered PPG measurements crosses a threshold . τ or not. We set 
the threshold to .τ = μ + 3δ, where . μ and . δ are the mean and standard deviation 
of the short-time energy of the filtered PPG measurements collected during the time 
when the user is asked to be static (i.e., at the beginning of the training phase). When 
the system detects a gesture at . tg , we employ a fixed time window . Wc to extract the 
raw PPG measurements within .[tg, tg + Wc] for the fine-grained segmentation. We 
set .Wc = 4.5 s to ensure the window can cover all possible duration of gestures that 
we have observed in our preliminary study as shown in Fig. 7.7. 

Reference Sensor Determination Intuitively, significant gesture-related PPG pat-
terns could result in accurate data segmentation. However, we notice that the 
intensity of gesture-related PPG patterns is sensitive to the locations of sensors 
on the wrist, thus it may not be significant enough for segmentation. The insight 
is that the PPG sensors can capture more significant changes of reflected light 
when they are closer to the arteries that are directly compressed by muscles and 
tendons. Through our extensive tests, we find that two PPG sensors at a close 
distance on the wrist can already provide good diversity, and at least one of them 
can provide gesture-related PPG signals that have the stronger intensity than that 
of pulse-related signals. Therefore, in this work, we employ a two-sensor approach 
and determine which sensor could be the Reference Sensor having the significant 
gesture-related PPG patterns, which will be taken as the input for the fine-grained 
data segmentation. Specifically, we examine the short-time energy of the extracted 
PPG measurements and determine whether a sensor is a Reference Sensor or not 
depending on if its short-time energy exceeds the threshold θ .
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7.6 Performance Evaluation 

7.6.1 Experimental Methodology 

Wearable Prototype We notice that existing manufacturers do not provide direct 
access to raw PPG readings; instead, they only provide computed heart rate. 
Therefore, we design a wearable prototype that mimics the layout of PPG sensors in 
commodity wearables to demonstrate that our system can be applied to the existing 
wearable products without extra efforts. Our prototype consists of two commodity 
PPG sensors (with single green LED) and an Arduino UNO (REV3) as shown 
in Fig. 7.9. The sensors are closely placed to each other and fixed on the inner 
side of a wristband, so that it reduces the movements of sensors and ensures our 
system to take sensor measurements at similar locations in different experiments. In 
the experiments, we adopt various sampling rates (i.e., 30–100Hz) to evaluate the 
system. Unless mentioned otherwise, the default sampling rate is set to 100Hz. 

Data Collection We recruit 10 participants including 9 males and 1 female whose 
ages are between 20–30 to perform finger-level gestures for evaluation. We focus 
on the elementary gestures from American Sign Language involving movements 
of fingers from a single hand as shown in Fig. 7.10. The participants are asked 
to respectively perform the nine finger-level gestures for 40 times while wearing 
our wearable prototype on the right wrist. Note that our system can be applied 
to other more complicated finger-level gestures on whichever wrist regardless of 
the posture of the hand since different gestures involve different combinations of 
muscle movements that can be captured by our system. In total, we collect 3600 
PPG segments for the experimental evaluation. Unless mentioned otherwise, our 

Fig. 7.9 Prototype 
wrist-worn PPG sensing 
platform 

Fig. 7.10 American sign language of number one to nine
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results are derived from 20 rounds Monte Carlo cross-validation using 50% of our 
data set for training and the rest for validation. The data are processed by our system 
implemented by MATLAB, which is run on an ASUS Q324U notebook. 

7.6.2 Evaluation Metrics 

Precision Given . Ng segments of a gesture type g, precision of recognizing the 
gesture type g is defined as .Precisiong = NT

g /(NT
g + MF

g ), where .NT
g is the 

number of gesture segments correctly recognized as the gesture g. .MF
g is the 

number of gesture segments corresponding to other gestures which are mistakenly 
recognized as the gesture type g. 

Recall Recall of the gesture type g is defined as the percentage of the segments that 
are correctly recognized as the gesture type g among all segments of the gesture type 
g, which is defined as Recallg = NT 

g /Ng . 

7.6.3 Sign Language Interpretation Performance 

Figure 7.11 depicts the confusion matrix for the recognition of the nine American 
Sign Language gestures. Each entry .Cij denotes the percentage of the number 
of gesture segments i was predicted as gesture type j in the total number of 
i. The diagonal entries show the average accuracy of recognizing each gesture, 
respectively. Specifically, the average accuracy is .88.32% with standard deviation 
.2.3% among all the 9 gestures. We find that the recognition results of the gesture 
.S2, S6, S7, S8 are relatively low (i.e., around .86%). This is because those gestures 
have more subtle differences in the tendon/muscle dynamics than other gestures. 
Overall, the results confirm that it is promising to use commodity wrist-worn PPG 
sensors to perform finger-level gesture recognition. 

Fig. 7.11 Confusion matrix of recognizing nine finger-level gestures among ten participants
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7.6.4 Study of Different Impact Factors to the System 

Impact of Different Users Figure 7.12a and b present the average precision and 
recall of recognizing each finger-level gesture across different participants. We 
observe that all participants have high accuracy on recognizing these finger-level 
gestures. Specifically, the average precision and recall of all the 10 participants 
are .88% and .89%, respectively, and the lowest average value of the precision and 
recall among all the participants is still above .80%. The results show the robustness 
and scalability of our proposed system across different users, and demonstrate the 
system is promising to act as an integrated function in commodity wearables once 
the interface of PPG raw signals to developers is open. 

Impact of Different Gestures We next study the impact of different sign gestures 
on the performance of the proposed system and show the average precision/recall 
for each sign gesture. As shown in Fig. 7.13a, it is encouraging to find that all those 
gestures can be recognized well with the lowest average precision and recall as 
85 and 84%, respectively. Furthermore, Fig. 7.13b shows the standard deviation 
of the precision and recall of recognizing each gesture. The gestures S1, S2 and 
S6 have relatively high standard deviation. This is because participants P2 and 
P3 inconsistently perform S1, S2 and S6 respectively based on our observation. 
Overall, our system is robust on recognizing different finger-level gestures. 

Impact of Sampling Rate The sampling rate of sensing hardware is one of the 
critical impact factors on affecting the power consumption of wearables, thus we 
study the performance of the proposed system with different sampling rates on 
PPG sensors. Most of the commodity wearables have around 100Hz PPG sampling 
rate. For instance, Samsung Simband [22] configures its PPG sensor to 128Hz to 
perform time-centric tasks (e.g., Pulse Arrival Time calculations). Therefore, we set 
our wearable prototype to collect PPG measurements with different sampling rates 
(i.e., 30–100Hz with a step size of 20Hz) in our experiments. Figure 7.14a shows  
the average precision and recall of the gesture recognition under different sampling 
rates. We find that the precision/recall increases with the increased sampling rate, 
however, the precision/recall still maintain as high as 87% at the lowest sampling 
rate (i.e., 30Hz). As the results implied, our system is compatible to commodity 
wearables and can provide high recognition accuracy with lower PPG sampling rate 
in terms of the power consumption. 

