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Abstract

Human skeleton posture reconstruction is an essential component for human-computer interactions (HCI) in various
application domains. Traditional approaches usually rely on either cameras or on-body sensors, which induce privacy
concerns or inconvenient practical setups. To address these practical concerns, this paper proposes a low-cost contact-
less skeleton posture reconstruction system, mPose, which can reconstruct a user’s 3D skeleton postures using a single
mmWave device. mPose does not require the user to wear any sensors and can enable a broad range of emerging mo-
bile applications (e.g., VR gaming and pervasive user input) via mmWave-5G ready Internet of Things (IoT) devices.
Particularly, the system extracts multi-dimensional spatial information from mmWave signals which characterizes the
skeleton postures in a 3D space. To mitigate the impacts of environmental changes, mPose dynamically detects the
user location and extracts spatial features from the mmWave signals reflected only from the user. Furthermore, we
develop a deep regression method with a domain discriminator to learn a mapping between the spatial features and
the joint coordinates of human body while removing subject-specific characteristics, realizing robust posture recon-
struction across users. Extensive experiments, involving 17 representative body postures, 7 subjects, and 3 indoor
environments, show that mPose outperforms contemporary state-of-the-art RF-based solutions with a lower average
joint error of only ∼30mm, while achieving transferability across environments and subjects at the same time.
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1. Introduction

Recent years have witnessed an upsurge of research in human movement tracking and recognition systems. Theses
systems significantly facilitate human-computer interactions (HCI) and many emerging applications, such as virtual
reality (VR), augmented reality (AR), fitness tracking, smart healthcare, and smart home control. Traditional ap-
proaches utilize vision-based techniques [1, 2, 3] or body attached sensors [4, 5, 6] to reconstruct skeleton postures
and infer body movements. However, these approaches may suffer from illumination interference, incur privacy
concerns, or introduce intrusive user experience. Therefore, a robust, privacy-preserving, and non-intrusive skeleton
posture reconstruction method is highly demanded.

Non-intrusive approaches using radio frequency (RF) signals have been exploited to detect coarse-grained activi-
ties [7], monitor vital signs [8], and reconstruct body postures [9, 10, 11]. Among these studies, E-eyes [7] is a pioneer
work to recognize indoor activities leveraging commodity WiFi devices (e.g., WiFi access points), while Liu et al. [8]
first propose leveraging commodity WiFi to monitor vital signals including breathing rate and heart rate. WiTrack [9]
can provide coarse tracking of body parts using customized antennas; RF-Pose [10] has been developed to estimate
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2D human poses using multiple universal software radio peripheral (USRP) units mounted on the walls. However,
these systems require multiple dedicated devices (e.g., customized antennas, USRP devices), which are prohibitively
expensive and hard to deploy in practice. WiPose [11] demonstrates the feasibility of reconstructing 3D human pos-
ture using WiFi signals and deep learning, but it requires to deploy multiple antennas around the user, which has
limited application scenarios.

As approaching the 5G era, low-cost Commercial Off-The-Shelf (COTS) mmWave hardware has been integrated
into mobile devices (e.g., Soli on Google Pixel4 [12, 13]). Compared to WiFi, mmWave has a much shorter wavelength
(i.e., about 1/16 of 5GHz WiFi wavelength), which renders mm-level wireless ranging and enables high-precision
skeleton reconstruction beyond traditional RF-based methods. Additionally, mmWave devices are usually equipped
with miniature antenna arrays for highly directional transmissions, and such arrays can be used to derive the angles
of arriving signals, which facilitates fine-grained spatial sensing. As such, researchers have utilized mmWave to
recognize hand gestures [13], vital signs [14], and human identity [15]. Sengupta et al. [16] show the initial success
of using mmWave radar to detect and track human skeletal postures. However, the proposed solution needs multiple
mmWave devices and does not guarantee the generalizability to different environments (e.g., room layouts, furniture
placement) and users (e.g., with different heights, lengths of arms and legs).

In this paper, we propose a low-cost contactless skeleton posture reconstruction system, mPose, which tracks a
user’s full-body 3D skeleton postures leveraging mmWave signals. Different from existing work, mPose can achieve
fine-grained skeleton reconstruction with a single COTS mmWave device. By utilizing advanced signal processing
and deep learning technologies, our system can dynamically remove posture-irrelevant information (e.g., reflections
from static room objects and the user’s location) and accurately track skeletal joints (e.g., wrists, elbows, knees,
and ankles) in a 3D space across different domains (i.e., with different users or in different environments.) mPose
can be conveniently deployed in a 5G or 802.11ad-enabled IoT device (e.g., a smartphone or a smart TV) without
additional costs. It provides privacy-preserving tracking of fine-grained human poses, facilitating various applications,
such as contactless smart appliance control, augmented reality and virtual reality games, fitness tracking, wellbeing
monitoring, and smart city surveillance.

Realizing such a skeleton posture reconstruction system has a number of challenges in practice. First, it is chal-
lenging to reconstruct 3D full-body skeleton posture using a single device. Though mmWave signal can provide
fine-grained information, existing approaches usually require at least two devices to achieve it [16]. Second, skeleton
reconstruction usually occurs at different locations in a room or in different rooms with distinct layouts and furniture
placement. Such heterogeneous environmental factors may cause different reflections that could significantly impact
the skeleton reconstruction performance. Third, it is essential to have a general skeleton reconstruction model so
that individual users do not need to suffer tedious training processes. However, due to differences in individual body
shapes, it is difficult to train such a model to achieve high skeleton reconstruction accuracy for different users.