Impact of Training Data Size We change the percentage of data used for training 
in the Monte Carlo cross-validation to study the performance of our system under 
different training data size as shown in Fig. 7.14b. In particular, we choose the 
percentages 12.5, 25, 37.5, 50, and 62.5%, which correspond to 5, 10, 15, 20, and 
25 PPG segments with respect to each gesture for training, and use the rest of our 
data for validation. We observe that our system can achieve an average precision 
of 75% for recognizing nine finger-level gestures using only 5 PPG segments 
of each gesture for training. As the size of the training data grows, the system



174 7 Fine-grained Gesture Recognition and Sign Language Interpretation via. . . 

Fig. 7.12 Participant study: comparison of gesture recognition performance among ten partici-
pants. (a) Average precision. (b) Average recall



Fig. 7.13 Gesture study: Comparison of gesture recognition performance between nine gestures. 
(a) Average precision and recall. (b) STD of precision and recall
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Fig. 7.14 Impact factor study: average precision and recall of recognizing nine gestures with 
different sampling rates and # of training segments. (a) Impact of sampling rate. (b) Impact of 
# of training segments
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performance improves significantly. More specifically, the average precision and 
recall can achieve 89 and 90% respectively when 25 segments of training data for 
each gesture are collected in the training phase. The above results indicate our 
system can achieve good recognition performance with a limited size of training 
data (e.g., 5 sets per gesture), which ensures great convenience for practical usage 
on commodity wearables. 

7.7 Summary 

Gesture recognition, as a crucial aspect of human-computer interactions, has 
garnered considerable research attention in recent years. This chapter represents 
a significant stride towards comprehensively understanding PPG-based gesture 
recognition. Our work introduces an innovative approach for recognizing fine-
grained finger-level gestures, including sign language, by utilizing affordable PPG 
sensors integrated into wearables. To achieve this, we have developed a novel 
proposition that effectively separates the distinctive gesture-related patterns from 
the continuously interfered PPG measurements, caused by pulsations. This is 
made possible through the implementation of a fine-grained data segmentation 
method. Furthermore, we have investigated the unique PPG features generated by 
finger-level gestures across various signal domains. Leveraging this knowledge, we 
have devised a system that can accurately recognize finger-level gestures solely 
based on PPG measurements. In our experiments, we collected and analyzed 
over 3600 gestures from a group of ten participants. The results demonstrate that 
our system achieves an impressive average recognition accuracy of over 88% 
when differentiating nine elementary finger-level gestures from American Sign 
Language. While conducting this research, we acknowledged several factors that 
may impact the performance of PPG sensors. For instance, we recognized that 
the intensity of reflected light captured by PPG sensors is sensitive to variations 
in skin color, with lighter skin reflecting more light. Additionally, the location of 
the sensor on the wrist can affect signal strength, with signals being weaker on the 
outer side. Moreover, strenuous physical activities can significantly influence PPG 
signals. These considerations necessitate further investigation and the exploration 
of potential solutions, such as incorporating motion sensors, to address these impact 
factors in our future work. By presenting our findings and actively seeking solutions 
for these challenges, we aim to advance the field of PPG-based gesture recognition 
and facilitate its practical implementation in diverse real-world scenarios. 
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Chapter 8 
Continuous User Authentication via PPG 

PPG technology offers potentials not only in sign language interpretation, but also 
in user authentication. Traditional single-instance user authentication methods often 
result in a less-than-ideal user experience, especially in frequently used applications. 
This problem is notably acute in security-sensitive contexts, where unauthorized 
access could potentially follow a user’s initial login. In response to this, continuous 
user authentication (CA) has emerged as a compelling solution, offering seamless, 
low-effort authentication for users. In this chapter, we present a cost-effective 
system that leverages pulsatile signals captured by the photoplethysmography (PPG) 
sensor in commercially available wrist-worn wearables for CA. Our system stands 
out by eliminating the need for users’ participations and accommodating non-
clinical PPG measurements that are prone to motion artifacts (MA), commonly 
encountered during daily activities. To address the challenges posed by MA, we 
delve into the unique characteristics of the human cardiac system and propose an 
MA filtering method that effectively mitigates the impact of everyday movements. 
Moreover, we identify key fiducial features and develop an adaptive classifier 
using the gradient boosting tree (GBT) method. Consequently, our system can 
continuously authenticate users based on their cardiac characteristics, requiring 
minimal training effort. We conduct experiments with our wrist-worn PPG sensing 
platform in practical scenarios. The results demonstrate the high accuracy of 
our system and a low false detection rate when detecting random attacks. The 
structure of the remainder of this chapter is as follows. Section 8.1 introduces the 
research background to provide the context for this study. Section 8.2, reviews the 
current literature related to the field of continuous user authentication via PPG 
on smartwatches. In Sect. 8.3, we delve into the feasibility of such authentication 
system, describing the attack model, system design, PPG feature extraction and 
authentication, and general wrist PPG feature extraction. Section 8.4 deals with the 
challenge of motion artifacts, exploring their detection, classification, removal for 
near-wrist activities and mitigation for far-wrist activities. In Sect. 8.5, we provide 
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a thorough depiction of the system’s implementation, including data preprocess-
ing and pulse segmentation. Section 8.6 encompasses the system’s performance 
evaluation, covering experimental methodology, evaluation metrics, continuous 
authentication performance, impact of various factors, CA performance with motion 
artifacts removal and mitigation, and effectiveness of adaptive training. Finally, 
Sect. 8.7 concludes the chapter with a succinct summary. 

8.1 Background 

Traditional user authentication methods rely on users’ inputs, such as passwords 
and graphic patterns. However, these methods are known to be vulnerable to 
many attacks [2, 19]. Recently, multi-factor authentication (MFA) [4, 24] has been 
proposed to mitigate these threats by verifying two or more types of confidential 
information from independent sources. While many applications have adopted 
either one-factor or MFA, both of these two approaches use a one-time login pro-
cess, which is not secure enough to authenticate users during certain applications. 
This is especially critical for a security-sensitive application, in which an adversary 
could obtain unauthorized privileges after a user’s initial login. Therefore, a practical 
continuous user authentication (CA) solution that can periodically verify a user’s 
identity without interruptions of the application usage is highly in demand [1]. 

Existing CA approaches usually focus on reducing or eliminating user involve-
ment in the authentication process by leveraging users’ unique behavioral patterns. 
For example, keystroke/mouse dynamics [21, 33] and gait patterns [29] have  
been used for user authentication since 2012. These approaches usually rely on 
momentary events and can only determine a user’s identity by monitoring particular 
activities (e.g., typing, mouse-clicking, or walking). There are studies using cardiac 
signals (e.g., ECG [14, 26] and cardiac motion [20]) for CA. All these systems 
require dedicated sensors (e.g., ECG or Doppler radar sensors), which are costly 
and not readily available in commodity devices. Recently, researchers find that 
the photoplethysmography (PPG) sensor can also provide unique cardiac biometric 
information for user authentication [6, 15, 16, 30]. However, these systems only 
focus on clinical scenarios, under which strong and stable PPG measurements are 
collected from the fingertips of static subjects. 

Different from the existing works, we develop a low-cost CA system, which can 
periodically verify the identity of a user via cardiac signals (i.e., PPG) from common 
wrist-worn wearable devices (e.g., smartwatches and fitness trackers). Under a 
working environment shown in Fig. 8.1a, our system can continuously determine 
whether a current staff operating a specific device (e.g., a smartphone or a laptop) is 
a legitimate user in a non-intrusive manner so that any time-sensitive tasks will not 
be interrupted. As a result, a user can continuously trade stocks, manage air traffic, 
or switch circuits. As a daily life example in Fig. 8.1b, each family member with 
a wearable device can be periodically authenticated by the system so that he/she 
can enjoy a seamless experience of accessing or switching between user-specific
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Fig. 8.1 Two scenarios of continuous user authentication (CA). (a) CA in office scenarios. (b) CA  
in living scenarios 

apps on the smart devices paired with the system. Therefore, each person can watch 
his/her own favorite channels in a smart TV or do online shopping via a voice 
assistant. The advantage of using PPG for CA is obvious as cardiac signals are 
unique and ever-present biometrics which are available without users’ involvement.
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In addition, PPG requires physical contact to human skin and is usually hidden in 
the back of wearable devices. Therefore, PPG measurements are secure and difficult 
to counterfeit. 

There are several challenges in performing CA using PPG measurements from 
wearable devices. First, in contrast to ECG signals which are electrical and gener-
ated by heart activities, PPG signals capture blood volume changes by measuring 
reflected light from human skins. Therefore, PPG signals are relatively coarse-
grained, noisy, and more susceptible to interference than ECG signals. Although 
initial works [18, 30] have shown that PPG measurements from fingertips contain 
unique features to be used for user authentication in clinical environments. However, 
these features are not persistent in the PPG signals collected from wearable devices 
in practice. Second, wrist-worn wearable devices are usually associated with a lot 
of hand or body movements from daily activities. These movements would result in 
various motion artifacts (MAs) which make cardiac signals in PPG measurements 
often unavailable in practice. Third, due to various types of imprecisions in PPG 
sensors in wearable devices and loose contacts between them and human skins, 
cardiac signals from PPG measurements could vary in different days or even in the 
same day. 

To address these challenges, we particularly investigate and determine general 
fiducial features that are not only persistent in various users’ PPG measurements 
but also can capture unique characteristics of cardiac motions for CA. Additionally, 
we study the MAs of different types of body-movements (e.g., walking, moving 
forearm, and drinking water) in practical scenarios and categorize them into two 
types: far-wrist and near-wrist, based on the recoverability of cardiac signals with 
the MAs. We further develop effective MA detection and MA mitigation/removal 
mechanisms to identify the two type of MAs and choose to either recover the cardiac 
signals from weak MA impacts or remove the measurements containing strong 
MA impacts. These mechanisms ensure that our CA system can extract correct 
cardiac signals without the impact from MAs and perform CA accurately under 
practical scenarios. Moreover, our system adopts an adaptive updating mechanism 
to automatically accommodate the user’s cardiac signal changes over time based 
on adaptive training of associated classifiers. The main contributions of this 
work are summarized as follows. We introduce a pioneering low-cost continuous 
user authentication (CA) system that utilizes unique cardiac biometrics extracted 
from PPG sensors in wrist-worn wearable devices, specifically designed for easy 
integration with PPG-enabled wearables like smartwatches. Our research involves 
an extensive exploration of motion artifacts (MAs) in real-world scenarios, leading 
to the development of robust mechanisms for MA mitigation and removal. These 
mechanisms effectively identify various types and intensities of MAs, ensuring 
minimal impact on authentication accuracy. Through the identification of general 
fiducial features, we capture the individuality of users’ cardiac patterns, enabling the 
creation of an adaptive gradient boosting tree (GBT)-based classifier that remains 
resilient to signal drifts in PPG, thereby ensuring reliable user authentication and 
effective defense against random attacks. To validate our approach, we implement
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a prototype of the proposed system using commercially available PPG sensors and 
conduct experiments involving 20 participants. The results demonstrate our system’s 
exceptional performance, with an average CA accuracy surpassing 90% and a low 
false detection rate of 4% when detecting random attacks. 

8.2 Related Work 

Recent user authentication systems often use users’ biometrics (e.g., behavioral or 
physiological information) to reduce user involvement and facilitate CA. Behavioral 
pattern is considered a distinct biometric that can make CA possible based on users’ 
daily activities. For example, Mondol et al. [22] propose a user authentication 
system leveraging motion sensors in smartwatches to capture users’ signatures in 
the air for authentication. Casale et al. [8] develop a wearable-based authentication 
system based on users’ walk patterns. However, these approaches rely on users’ 
involvement in specific activities in such a great deal to easily cause inconvenience. 

Physiological-based biometrics (e.g., cardiac and respiratory motions) are pop-
ularly used for building CA systems because they can be obtained without users’ 
active participation. For instance, Lin et al. [20] propose a CA system, Cardiac Scan, 
which utilizes DC-coupled continuous-wave radar to capture distinct heart motions 
in the user identification process. Rahman et al. [28] develop a method that uses 
the Doppler radar to identify users based on their respiratory motions. Although 
these systems provide a sound foundation for CA using wireless technology, they 
use dedicated devices that might not be available for users yet. Recently advanced 
sensing technologies enable unobtrusive and continuous user authentication based 
on unique cardiac biometrics captured by electrocardiogram (ECG) sensors [7, 12]. 
While mostly available under clinical environments, these systems require users to 
wear electrodes at various locations. This again turns out to be inconvenient for the 
uses in practice. 

Unlike ECG, PPG is widely used in commodity wearable devices such as 
smartwatches and fitness trackers. Some initial studies have explored PPG-based 
authentications. For example, fiducial features [6, 30] have been discovered to 
capture unique characteristics in human cardiac systems so they can facilitate user 
authentication processes. Recently, non-fiducial features (i.e., discrete wavelet trans-
form (DWT) coefficients) of PPG signals are proposed to build CA systems [15, 16]. 
However, all of the aforementioned studies collect PPG measurements from users’ 
fingertips thus require users to wear dedicated PPG sensors and keep motionless. 
These requirements are difficult to meet in reality. 

Different from the existing work, we build the first low-cost PPG-based system 
that can perform CA in practical scenarios with various body movements by lever-
aging PPG sensors in commodity wrist-worn devices. We identify general fiducial 
features that can capture distinct cardiac biometrics of diverse PPG measurements 
collected from users’ wrist areas. In addition, we extensively study the impact of
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motions with different intensities and develop the MA removal method that can 
effectively remove MA and significantly improve the CA performance. Moreover, 
our system employs an adaptive user authentication method that can reduce the 
impact of system drifts and provide long-term PPG-based CA. 

8.3 Continuous User Authentication via PPG on 
Smartwatches 

8.3.1 Attack Model 

We assume that attackers cannot compromise users’ wearable devices (i.e., gaining 
access to their memory storages for raw PPG measurements). Based on this, the 
possible attacks to our CA system are as follows: 

Random Attack Attackers or their accomplices wear users’ wearable devices and 
expect the PPG measurements captured can pass our PPG-based CA system. This 
random attack model is similar to the brute-force attack. 

Synthesis Attack To launch this attack, attackers first need to obtain users’ 
blood flow patterns through either medical records or vision-based technologies 
(e.g., remote photoplethysmography (rPPG) [23]). However, these patterns and the 
PPG measurements collected from users’ wrist areas are different in collection 
approaches and conditions. In addition, the PPG signals are collected in an enclosed 
environment (between the back of wearable devices and skin contact areas) so that 
many critical measurement data (light absorption/reflection of human skin, light 
source intensity, etc.) As a result, synthesis attacks will not be easily launched. 