To address these challenges, we propose to extract fine-grained spatial information from mmWave signals reflected
by human bodies to perform spatial tracking of the users’ body parts. Specifically, Frequency-Modulated Continuous
Wave (FMCW) [17] is used to obtain the range of the user’s body parts. Capon beamforming is used with an antenna
array to derive angles of arriving signals, which are integrated with the range information to enable spatial tracking of
human body parts.

To enhance the resolution of spatial tracking, we exploit the virtual antenna technology [18] to develop a virtual
antenna array with a much larger size than the physical antenna array. In addition, we dynamically estimate the user’s
location and extract the spatial features from the signals reflected from the user in a 3D contour, which mitigates the
impacts from different environmental setups and user locations. A three-layer convolutional neural network (CNN)
is designed to model human skeleton postures based on the extracted spatial features. Furthermore, mPose employs
domain adversarial learning [19] to remove user-specific characteristics embedded in the spatial features and ensure
reliable skeleton reconstruction across users. The major contributions of this work are summarized as follows:

• We show that it is possible to accurately reconstruct 3D full-body skeleton postures by using a single COTS
mmWave device. We develop a low-cost 3D skeleton posture reconstruction system, mPose, which can precisely
localize skeletal joints in a 3D space.

• We develop a target detection method that allows our system to extract spatial features from the signals reflected
only by the user and mitigate the impacts from the changes of environments and user locations.
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• We design a domain discriminator that removes user-specific characteristics embedded in the mmWave signals so
as to achieve robust skeleton reconstruction across users with reasonable training efforts.

• We conduct extensive experiments involving 17 body postures, 7 subjects, and 3 different environments to evaluate
the performance of mPose. The results demonstrate that our system can achieve a low average joint estimation error
of 30mm while achieving environment- and user-independency.

2. Related Work

Exiting skeleton posture reconstruction studies usually rely on either attached sensors or cameras [20, 21, 22,
23, 24, 23, 25, 26, 2, 4, 27, 28]. For instance, Quwaider et al. [20] exploit inertial sensors attached to the human
body and Hidden Markov Model (HMM) to reconstruct body postures. Shen et al. [23] develop a system that can
track 3D postures of an entire arm (i.e., both wrist and elbow) using motion and magnetic sensors on smartwatches.
While these approaches are intuitive, they all require users to wear additional sensors, which is not always feasible in
practice. There are also a number of studies that utilize cameras for 2D/3D skeleton posture reconstruction [22, 2].
For example, Tompson et al. [22] design a spatial-model based on a deep convolutional neural network to map human
postures in a video frame into 2D joint positions. By utilizing a camera array, Mehrizi et al. [2] demonstrate the
potential to recover 3D human postures through analyzing image features of joint kinematics. However, these vision-
based approaches usually incur privacy concerns, and they require line-of-sight and sufficient illumination, which
largely limits their application scenarios.

To overcome the weaknesses of body-attached sensor- and vision-based solutions, researchers have been exploring
contact-less sensing approaches to recognize human activities [29, 7, 30], monitor vital signs [8], or reconstruct human
body postures [9, 31, 10, 11, 32, 33]. For example, E-eyes [7] is one of the first studies to recognize various daily
activities (e.g., cooking, eating, and watching TV) using commodity WiFi devices. Liu et al. [8] developed the
first non-intrusive vital sign tracking system that can monitor users’ breathing and heart rates during sleep using
WiFi signals. To reconstruct body postures, Zhao et al. [10] develop a system that uses customized antenna arrays
and FMCW signals to estimate 2D postures. In addition, Adib et al. [9] propose to track the human arm motions
leveraging FMCW radio operating on a universal software radio peripheral (USRP) device. However, these systems
require dedicated RF settings (e.g., USRP devices and antenna arrays), which are costly and require to be installed in
controlled environments. A recent work shows that channel state information (CSI) of WiFi signals could be used to
reconstruct 3D human postures [11], but the system requires a large number of antennas distributed around the human
body, making it hard to deploy in real-world scenarios. Additionally, due to the open-propagation nature, WiFi signals
are very sensitive to various environmental factors (e.g., the room layout and moving objects), which inevitably cause
reconstruction errors.

Compared to existing work, mPose leverages highly directional mmWave signals to track skeletal joints and thus
allows more reliable posture construction. The shorter wavelengths of mmWave signals also enable posture tracking
with higher precision. A more recent study [16] shows the initial success of using mmWave signals to track human
skeleton postures, but it requires two distributed mmWave devices to achieve 3D posture tracking and the performance
of the system is moderate. In contrast, mPose could achieve high accuracy in reconstructing 3D postures by using
a single mmWave transceiver. In addition, our system dynamically extracts spatial features from the target user to
remove the impacts of user location and can be adapted to reconstruct postures across users with a reasonable amount
of training efforts.

3. Preliminaries

In this section, we first introduce the fundamentals of mmWave sensing. Then, we investigate the feasibility of
using mmWave signals for skeleton posture reconstruction. We also present some potential applications that can be
benefited from mPose.
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Figure 1: mmWave device and the received signals impacted by different postures.