8.3.2 Feasibility Study of Using PPG for User Authentication 

Intuition of Using Wearable PPG for CA Human cardiac systems have been 
studied and known to be distinct among people [31]. Along this direction, initial 
studies [18, 30] have shown that fiducial features derived from critical landmarks in 
the raw PPG measurements and their derivatives (i.e., the systolic/diastolic peaks, 
dicrotic notch, and points a/b/c in Fig. 8.2) can be used as users’ unique biometric 
information. However, these studies only analyze PPG data collected from clinical 
settings with quite strict requirements. Thus, how to design and realize a PPG-based 
CA system using wrist-worn devices in practices remains a challenging task. 

Difference Between Wrist-Worn PPG and Fingertip PPG To illustrate such a 
difference, we collect PPG measurements from both fingertip and wrist areas of the 
same users simultaneously using our prototype PPG sensing platform. The top two 
panels of Fig. 8.3 show that the PPG measurements from the wrist area are stable but
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Fig. 8.2 Illustration of the critical landmarks in raw PPG measurements and its second derivative. 
(a) Raw PPG measurements. (b) Second derivative of raw PPG measurements
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Fig. 8.3 Example of PPG data from fingertip and wrist and their corresponding discrete wavelet 
transform. (a) Fingertip PPG data and DWT coefficients. (b) Wrist PPG data and DWT coefficients
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Fig. 8.4 The PPG measurements of the same people under static scenario and walking scenario 

with less detectable and critical landmarks than those from the fingertip area. This 
indicates that the existing fiducial-feature-based authentication approaches [18, 30] 
are not applicable directly to the PPG from wearable devices. We further generate 
non-fiducial feature for both PPG measurements using the Daubechies wavelet of 
order 4 (db4) with four levels of decomposition. The bottom two panels in Fig. 8.3 
show that the fingertip PPG readings have repetitive and stable DWT coefficients 
with respect to each heartbeat in four levels, whereas the wrist area PPG readings are 
embedded with many noisy and irregular DWT coefficients, which will significantly 
impact the performance of the non-fiducial-based PPG authentication work [15, 16]. 
Therefore, instead of adopting non-fiducial features, there is a need to explore more 
general fiducial features in the PPG signal from the wrist area for CA. 

Impact of Daily Activities To better understand the impact of daily activities as 
motion artifacts (MAs), we categorize them into three types based on the different 
moving parts of human bodies involved: far-wrist, near-wrist, and whole-body 
activities. The far-wrist activities are the major arm movements without involving 
tendons and muscles of the wrist area. In contrast, the near-wrist activities are finger-
level and/or wrist-level movements, which have direct impacts on blood volume 
changes in the wrist area and more significant impact on PPG measurements from 
wearable devices. The whole-body activities are associated with most of human 
body parts. We find that some whole-body activities of low intensity, such as leisure 
walking, do not have noticeable impacts on the PPG measurements as shown in 
Fig. 8.4. More strenuous activities, such as running, would change PPG readings 
significantly. In this work, we focus on the static and moving scenarios involving 
far-wrist and near-wrist activities, which cover the main scenarios in CA. We present 
the detailed design of our system in the following sections.
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Fig. 8.5 Architecture of of the proposed user authentication using PPG 

8.3.3 PPG-based Authentication System Design 

The architecture of our PPG-based continuous user authentication system is shown 
in Fig. 8.5. The system collects PPG measurements constantly from users’ wearable 
devices as the input. Due to hardware imperfection, the raw PPG measurements 
inevitably contain baseline drifts and high-frequency interferences. Therefore, our 
system first performs Noise Reduction using Filtering to reduce such impacts. A 
band-pass filter is used to extract pulsatile components in PPG measurements. 
After filtering, the system conducts Pulse Segmentation to determine the PPG 
segment that is likely to contain a complete cardiac cycle. The insight is that each 
cardiac cycle should include a systolic peak, which could be identified in the PPG 
measurement during typical diastole and systole phases. 

Next, we design Motion Artifact (MA) Filtering to remove MAs caused by daily 
physical activities. In PPG measurements, MAs arise from tissue deformations and 
local blood flow changes in the wrist area. While pulsatile signals are repetitive in 
PPG measurements, most MAs have burst PPG waveforms. We calculate statistical 
measures, such as kurtosis, skewness, and standard deviation, in pulse waveforms 
and MA signals to determine whether a PPG segment contains a pulse or an 
MA in the MA detection process. If MAs are detected, our system performs MA
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Classification to further decide whether they are from far-wrist activities or near-
wrist activities. In general, near-wrist activities result in long-duration and strong 
and unrecoverable effects on PPG measurements, while far-wrist activities have 
small and recoverable impacts. When MAs are detected in many consecutive PPG 
segments, our system attributes them to near-wrist activities and then perform MA 
Removal to eliminate the impacted PPG segments. On the contrary, if MAs are 
detected in scattered or only a few consecutive segments, our system associates 
them with far-wrist activities and performs MA Mitigation to reconstruct related 
pulse waveforms. After the Motion Artifact (MA) Filtering, the data processing of 
our system is separated into two phases: Training Phase and Authentication Phase. 

Training Phase In this phase, our system performs General Fiducial Feature 
Extraction to extract the unique cardiac features from the PPG segment and its 
second derivative. This process applies to both wrist PPG measurements and 
fingertip ones. Next, we perform Binary Gradient Boosting Classifier Construction 
to train a binary classifier for each user. In particular, we construct a user’s profile 
based on some extracted features and use the Gradient Boosting Tree (GBT) in 
training the classifier when the user enrolls in the system. Furthermore, our system 
regularly updates the classifier with new training data to accommodate PPG drifts 
over time in Adaptive Updating. 

Authentication Phase In the Authentication Phase, our system collects PPG 
segments in real-time and determines whether a current user is legitimate based 
on the PPG segments in a sliding window. Specifically, after our system filters 
MAs out from the PPG segments, it would further extract general fiducial features. 
Then our system performs Cardiac User Identification Using Gradient Boosting 
Tree by using the binary gradient boosting classifiers generated in the training 
phase to determine the user’s identity based on each PPG segment. Finally, our 
system utilizes a majority-vote rule on the classified results of the PPG segments 
in the sliding-window to perform CA. In addition, our CA system is suitable for 
commodity wearable devices since their PPG sensors consume low power (e.g. 
4mA) compared to battery capacities of these devices. 

Accurate Sensing Using Low-cost PPG Sensor on the Wrist The low-cost PPG 
sensors in commodity wearable devices collect data from users’ wrists at lower 
sampling rates with more noise and lower resolution. This will reduce the accuracy 
in user authentication. 

Robust CA with Body Movements in Daily Activities The PPG sensors in the 
wrist-worn wearable device are particularly susceptible to daily physical activities. 
Therefore we need to explore characteristics of MAs from the PPG measurement 
and develop technologies to effectively reduce such impacts. 