3.1. Fundamentals of mmWave Sensing

Recently, mmWave-based sensing techniques have been widely investigated in academia and industry. Due to the
mmWave signals’ high frequency (i.e., > 30GHz) and short wavelength (i.e., < 10mm), mmWave techniques can
realize high-resolution measurements for fine-grained sensing. Moreover, mmWave transceivers can be implemented
in a compact form that is small enough to fit into mobile devices (e.g., Google Pixel series [12]). As such, we propose
to employ a single COTS mmWave device (i.e., TI AWR1642BOOST-ODS mmWave device), which is low-cost,
portable, and highly-integrated, for 3D human posture reconstruction in this work. The mmWave device supports
multiple-input and multiple-output (MIMO) with an antenna array (e.g., 2× 4 antennas as shown in Figure 1(a)) that
can provide multiple dimensions of temporal and spatial information with one single measurement.

To reconstruct a user’s skeleton posture, mPose needs to estimate the range (distance) and angle of different hu-
man body parts to the mmWave device. Particularly, our system utilizes the mmWave device to transmit a continuous
chirp signal sweeping across a bandwidth within a fixed duration. Upon receiving the reflected mmWave signals, the
mmWave device performs a dechirp operation on both the transmitted and the received signals to derive an interme-
diate frequency (IF) signal, which can be formulated as:

IF = sin[(fTx − fRx)t+ (φTx − φRx)], (1)
where fTx and fRx represent the instantaneous frequencies of the transmitted and received mmWave signals, respec-
tively. While φTx and φRx denote the instantaneous phases of the two signals respectively. By integrating IF signals
from multiple antennas of the mmWave device, mPose can extract spatial information (i.e., range and angle) on a
user’s skeletal posture. We introduce how to use the IF signal to derive spatial features in Section 5.

3.2. Feasibility of Reconstructing Skeleton Postures via a Single mmWave Device

To demonstrate the feasibility of utilizing mmWave signals to reconstruct 3D human postures, we conduct a
preliminary experiment by examining the spatial information derived from a single portable mmWave device when a
volunteer is performing a set of postures (i.e., standing, waving right arm, and waving both arms). Specifically, we
use TI AWR1642BOOST-ODS shown in Figure 1(b) as the mmWave transceiver. A Microsoft Kinect [34] adjacent
to the mmWave device is used to record the video as the ground truth 3D skeleton joint positions. Figure 1 (b) (c), and
(d) show the captured video frames and the corresponding range-azimuth and range-elevation heatmaps of the three
postures. The heatmap value represents the frequency response of mmWave at different angles (i.e., azimuths and
elevations) and ranges (i.e., distances), with higher values representing stronger reflections. Across the three postures,
we can find the contour of torso and limb across the range bin 25 ∼ 40 (i.e., 1.1m ∼ 1.8m), which is consistent with
our ground truth. Furthermore, as the volunteer lifts the right arm as shown in Figure 1(c), intensity changes at the
range bin 25 and azimuth bin 30 can be observed. Interestingly, in Figure 1(d), we can observe symmetric intensity
changes in the range-elevation heatmap, representing the posture of lifting both arms. The preliminary study shows
the feasibility of using the mmWave signals from a single device to capture the spatial information of different human
body parts.
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Figure 2: System flow of mPose.

3.3. Potential Applications

mPose can reveal human full body skeleton postures in a fine-grained manner, which can be utilized to support an
abroad array of applications.

Alerting acts of violence based on human posture: some existing studies demonstrated the potential of interpreting
human activities based on the posture [35, 25]. As public safety raises increasing concern recently, inferring the activ-
ities of violence (e.g., sexual violence, physical fighting) by embedding mPose into public infrastructures (e.g., street
lamps) is highly desirable. Upon detecting the violence, mPose can alert the perpetrator and contact the police to pre-
vent injury, psychological harm, or even death. Different from vision-based approaches, our system will not disclose
the privacy of human subjects since the personally identifiable information (e.g., facial information) is not embedded
in mmWave signals. Furthermore, our mmWave-based system will not suffer from performance degradation due to
complicated ambient lighting conditions.

Full-body AR/VR gaming: the unique immersive experience provided by AR/VR gaming has attracted millions
of users around the world. The AR/VR games create a 3D virtual world and allow users to use hand-held controllers
to interact with 3D objects in the virtual world [36, 37]. To improve user experience, mPose can facilitate AR/VR
gaming by enabling a controller-free paradigm. The miniature mmWave sensors can be easily embedded into the
AR/VR devices, such as AR/VR headsets, game consoles, or even smartphones.

4. Overview of mPose

4.1. Challenges

3D Skeleton Posture Reconstruction Using a Single mmWave Device. Compared to the existing solutions that
use multiple devices or spatial-distributed antenna arrays, our single-device approach is challenging as we only have
one device equipped with an on-board antenna array for sensing, which provides limited spatial diversity and a lower
sensing resolution. Thus, it is crucial to extract in-depth features that can capture the unique impacts of different
postures from mmWave signals.

Location and Environment Changes. In real-world scenarios, people may perform postures at different locations
of a room or even in different rooms. Although mmWave signals reflected from the human body can be used to infer
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Figure 3: Illustration of the antenna arrays used in mPose.

their relative distance and angle to the mmWave device, such estimation is prone to the varying location (e.g., causing
different distances and angles between the subject and the mmWave device). Furthermore, the mmWave signals
reflected from the objects in the room (e.g., furniture and home appliances) or walls can introduce interference to
the received mmWave signals, leading to joint position estimation error. Our system needs to derive robust feature
representations for accurate posture reconstruction.

Body Characteristic Differences Across Subjects. The mmWave signals also carry substantial information spe-
cific to individual subjects (e.g., body characteristics such as heights, length of arm and leg). Such body characteristics
variations make it difficult to train a general skeleton reconstruction model applicable to different subjects, since the
mapping between the spatial features and the joint positions will not be consistent. To reduce training efforts during
practical deployment, it is highly desired to enable accurate posture reconstruction across users.

4.2. System Architecture

In this work, we address the above challenges and develop a 3D skeleton posture reconstruction system, mPose,
which can continuously track a user’s joints using a single COTS mmWave device. mPose is designed to examine the
mmWave signals to determine the spatial positions of joints for posture reconstruction. The system flow is illustrated
in Figure 2. Specifically, in our system, the Data Preprocessing & Feature Extraction module first demodulates the
reflected mmWave signals to obtain the ranges of various reflectors (e.g., the user’s body parts, room objects), and then
integrates the range information across antennas on the mmWave device to derive the angle information (i.e., azimuth
and elevation). A virtual antenna array is constructed to enhance the resolution of the derived angle information,
which enables fine-grained skeleton posture tracking on a single mmWave device. To ensure the robustness to user
location and environment changes, the system dynamically tracks the user’s location and extracts spatial features
from the mmWave signals reflected from the user, which removes the impacts of the user’s locations (i.e., the relative
distances and angles between the user and the mmWave device) and environmental factors (e.g., reflections from walls
and room objects).

After obtaining the spatial features, we develop a Subject-independent Skeleton Posture Reconstruction Model to
map the spatial features to 3D coordinates of a user’s skeletal joints (e.g., wrists, elbows, knees, and ankles) while
removing user-specific body characteristics embedded in the spatial features. Instead of directly inferring the joint
positions based on the spatial features, we resort to a deep-learning-based approach to learn a more reliable mapping
between the joint positions and the spatial features. Particularly, we use the joint positions captured with Kinect [34]
to train a deep regression model, which is referred to as a 3D posture model. The 3D posture model consists of a
representation extractor that derives skeleton representations from spatial features and a 3D posture estimator that
predicts 3D coordinates of 17 skeletal joints. In addition, mPose also employs a domain discriminator to remove
subject-specific characteristics in the spatial features via domain adversarial training and adjust the 3D posture model
to enable general skeleton reconstruction across users.
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5. Design of mPose

5.1. mmWave Signal Design

We need to design the FMCW signal (i.e., a chirp signal) in a way that maximums the sensing power of mPose.
In other words, we want to simultaneously achieve high range and angle resolutions for fine-grained skeleton recon-
struction. The range resolution dres of the FMCW signal is defined as [38]:

dres =
c

2×B
, (2)

where c is the speed of light; B is the bandwidth of a mmWave chirp signal. According to the formulation, the
range estimation resolution is determined by the bandwidth (i.e., B). Hence, the bandwidth of the mmWave chirp
signal should be set as large as possible. Since the frequency band used by the mmWave device lies in the range of
77 ∼ 81GHz, the chirp bandwidth of mPose is selected as 81−77 = 4GHz, with a range estimation resolution of
3.75cm. Additionally, we use a short chirp duration τ = 33µs to maintain the capability of mPose on continuous
sensing. The angle resolution of mmWave signals can be formulated as:

θres =
λ

N × d
, (3)

where λ denotes the wavelength; N and d are the number of receiving antennas and the distance between two neigh-
boring antennas in the antenna array, respectively. Since the mmWave device used in mPose is equipped an antenna
array with N = 4 and d = λ

2 , the angle resolution is 0.5◦. To enable fine-grained posture reconstruction, we synthe-
size a virtual antenna array to double the angle resolution, with the details elaborated in Section 5.2.

5.2. 3D Spatial Feature Extraction

To reconstruct the skeleton posture from mmWave signals, mPose first estimates the range (i.e., distance) between
each of the human body parts and the mmWave device. The principle of extracting such range information is to
measure the frequencies of IF signals, which are linearly correlated with the distances to reflectors as mentioned
in Section 3.1. Specifically, we apply range-FFT on the IF signal to obtain the frequencies associated with strong
reflections (i.e., fIF ), such as those from the subject’s body parts and room objects, and then map the frequencies to
distances:

d =
fIF × c× τ

2B
, (4)

where c denotes the speed of light; B and τ are the bandwidth and the propagation time of the chirp signal, respec-
tively. To reconstruct the user’s posture in a 3D space, we further estimate the phase shifts (i.e., ω) associated with the
Angle-of-Arrival (AoA) of the reflectors. Particularly, we apply angle-FFT upon the range information derived from
all receiving antennas to obtain ω, which can be mapped to angles (e.g., azimuths or elevations):

θ = sin−1(
λ× ω

2π ×∆d
), (5)

where ∆d denotes the distance between two receiving antennas and λ represents the wavelength. The angle and range
information together serve as the basis of posture reconstruction in mPose.
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Figure 5: Deep learning architecture used in mPose for subject-independent posture reconstruction.