Effective Feature Set for General PPG Measurements The PPG measurements 
from the wrist area are unstable and weak, leading to fewer detectable fiducial 
features. Thus, we need to exam general effective features for CA.
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Persistent User Authentication Against PPG Drifts The typical system-drifts in 
PPG sensors which could significantly impact the CA performance. Our system 
should study these drifts and adaptively accommodate the resulting PPG variations 
during a long time period. 

8.3.4 PPG Feature Extraction and User Authentication 

In this section, we explore the cardiac features extracted from PPG measurements 
and present the details of our adaptive user authentication using gradient boosting. 

8.3.4.1 General Wrist PPG Feature Extraction 

We have shown that the PPG measurements from the wrist area have fewer fiducial 
features and non-fiducial features compared to the PPG measurements from the 
fingertip. Therefore, we explore the fiducial features that are still available in the 
PPG measurements from the wrist area based on the 29 fiducial features that have 
been used for user authentication [10, 18]. 

General Wrist PPG Fiducial Features Based on our experiments with 20 par-
ticipants, we find that .60% of the PPG measurements from the wrist area have 
only one obvious systolic peak in a cardiac cycle. To let our CA system generally 
work for various types of PPG measurements, we select to use five fiducial features 
that only require a single systolic peak in the PPG measurements. Figure 8.6 
illustrates how to derive the five fiducial features from the critical landmarks in 
the PPG pulse waveform. The five fiducial features are generally effective for the 
user authentication because they are always available regardless of the source of 
the PPG measurements (i.e., from the wrist area or the fingertip), and they have 
the physiological relationships with human cardiac systems. We summarize the five 
fiducial features and their physiological meanings as shown in Table 8.1. Note that 
the five general fiducial features are always available in the PPG measurements 
from the fingertip. Therefore, our CA system is also applicable to the clinical PPG 
measurements. 

8.3.4.2 Adaptive Cardiac Authentication Using Gradient Boosting Tree 

Next, we build the binary classifier using Gradient Boost Tree (GBT) for user 
authentication. Comparing to other machine learning methods, GBT can handle the 
mixed types of the features with different scales, which is exactly what our general 
fiducial feature set possesses. Moreover, GBT is robust against the outliers via the 
robust loss functions and can eliminate the requirement of normalizing or whitening 
the feature data before classification [13].
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Fig. 8.6 Comparison of the Short Time Energy (STE) of the Magnitude of Linear Acceleration 
(MLA) and the exercise form scores on the workout review plane of user A. (a) Raw PPG 
measurements. (b) Second derivative of raw PPG measurements



194 8 Continuous User Authentication via PPG

Table 8.1 List of general wrist PPG features 

Feature name Feature description 

Systolic amplitude (. As ) Related to the stroke volume and directly proportional to 
vascular distensibility, which is distinguishable among 
different people. 

Pulse width (. Pw) The width of the PPG signal at the half-height of the 
systolic peak, and it correlates with the systemic vascular 
resistance. 

Ratio of pulse interval to systolic 
amplitude (.Pi/As ) 

Reflects the functionality of a person’s cardiovascular 
system. 

Crest time (. Tc) Indicates the pulse wave velocity, which is distinct from 
person to person. 

Ratio of amplitude of b-wave and 
a-wave (.Ab−w/Aa−w) 

Reflects the arterial stiffness and the distensibility of the 
peripheral artery, which are also different among people. 
In addition, this feature can also reflect the healthy level 
of different people. 

Specifically, given N training samples .(xi, yi), i = 1, . . . , N , where . xi and . yi

represent the cardiac-related feature set and the corresponding identity label of the 
user (i.e., . yi = 1 or .−1 represents whether . xi is from the current legitimate user), 
GBT seeks a function .φ(xi) = ∑M

m=1 ωmhm(xi) to iteratively select weak learners 
.hm(·) and their weights . ωj to minimize a loss function as follows: 

.L =
N⎲

i=1

L(yi, φxi). (8.1) 

We specifically adopt the GBT implementation from the SQBlib library [3] for  
cardiac-related feature training. In order to optimize the speed and accuracy of the 
GBT model, we empirically choose the exponential loss .L = eyiφ(xi ) as the loss 
function .L(·) with enough shrinkage (i.e., 0.1) and number of iterations (i.e., . M =
2000), and we take a fraction of .0.5 as the sub-sampling of the training dataset. 
Once we have determined the loss function, next we will construct a binary gradient 
classifier .bk(· · · ) for each user .gk, k = 1, · · · ,K to complete the Training Phase. 
Then for the testing feature set, each binary gradient classifier will output a score. 
The reason to use binary classifier is that binary classifier has higher accuracy in 
differentiating one user from other users [11] which exactly meets the fundamental 
requirement of a CA system. 

In the authentication phase, our system utilizes the already-built binary classi-
fiers for all the users in parallel to classify incoming cardiac-related feature set x. 
In particular, we will obtain different confidence scores from each binary classifier, 
and choose the identity k of the binary classifier .bk(x) with the highest score as the 
final classification. After the user classification, we adopt a non-overlapped sliding 
window-based approach to perform CA. In particular, we consider P continuous 
PPG segments in a sliding window as a basic CA unit and use the majority vote 
from the classification results of these PPG segments to determine the user’s identity
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periodically. If a half or more of the PPG segments in the window are classified 
to be the same user, the system would allow the current user to pass the user 
authentication. Otherwise, the current user does not pass the user authentication. 
Unless mentioned elsewhere, we use the set the sliding window size to 4 PPG 
segments, which generally provides good performance as shown in our evaluation. 

Adaptive Updating We find that people’s pulse patterns may slightly vary during 
a day. Therefore, we design our system to re-train the underlying classifier based 
on recently collected PPG measurements after each successful user authentication. 
Specifically, our system regularly adds a small amount of the user’s PPG measure-
ments (e.g., 2 min) to the training data to re-train a new classifier for the user in 
the background. This re-training process will stop until the new classifier meets the 
performance requirement (e.g., when the CA accuracy reaches .90%), and the new 
classifier will take effect until the next time re-training process starts. 

8.4 Motion Artifacts Detection and Filtering to Improve 
System Performance 

In this section, we present the MA detection and classification methods. Based 
on different causes of MA, we present the details of the MA removal and MA 
mitigation. 

8.4.1 Motion Artifacts Detection 

After the pulse segmentation, the system first needs to detect whether MA is 
affecting the PPG segments or not. We find that when there is no MA, the PPG 
segments should contain similar pulse waveform, thus the statistics of each PPG 
segment should be stable over time. However, when the PPG segments are affected 
by MA, the statistics of PPG measurements vary a lot. Therefore, we propose to 
examine the statistics of each PPG segment and use a threshold-based approach to 
detect the existence of MA. 

In particular, we choose three types of statistics (i.e., kurtosis, skewness, and 
standard deviation (STD)) efficiently measuring the symmetry, tails, and dispersion 
of the PPG segments respectively, which are used to effectively detect MA in 
existing work [27]. For each type of statistics, we derive its cumulative distribution 
function (CDF) based on high-quality PPG segments (about 20 s) without MA. 
From the CDF, we determine two thresholds that can include .95% of the values 
of particular statistics. The statistics of the testing PPG segments will be compared 
to the thresholds, respectively. If any of the three types of statistics from a PPG 
segment is out of the range determined by the corresponding two thresholds, the 
PPG segment is determined to be affected by MA. Figure 8.7 presents an example
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Fig. 8.7 Performance of MA detection and MA removal for the near-wrist activity. (a) MA  
detection in a sliding window for the near-wrist activity. (b) The PPG measurements after MA 
detection and removal for the near-wrist activity
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of our MA detection, which shows that our method can successfully detect the PPG 
segments affected by MA through the three types of statistics of the PPG segments 
in a sliding window. We note that the accuracy of our MA detection method is over 
.95% in our data from the wrist collected in the moving-scenario. 