To enhance the resolution of angle estimation, mPose exploits a 1 × 8 antenna array with the diagram shown
in Figure 3. Besides 4 physical antennas (i.e., yellow circles), mPose also simulates 4 virtual antennas (i.e., green
circles), which doubles the angle resolution of the antenna array. Particularly, our system pairs Tx1 with Rx1 ∼ Rx4
to form a 1×4 physical array. In addition, by pairing the other physical transmitting antenna (i.e., Tx2) with the same
4 physical receiving antennas, we can synthesize a 1 × 4 virtual array. The virtual array can operate together with
the physical one by using time-division multiplexing, which alternatively transmits mmWave chirps signals using the
physical transmitting antennas (i.e., Tx1 and Tx2) and receives the signals using the 4 physical receiving antennas
(i.e., Rx1 ∼ Rx4). Given the 8 receiving antennas, our system can achieve an angle resolution of 0.25◦.

Furthermore, to track skeletal joints in a Cartesian coordinate system, the antennas are organized into orthogonal
subarrays, with two subarrays placed horizontally to capture range-azimuth and one subarray put vertically to derive
range-elevation. Figure 3 illustrates such a spatial relationship (i.e., range, azimuth, and elevation) between the
mmWave device and the torso of a subject (i.e., performing a standing posture). By sequentially performing range-
FFT and angle-FFT on mmWave signals received with an antenna array, we derive a 2D heatmap that captures the
frequency response of signals reflected from different angles at different distances:

F (d, θ) = AngleFFT (RangeFFT (IF, d), θ), (6)
where RangeFFT (·, d) and AngleFFT (·, θ) represent the FFT operations at range d and angle θ, respectively. We
then combine multiple such 2D heat-maps (i.e., 2 range-azimuth heatmaps and 1 range-elevation heatmap) to derive
3D spatial features for posture reconstruction.

5.3. Environmental Interference Removal via Target Detection

Since the mmWave signals capture the spatial information of all reflectors within the field of view, the static objects
in a room (e.g., furniture, walls) can introduce a significant amount of posture-irrelevant noises which interfere with
our posture reconstruction system. In addition, the variations of the subject’s location can alter the relative distance
and angle between the subject and the mmWave device, introducing uncertainty to the derived spatial information of
user posture. To mitigate these two types of interferences, mPose dynamically detects the 3D location of the target
user’s torso and creates a 3D contour to segment the spatial information (i.e., range-azimuth and range-elevation
heatmaps), which can be used to remove the impacts of location and environment factors.

Particularly, mPose tracks the torso’ 3D location through examining the reflection energy in the range and angle
bins, since the torso normally leads to the strongest energy due to its larger reflection area compared to arms/legs. We
denote the range, azimuth, and elevation of the torso as (r, θ, ψ). After obtaining the torso’s location, mPose removes
the location impacts by extracting the spatial information across ranges: [r −∆r, r + ∆r], where ∆r is determined
by the maximum arm length of the user. To remove the environmental impacts, we dynamically calculate the angles
where the human body resides based on r to further segment the spatial information. Specifically, we extract the
heatmaps across azimuth bins: [θ −∆θ, θ + ∆θ]. The variable ∆θ is calculated through:

∆θ = arctan−1 larm
2r

, (7)

where larm is the user’s arm span. Similarly, we calculate the elevation variable ∆ψ based on the user’s height
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and extract the spatial information across the derived elevation bins. Since the varying distance between the subject
and the mmWave device could change the size of the extracted range-azimuth and range-elevation heatmaps, we
interpolate the heatmaps to a fixed dimension to mitigate the impacts of such variations, which ensures consistent
heatmap sizes under the distance variations. With the approach, we can eliminate the interferences from the location
and the environment in the heatmaps. Figure 4 shows a heatmap example before and after applying the proposed
approach. We can find that compared with Figure 4 (a), the noises are significantly mitigated in Figure 4 (b), which
confirms the effectiveness of our approach.

5.4. Subject-independent 3D Skeleton Posture Reconstruction

Model Overview. In order to construct 3D human posture, we build a deep learning model to map the extracted
range-azimuth and range-elevation heatmaps to the coordinates of joints in the 3D space. Figure 5 shows the architec-
ture of the proposed deep learning model. The deep learning model takes data X (i.e., extracted spatial information)
and the 3D posture ground truth P derived by Microsoft Kinect as input. The ground truth includes the 3D posi-
tions of 17 skeletal joints (e.g., wrists, elbows, knees) [34]. The input data are first converted into a set of low-rank
posture representations Z using the posture representation extractor implemented by a 3-layer CNN model. Based
on the posture representations, a 3D posture estimator can predict the 3D joint coordinates (i.e., P̂ ). In addition, a
domain discriminator that can predict the subject label D is used to assist in training the posture representation ex-
tractor and posture estimator. By optimizing the posture representation extractor with the domain discriminator to
achieve indistinguishable subject labels (i.e., maximizing the domain loss), our model can remove the subject-specific
characteristics for general skeleton reconstruction across users.

3D Posture Reconstruction Model. The posture representation extractor is a 3-layer CNN model. Particularly,
we use a convolutional layer with 2D filters in each CNN layer to calculate the feature maps. By integrating the
2D features maps of range-azimuth and range-elevation information, we can derive posture representations (i.e., Z)
that characterize skeleton posture in the 3D space. In addition, a max-pooling layer is attached to the convolutional
layer. Max-pooling can enhance the representation transferability by integrating multiple 2D feature points over a
small neighborhood. To prevent over-fitting, we use a dropout layer to randomly remove network parameters during
training. The 2D feature maps are then flattened and compressed with a fully-connected layer. Given input data X ,
the posture representation extractor produces 3D posture representations as follows:

Z = F (X,Φ), (8)
where F (·) denotes the CNN model and Φ represents the trainable parameters (i.e., model weights) of the posture
representation extractor. The model implementation of mPose employs 64, 128, and 256 filters in the 3 convolutional
layers, respectively. The dropout rate of the dropout layer is set to 50%. We use Leaky ReLU with the parameter
α = 0.01 for both the convolutional and the fully-connected layers.

Based on the derived representations Z, mPose employs a 2-layer fully-connected neural network (i.e., posture
estimator) to estimate the 3D position of each skeletal joint. The neural network further extracts non-linear abstractions
that characterize the 3D skeleton posture. Based on the abstractions, a regression layer produces the joint coordinates
P̂ . We define the mapping function as:

P̂ = Gp(Z,Θ), (9)

where Gp(·) represents the neural network and Θ denotes its trainable parameters. To optimize the posture estimator
for predicting the 3D skeletal joint positions, we use Huber loss [39] to quantify the estimation cost. The joint
estimation loss is defined as:

Lp =


1

2
(P − P̂ )2, |P − P̂ | ≤ δ

δ · (|P − P̂ | − 1

2
δ), |P − P̂ | > δ

(10)

where P is the ground truth of the joint coordinates, and δ is the threshold for outlier detection.
Domain Discriminator. To achieve robust posture reconstruction across subjects, we use domain adversarial

training [19] to optimize the posture representation extractor. The core component is a domain discriminator used
in the training process for removing the domain-specific characteristics entangled in posture representations. Specif-
ically, the domain discriminator is a 2-layer fully-connected neural network taking the posture representations Z as

9



(a) Lab (b) Office (c) Apartment

Figure 6: Illustration of the three environments used for evaluation.

input. It infers the subject label as:
D̂ = Gd(Z,Γ), (11)

where Gd(·) denotes the neural network and Γ represents the corresponding trainable parameters. We optimize the
neural network with the cross-entropy loss as:

Ld = H(D, D̂), (12)
where H(·) represents the cross-entropy loss function, and D denotes the ground truth of the domain label.

The domain discriminator seems to contradict with our objective of domain-independent posture reconstruction.
However, by using an adversarial loss, we can optimize the posture representation extractor to fool the domain dis-
criminator so as to make the derived representations domain-independent. Specifically, during training, we apply a
negative factor −λ to the domain loss to force the posture representation extractor to maximize the domain loss. We
define the adversarial loss to optimize the posture representation extractor as follows:

Ladv = Lp − λLd, (13)
where Lp and Ld are the joint estimation loss and the domain loss, respectively. The factor λ is used to balance
the performance of domain adaptation and posture reconstruction. In the adversarial training process, we iteratively
optimize {Φ,Θ} and Γ with Adam optimizer.

6. Evaluation

6.1. Experimental Setup & Methodology
Hardware Components. We implement mPose with a TI AWR1642-ODS mmWave device as the sensing front

end and a ThinkPad X1 Carbon laptop as the data processing backend. The mmWave device has an integrated antenna
array with 2 transmitting antennas and 4 receiving antennas, which sends and receives chirp signals with a frequency
range of 77∼ 81GHz and a chirp duration of 33µs. A TI DCA1000EVM data capture card is used to collect data
from the mmWave device and forward them to the laptop. While we are collecting mmWave data, we use a Microsoft
Kinect [34] to record the ground truth 3D coordinates of 17 skeletal joints (i.e., the same set of joints evaluated in
WiPose [11]).

Data Collection. Experiments are conducted in three environments of different sizes and room objects as shown
in Figure 6 to demonstrate the robustness of mPose across environments. The larger room (i.e., lab) is a public place
and has a size of 28ft× 25ft with desks, chairs, and many lab devices (e.g., desktops, 3D printers). The two smaller
rooms (i.e., office and apartment) have sizes of 24ft × 15ft and 33ft × 17ft with office (e.g., tables, chairs) and
home objects (e.g., sofas, floor lamps). We use the three rooms of different sizes and layouts to demonstrate the
effectiveness of the proposed environmental interference removal algorithm. We recruited 7 subjects, including 5
males and 2 females with various heights and weights (e.g., the range of height and weight are 1.63 ∼ 1.78m and
58 ∼ 83kg respectively). The experiments involved 17 representative postures: lifting left/right arm to the front
for 45/90/180 degree, lifting left/right arm from the side for 45/90/180 degree, lifting left/right leg for 45/90 degree,
waving hands, walking, random moving. The volunteers were asked to perform these postures around 1.5m in front
of the mmWave device, but we did not limit the specific user position. While we are collecting mmWave data, we
use a Microsoft Kinect [34] to record the ground truth 3D coordinates of 17 skeletal joints (i.e., the same set of joints
evaluated in WiPose [11]) with a rate of 30 frames per second. The Kinect was placed behind the mmWave device
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Table 1: Overall performance of joint location error.