8.4.2 Motion Artifacts Classification 

The far-wrist activities (e.g., moving the forearm to reach a cup) usually create 
sparse and mild MA to PPG measurements, while the near-wrist activities (e.g., 
grabbing a cup) result in much stronger MA for a considerably longer period. Based 
on this observation, we develop an MA classification method, which examines 
the proportion of the PPG segments affected by MA in the sliding window . W
and determines whether the cause of MA is the near-wrist activities or far-wrist 
activities using a threshold-based approach. More specific, we denote the number 
of PPG segments that are determined to be affected and not affected by MA in the 
sliding window as .MW and .NW , respectively. The proportion of the PPG segments 
affected by MA in the sliding window is defined as the ratio .λ = MW

NW
. Next, . λ

is compared to a threshold . θma. The cause of MA is classified as the near-wrist 
activities if . λ is greater or equal to . θma . Otherwise, the cause of MA is classified as 
the far-wrist activities. From our experimental results from all 20 participants, we 
find that a short time period .W = 10 s is sufficient to cover the duration of typical 
arm movements, and the threshold .θma = 30% is general enough to provide high 
accuracy of categorizing the arm movements for all participants. In our evaluation, 
we apply this general threshold for categorizing the movements. 

8.4.3 Motion Artifacts Removal for Near-wrist Activities 

When the system determines that the PPG segments are affected by the near-wrist 
activities, it implies that the PPG measurements are significantly distorted by the 
MA during the time in the sliding window, which we consider unrecoverable. In 
this case, we remove all the PPG segments affected by MA and only perform user 
authentication using the rest of the PPG segments in the sliding window. However, 
we find that the PPG segments affected by MA may not be continuous, and the 
interval between two affected segments may be too short (e.g., .1 ∼ 2 s including 
.1 ∼ 3 PPG segments) for extracting a complete pulse waveform that can be used 
to perform user authentication. Hence, we remove all the PPG segments in between 
the first and last segments affected by MA and keep the unaffected PPG segments 
for user authentication. 

An example of our MA removal for the near-wrist activity is shown in Fig. 8.7a. 
Based on the MA detection results (i.e., 7 out of all the 12 PPG segments are
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determined as MA), we can determine the PPG measurements in the sliding window 
contains the near-wrist activity. Thus, our system removes the PPG segments 
affected by MA (i.e., from PPG segment index .3 ∼ 10) between the first and last 
detected MA in this sliding window. 

As shown in Fig. 8.7b, our MA removal method can successfully remove the 
PPG measurements that are impacted by the near-wrist activities with respect to 
the ground truth. In addition, it should be noted that our CA system could still 
authenticate the user when the hand is stable before/after the near-wrist activities, 
and removing the MA caused by the near-wrist activities does not influence the user 
experience since user authentication can be done before the near-wrist activities. 

8.4.4 Motion Artifacts Mitigation for Far-wrist Activities 

When the system determines that the PPG segments are affected by the far-wrist 
activities, we notice that the interference of MA is usually small and recoverable. 
Therefore, we employ a special moving average filter (SMAF) to mitigate those 
MA and retain them for continuous authentication. The basic idea is to average each 
recognized MA with several pure pulse segments (i.e., the typical PPG segments 
without MA) of the current testing user. Then the MA is able to be mitigated 
from the averaged results. Specifically, we first align the pure pulse PPG segments 
using the systolic peaks in order to maintain the locations of the critical fiducial 
points. Since the number of the samples in each pulse segment is not equal, we 
then interpolate those PPG segments to make them have the same length. After the 
interpolation, we will apply the SMAF on the pure pulse segments and MA using 
the following equation: 

.S =
∑N

h=1
−→
Ph + −→

M

N + 1
, (8.2) 

where the .
−→
Ph represents the pure pulse segments, .

−→
M is MA that requires the 

mitigation, and totally N pure pulse segments and 1 MA are averaged with the 
mitigated result as . S. In particular, we use 4 pure pulse segments for the proposed 
SMAF. After the SMAF, we use the smooth function to ensure the continuity of 
the filtered signal. Figure 8.8 illustrates the effectiveness of our MA mitigation 
for a far-wrist activity, which is raising forearm to check the time. From Fig. 8.8a, 
we can see that a small proportion of PPG measurements (i.e., the measurements 
highlighted in red) are affected by the far-wrist activities and detected by our MA 
detection method. Figure 8.8b presents the results after applying the SMFA filter 
on the PPG measurements, which can mitigate the impact and reconstruct the pulse 
waveform.
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Fig. 8.8 Example of the MA mitigation using SMAF. (a) Raw PPG measurements and detected 
MA. (b) PPG measurements after SMAF filtering
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8.5 System Implementation 

8.5.1 Data Preprocessing 

The PPG measurements from the low-cost PPG sensor in wrist-worn wearable 
devices inevitably contain baseline drift and high-frequency interference. Since the 
frequency of the pulsatile component in PPG is .0.5 − 4 Hz, and the frequency of 
MA is . 0.1 Hz and above, our system firstly applies a band-pass filter to reduce the 
effect of the baseline drift and high-frequency noise. In particular, we implement a 
Butterworth bandpass filter with the passband .0.5 − 6 Hz and the order as 2 to only 
retain the pulsatile components together with the MA components having a similar 
spectrum. 

8.5.2 Pulse Segmentation 

Our system determines the starting and ending points of all the PPG segments 
in the sliding window. Figure 8.2 shows that the starting and ending points of 
a typical complete cardiac cycle correspond to the two valley points before the 
systolic and after diastolic points, respectively. Ideally, we can find all the valley 
points in the sliding window and extract the data between every two valley points 
as the PPG segments. However, we find that the dicrotic notch could have the 
lowest amplitude (i.e., “fake” valley) in the cardiac cycle. Particularly, we tackle 
this issue based on the fact that the time distances from the systolic peak to the 
starting and ending points are in the range of .Ts = 0.15.∼ 0.26 s and . Te = 0.44
.∼ 0.74 s, respectively [5]. Therefore, the accurate PPG segment can be extracted 
by selecting the valleys that are within the typical time ranges . Ts and . Te before 
and after each systolic peak, respectively. In addition, through our experiments with 
20 participants, we empirically determine the sliding window as 2 s larger than one 
typical pulse waveform (e.g., .0.6 ∼ 1 s) to ensure the effectiveness and accuracy of 
the PPG segmentation. We also note that our segmentation method is effective with 
MA because the system finds PPG segments in the sliding window based on the 
peaks and valleys that fulfill the criteria even though the waveform may be distorted. 