Location Error 3D Joint Depth Azimuth Elevation
WiPose [11] 36.7mm - - -

mm-Pose [16] - 32.0mm 75.0mm 27.0mm
RF-Pose3D [41] 76.7mm 42.0mm 49.0mm 40.0mm

mPose 30.1mm 10.7mm 16.8mm 15.0mm

C
am
er
a
F
ra
m
e

G
ro
u
n
d
-t
ru
th

P
re
d
ic
ti
o
n
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Figure 7: Reconstructed skeleton postures and ground-truth of four different posture.

as shown in Figure 1 (a) and extracts 17 skeletal joints with vision-based techniques [40]. Around 640 samples (i.e.,
mmWave data frames with ground truth skeleton coordinates) were collected per subject per posture. We split the
whole dataset (mmWave samples with ground truth joint coordinates) into a training set and a testing set, by using a
ratio of 4:1. The deep learning model of mPose is trained with the samples and ground truth in the training set.

Evaluation Metrics. we define the joint localization errors in the 3D space as the projection of the distance
between each joint’s predicted coordinates and the ground truth on the three axes, depth, azimuth, and elevation.
Furthermore, we use the 3D Euclidean distance in millimeters (mm) to quantify the overall joint localization error
across the three axes.

6.2. Performance of 3D Posture Reconstruction

Overall Performance. We first evaluate the overall performance of mPose using data collected in the three
room environments for 3D skeleton posture reconstruction. Table 1 shows the average joint localization error across
all postures of the 7 subjects. The results show that mPose has low errors for all metrics. Specifically, the 3D
joint localization error of mPose is 30.1mm, and the errors in depth, azimuth, elevation are 10.7mm, 16.8mm,
15.0mm, respectively. Compared to mm-Pose [16], which uses two mmWave devices for posture reconstruction, our
system can achieve 21.3mm, 58.2mm, and 12.0mm improvement in depth, azimuth, elevation with only a single
mmWave device. In addition, mPose shows 6.6mm improvement in joint localization compared to WiPose [11],
without using spatially distributed antennas/devices. Furthermore, mPose has less than half of the 3D joint localization
error compared to RF-Pose3D [41], which uses a customized FMCW radio for posture reconstruction. These results
demonstrate that mPose outperforms the state-of-the-art skeleton reconstruction schemes.
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Figure 8: Performance on reconstructing individual joints.

Figure 7 illustrates the differences between the skeleton postures reconstructed by mPose and the ground truth.
The four postures are: (a) waving hands, (b) lifting the right hand to the front for 180 degrees, (c) lifting the left hand
to the front for 180 degrees, (d) lifting the right leg for 90 degrees, respectively. We can find that the reconstructed
3D skeletons are almost the same as the ground truth joint coordinates estimated with Kinect. Figure 8 shows the 3D
joint localization error for individual joints. It shows that our system can effectively localize most of the joints with
errors lower than 25mm, except for joint 6 (elbow left), joint 7 (wrist left), joint 9 (elbow right), and joint 10 (wrist
right), since these joints are very close to each other in the arm. The results demonstrate the effectiveness of mPose.

Impact of Subjects. We further evaluate the generalizability of mPose to different subjects. Specifically, we
train and test the deep learning model with data collected from each of the 5 subjects. Figure 9(a) shows the joint
reconstruction error of individual subjects. We can find that the 3D Euclidean errors are all below 32mm, which
indicate the robustness of mPose on different subjects. Furthermore, we observe that mPose has low errors in depth,
azimuth, elevation, which are below 14mm, 20mm, and 19mm, respectively, indicating that mPose is general and
can be applied to subjects that have various heights and body sizes.

Impact of Location. Due to the short wavelength, the mmWave signals attenuate rapidly as the propagation
distance increases, which introduces uncertainty to our system. Hence, we evaluate the robustness of mPose under
3 different distances (i.e., 1.5m, 2.5m, and 3.5m) between the target subject and mmWave device, with the deep
learning model trained with the data collected at 1.5m. Figure 9(b) shows the joint localization errors of mPose
under the three distances. We can see that mPose achieves the minimum joint reconstruction error at the distance
of 1.5m, where the training data are collected. We have a similar observation for the errors in depth, azimuth, and
elevation. For the other distances, the errors increase a little bit, with a joint localization error of 47.4mm at 2.5m.
Even the distance increases to 3.5m, the joint localization error is still below 60mm. This is because our environment
interference removal algorithm can dynamically detect the subject’s location and remove the impact of distance via
interpolation, so as to ensure acceptable performance for the skeleton posture reconstruction at different distances.

Impact of Environments. To examine the performance of mPose in different environments, we take turns to train
and test the deep learning model with data collected in each of the three environments (i.e., lab, office, apartment).
As shown in Figure 9(c), we can see that the joint localization errors are below 33mm for all environments. The
errors in depth, azimuth, and elevation are below 17.3mm, 18.2mm, and 22.9mm, respectively. In addition, we find
that mPose has relatively higher errors in the apartment. Such an effect is due to the more complex room layout and
furniture placement of the apartment, which could introduce more complex multi-path effects of mmWave signals.
But even in this case, mPose can still achieve a low joint localization error of 32.7mm. These results demonstrate that
mPose can achieve satisfactory performance on 3D skeleton reconstruction in different environments.