8.6 System Performance Evaluation 

8.6.1 Experimental Methodology 

Wearable Prototype We notice that existing commodity wearable devices can 
only provide the computed heart rate instead of direct access to raw PPG readings. 
Therefore, we design a wrist-worn PPG sensing prototype as shown in Fig. 8.9,
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Fig. 8.9 Prototype: wrist-worn PPG sensing platform 

which refers to the layout of PPG and motion sensors in commodity wrist-worn 
wearable device (e.g., Apple Watch). Specifically, the prototype consists of one 
commodity green LED PPG sensor attached to the inner side of the wristband 
and a motion sensor (i.e., accelerometer) attached to the outside of the wristband. 
These sensors are connected to an Arduino UNO (REV3) board for the sensor 
measurements acquisition, which is under a 300 Hz sampling rate. The PPG 
measurements are transferred to a laptop (i.e., Dell Latitude E6430) to perform user 
authentication. 

Data Collection We recruit 20 healthy participants whose ages are between 20 
to 40 to collect PPG measurements using our wearable prototype. Two different 
scenarios are adopted to evaluate our system for various practical application 
scenarios: In the static scenario, 20 participants are asked to sit quietly for 10 min. 
While in the moving scenario, we ask 5 participants to perform the far-wrist 
activities (i.e., moving the forearms) and the near-wrist activities (i.e., grabbing 
up a cup and drinking water) repeatedly for 2 mins and sit still for 3 mins. In total, 
we collect around 15,000 PPG pulse segments from these participants’ wrists in 
the static-scenario and 4200 pulse segments in the moving-scenario, respectively. In 
addition, we also test our system on the IEEE TBME Benchmark dataset [17], which 
has 8-min PPG data collected from the fingertips of 42 people with a sampling rate 
of 300 Hz. 

8.6.2 Evaluation Metrics 

Our system periodically authenticate the user based on the PPG segments in a sliding 
window and labels the sliding window as the user or attacker, respectively. We define 
our evaluation metrics as follows: 

CA Accuracy The number of sliding windows that are correctly labeled as the user 
over the total number of sliding windows that are examined during the CA process.
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Attack Detection Rate The number of sliding windows that are correctly labeled 
as the attacker over the number of sliding windows that are associated with the 
attacker during the CA process. 

Attack False Detection Rate The number of sliding windows that are incorrectly 
identified as the attacker over the number of sliding windows that are associated 
with the user during the CA process. 

Receiver Operating Characteristic (ROC) Curve It reflects the trade-off 
between Attack Detection Rate and Attack False Detection Rate. The smallest 
distance from the point on the ROC curve to the top-left corner corresponds to the 
optimum model. 

In our evaluation, 20 rounds of Monte Carlo cross-validation are employed for 
the 10-min of the collected user data, among which 5-min for training and the rest 
of the data for authentication. 

8.6.3 Continuous Authentication Performance 

We first evaluate the general performance of the system by examining the CA 
accuracy in the static scenario. In particular, we consider each participant acts as 
a legitimate user once while remaining participants act as attackers. Figure 8.10a 
shows that each user achieves comparable high CA accuracy with an average of 
.90.73% CA accuracy, which indicates that our system can successfully authenticate 
users with high accuracy using the wrist-worn wearable devices. In addition, 
Fig. 8.10b shows that our system can achieve even better performance on the PPG 
data from the fingertip [17] with 39 out of 42 people having the CA accuracy above 
.96%. This is because the PPG measurements from fingertips are stronger and more 
stable than those from wrists. These results not only demonstrate the promising 
practical usability of our proposed user authentication system on common wrist-
worn wearable devices but also indicate that it has promising usage in clinical 
environments such as telemedicine and smart-health applications. 

Moreover, to study the performance of our system when defending against 
the random attack, Fig. 8.11 shows that the ROC curve gets closer to the point 
.(0, 1) when the number of the PPG segments in a sliding window becomes larger. 
Particularly, our attack detection rate reaches to over .88% with the attack false 
detection rate of around .3.9% when the length of the sliding window is 4. And our 
system can achieve over .90% attack detection rate and less than .4.2% attack false 
detection rate with six or more PPG segments in a sliding window. Those results 
show that our CA system is robust against the random attacks.
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Fig. 8.10 CA accuracy of our system using the PPG measurements from the wrist areas and the 
fingertips. (a) PPG from the wrist area. (b) PPG from the fingertip
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Fig. 8.11 ROC curves under the random attack 

8.6.4 Impact of Various Factors 

Impact of the Sliding Window Length The length of the sliding window corre-
sponds to the number of continuous PPG segments to perform the majority vote 
for user authentication. Particularly, we test the different lengths of the sliding 
window with 1, 2, 4, 6, 8 continuous PPG segments (i.e., about . 0.7, . 1.4, 3, . 4.4, 
and 6 s). Figure 8.12 shows the CA accuracy increases as the increment of the 
sliding window length and becomes stable at about .90% with four or more PPG 
segments. Therefore, we adopt the sliding window with 4 continuous PPG segments 
in our system, which not only provides the high CA accuracy but also has the short 
response time for the authentication (i.e., around 3 s). 

Impact of Training Data Size Since the training data size influences the ease of 
use in terms of the time for data collection, so we particularly test 1, 2, 3, 4, 5, and 
6 min static PPG signals of each user for training respectively, and use the rest data 
for testing. Figure 8.13a shows that an average CA accuracy of 77.75% is achieved 
only using 1 min data of each user for training. Moreover, the average CA accuracy 
can increase to 90.65% and becomes stable when using 5 min or more training data 
of each user. Those results prove that our system is suitable for practical use since it 
can achieve very high CA accuracy with the only limited size of training data (e.g., 
5-min per user).
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Impact of Machine Learning Methods We study the performance of our system 
with different underlying machine learning models. Specifically, we adopt the sup-
port vector machine (SVM) and neural network (NN) using the LIBSVM library [9] 
and the multi-layer perceptron in Scikit-learn [25], respectively. Figure 8.13b shows  
that GBT has the best CA accuracy of 90% compared with SVM (scaling the data) 
and NN whose CA accuracy is 75 and 80% respectively. This result indicates that 
GBT easily tuned with flexible optimization options is more suitable for our CA 
system than the machine learning methods which either are difficult to determine 
the appropriate kernel (e.g., SVM) or require a large amount of training data and 
expertise to tune the model (e.g., NN). 

Impact of Sampling Rate The sampling rate affects the power consumption 
and computational cost in the wearable devices. In particular, we find that the 
CA accuracy is as high as 88% at the lowest sampling rate (i.e., 25 Hz) and 
increases slightly with the increased sampling rate and becomes stable with 90.7% 
CA accuracy since 100 Hz. Those findings imply that our CA system is not 
only compatible with the commodity wrist-worn wearable devices (e.g., Samsung 
Simband [32] adopts 128 Hz PPG sampling rate) but also supports the hardware 
with even lower PPG sampling rate. 

Performance with Motion Artifacts Removal and Mitigation We next study the 
performance of our MA removal method on near-wrist activities and MA mitigation 
method on far-wrist activities among 5 participants, respectively. As shown in 
Fig. 8.14, while performing far-wrist activities such as moving forearm, our system 
could still achieve 72.2% CA accuracy even without applying the MA mitigation 
method and the CA accuracy increases to 89.2% after MA mitigation. Furthermore, 
we can see that our system has the CA accuracy as 36.6% before MA removal 
and achieve 75.2% after MA removal for the near-wrist activities such as grabbing 
up a cup to mimic drinking water gesture. Those results show that the far-wrist 
activities have a relatively slight impact on our CA system, whereas the near-wrist 
activities have more impacts due to the involvement of the tendon and muscle in
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Fig. 8.13 The impacts of the training size and the machine learning method. (a) Performance with 
different sizes of the training data. (b) Performance with different machine learning methods
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Fig. 8.14 Performance of MA removal 

the wrist area. Overall, our system has a decent performance after applying the MA 
removal method on the near-wrist activities and MA mitigation method on the far-
wrist activities, which implies that it’s practical for daily life usage. 

8.6.5 Effectiveness of Adaptive Training 

We evaluate our adaptive training using the data collected by one user across three 
different hours in a day. Specifically, we collect 1 hour PPG data starting at 11 
AM, 1 PM, and 4 PM, respectively. In Fig. 8.15, .T r1 represents the training set 
is only from the first hour and .T r2 represents the mixed training set includes the 
data from both the first hour and 2 mins’ data from the third hour. We can see that 
our system trained by .T r1 can achieve .91% CA accuracy during the first hour, and 
decreases .5% during the second hour and .7% during the third hour, respectively. 
These results demonstrate that the user cardiac system indeed has some fluctuations 
during a long-time period that slightly impact the CA performance. Moreover, after 
the adaptive retraining with .T r2, the CA accuracy will increase back to .90% during 
the third hour. Those results prove that our system is suitable for long-time user 
authentication with few times of adaptively retraining which requires a very small 
amount of the new data. (e.g., routinely retrain every 3 h with only 2 min new data).
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Fig. 8.15 Performance comparison with different testing data with and without adaptive training 

8.7 Summary 

As an important means for human-computer interactions, gesture recognition has 
attracted significant research efforts in recent years. This chapter serves as the first 
step towards a comprehensive understanding of the PPG-based gesture recognition. 
We made a novel proposition to recognize the fine-grained finger-level gestures 
such as sign language using low-cost PPG sensors in wearables. In particular, we 
develop a fine-grained data segmentation method that can successfully separate the 
unique gesture-related patterns from the PPG measurements that are continuously 
interfered by pulses. Additionally, we study the unique PPG features resulted 
from finger-level gestures in different signal domains and devise a system that 
can effectively recognize finger-level gestures by only using PPG measurements. 
Our experiments with over 3600 gestures collected from 10 demonstrate that our 
system can differentiate nine elementary finger-level gestures from American Sign 
Language with an average recognition accuracy over .88%. We are aware of the 
intensity of reflected light captured by PPG sensors are sensitive to different skin 
colors (e.g., light colored skin reflects more light) and locations (e.g., outer side of 
the wrist has weaker signals); the PPG signals could be significantly impacted by 
strenuous exercises. We would like to present our findings and seek solutions (e.g., 
including motion sensors) for these potential impact factors in our future work.
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Chapter 9 
Conclusion and Future Directions 

In this chapter, we summarize the main research results of using mobile technologies 
for smart healthcare presented in this book and highlight the potential future 
research directions. 

9.1 Conclusion 

In summary, this book provides a comprehensive exploration of the inventive 
applications of mobile technologies in transforming the healthcare industry. Among 
numerous technologies, WiFi has emerged as one of today’s most prevalent 
technologies, enabling the smart healthcare system in addition to its original usage 
for communication purposes. We started with an overview of a system engineered 
to recognize location-based activities by leveraging the widespread presence of 
WiFi infrastructure. We then examined the design of a personalized fitness assistant 
system, applicable in both residential and professional environments, leveraging the 
existing WiFi infrastructure. We also explored the utilization of millimeter wave 
(mmWave) technology, the most advanced wireless technology, showcasing our 
work on the design and implementation of a fitness assistant system using a single 
off-the-shelf mmWave device. Recognizing the vital role of nutrition in health, we 
developed a non-intrusive eating habit monitoring system. This system aims to 
consistently monitor eating behaviors, regardless of the surroundings. 

In addition to wireless solutions, we extended the original usage of wearables 
to have a deeper usage in the mobile health area. Along this line, we showed 
that personalized fitness assistant systems can be designed and developed using 
smartphones or smartwatches. We demonstrated the concept of a virtual fitness 
assistant system using wearables designed to promote effective workouts while 
minimizing the risk of injuries. This system provides a dynamic view of a user’s 
short-term and long-term exercise activities, drawing data from sensors in wearable 
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mobile devices. Lastly, we discussed advanced healthcare applications facilitated 
by photoplethysmography (PPG) sensors found commonly on mobile devices. We 
illustrated how to utilize built-in PPG sensors on wrist-worn wearable devices 
for intricate finger-level gesture recognition, sign language interpretation, and 
continuous user authentication. In short, this book has covered a wide array of 
technological advancements and their impact on smart healthcare, signifying the 
promising potential at the crossroads of technology and health. 

9.2 Future Directions 

A promising direction for future research is to study the security vulnerabilities of 
deep learning (DL) techniques used in mobile health technologies. As DL becomes 
integral to mobile healthcare systems, these systems may become vulnerable to 
sophisticated cyber threats in the form of adversarial attacks. Therefore, developing 
robust DL models that can detect, withstand, and recover from adversarial attacks 
is critical for securing mobile health data and systems. Specific areas of research 
could include designing novel algorithms to identify and mitigate adversarial attacks 
against DL models, as well as exploring training strategies and architectures that 
enhance the security and resilience of DL models used in healthcare applications. 

Another promising area of research is developing mobile health technologies that 
can adapt to dynamic environmental changes. Mobile healthcare systems usually 
operate under diverse and often unpredictable conditions, making adaptability 
critical for maintaining performance and reliability. This situation presents an 
opportunity to explore self-adjusting mobile health technologies that can opti-
mally respond to real-time environmental fluctuations. Potential research directions 
include leveraging machine learning and artificial intelligence to create intelligent 
systems that automatically adjust their operation based on environmental changes. 
Such research could involve training models to detect meaningful shifts in parame-
ters like available network bandwidth, computing resources, ambient lighting, or 
noise levels and then accordingly implement compensatory changes to sensing, 
processing, or interface configurations. 

The third emerging research direction in smart health technologies focuses on 
creating integrated systems for comprehensive health monitoring and personalized 
medicine. These systems will enable advanced healthcare applications that exploit 
long-term monitoring to improve disease prevention and treatment, including 
telemedicine, customized treatments, and remote healthcare services. By syner-
gizing various mobile sensing modalities, researchers can develop interconnected 
systems that monitor a wide array of health metrics (e.g., vital signs, physical 
activity, and sleep patterns), offering a holistic view of an individual’s health. 
Advanced signal processing techniques and data analytic algorithms could be 
developed to process and analyze such data, enabling early detection of health risks, 
personalized health interventions, and optimized treatment plans. The essential goal 
of this direction is to move beyond reactive healthcare towards a more proactive,
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preventive, and personalized approach. The integrated smart health systems would 
not only empower individuals to manage their health more effectively but also pro-
vide healthcare professionals with deeper insights for better patient care. Research 
in this area holds the promise of transforming healthcare delivery by making it more 
responsive, efficient, and tailored to individual needs.
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