Impact of Non-Line-of-Sight Conditions. Different from vision-based approaches, mmWave signals can pene-
trate the obstacle between the mmWave device and the target subject. Hence, we evaluate the performance of mPose
under the occlusions of metal and wooden objects, simulating object blocking in real-world scenarios (e.g., by home
devices or furniture). In the experiment, we place an iron block and a wooden block in front of the mmWave device
with a distance of 10mm, which blocks the LOS between the subject and the mmWave device. Figure 9(d) shows the
3D joint reconstruction error of mPose in the LOS and the NLOS scenes. We can see that although the joint localiza-
tion errors under the NLOS scenarios are larger than that under the LOS scenarios, mPose can achieve 62.4mm joint
localization error when a wooden block placed in front of the mmWave device. In addition, we find that even when
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Figure 9: Performance under different impacting factors.

the LOS is blocked by iron block, where the mmWave signals are hard to penetrate, mPose can still achieve 63.9mm.
These results indicate that our system can work in NLOS scenarios with acceptable performance.

6.3. Performance of Environment-independent Posture Reconstruction

We next evaluated the transferability of mPose across environments. Particularly, we trained the deep learning
model with mmWave data from one environment and evaluated it with data collected in another environment, without
additional training. Such an evaluation was conducted on every pair of the three environments (i.e., office, lab,
and apartment). To show the effectiveness of the proposed environmental artifact removal (Section 5.3), we also
trained and tested a deep learning model without applying the environmental artifact removal algorithm (i.e., the
baseline model). Additionally, we show the overall joint localization error that is calculated by averaging the errors
of all joints and all users. For the office and apartment environments, as shown in Figure 10 (a) and (b), we find
that mPose achieves low joint localization errors of 49.8mm and 49.7mm under the two training-testing settings.
Compared to the baseline model, we find that the proposed environmental artifact removal algorithm greatly reduces
the posture reconstruction errors, with over 45.3mm and 47.5mm improvements for the two settings. The algorithm
also reduces the reconstruction errors of depth, azimuth, and elevation, showing its effectiveness to improve the
reconstruction in all dimensions. Similarly, as shown in Figure 10 (c) and (d), mPose shows lower joint localization
errors with the environmental artifact removal algorithm for the office and lab environments, with over 33mm and
31mm improvements compared to the baseline model for the two training-testing settings. Similar observations can
be found in Figure 10 (e) and (f), our system can achieve relatively lower 3D joint localization errors of 68.1mm and
69.3mm for the domain adaptation between the apartment and the lab. In general, the results demonstrate that the
proposed environmental artifact removal algorithm is highly effective in improving the transferability of mPose across
different environments.
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Figure 10: Average joint localization errors for cross-environment 3D skeleton posture construction.

6.4. Performance of Subject-independent Posture Reconstruction
In real-world scenarios, the posture reconstruction model is usually trained with the dataset from limited users,

which makes the model fail to reconstruct posture of users do not involve in the training. To evaluate mPose in the
subject-independent scenarios, we trained the deep learning model with data collected from one subject and adapt the
model to another subject using the domain adaptation technique described in Section 5.4. For comparison, we also
examined the baseline deep learning model without domain adaptation (i.e., the baseline model). We repeated such an
evaluation for all subject pairs and averaged the errors. Figure 11(a) shows the reconstruction errors of mPose when
training and testing on different subjects in the lab environment. We can observe that mPose has 59.6mm average joint
localization error when using the proposed domain adaptation method, which is improved by 47.7mm compared to
the baseline model. We also find that the domain adaptation method helps to achieve better performance on individual
dimensions in the 3D space, with 10.3mm, 24.7mm, and 34.1mm improvements in the dimension of depth, azimuth,
and elevation, respectively. Similar results can be found in the office environment as shown in Figure 11(b), with
53.2mm lower joint localization error after applying the domain adaptation method. The results demonstrate that the
proposed domain adaptation method can help to achieve reliable posture reconstruction across subjects with unique
body shapes.

7. Conclusion

In this paper, we proposed mPose which can continuously track a user’s 3D skeleton postures using mmWave ra-
dios. The system can be deployed on a single portable COTS mmWave device while achieving a high joint localization
accuracy. Through dynamically tracking the user’s relative position to the system, mPose extracts spatial features as-
sociated with the user in a 3D contour, which removes the impacts of environmental factors. A deep regression model
based on convolutional neural network is designed to map the extracted spatial features into the skeletal joint coor-
dinates in a 3D space. With the designed domain adaptation method, mPose removes subject-specific characteristics
entangled in the spatial features and enables robust posture reconstruction across users. Experimental results demon-
strated that mPose can accurately reconstruct full-body 3D skeleton posture, achieving at least 18% lower prediction
errors than existing device-free skeleton posture reconstruction methods with a single mmWave device. Additionally,
the experiments confirm the robustness and generalizability of mPose with different environments and different users.
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Figure 11: Average joint localization errors for cross-subject 3D skeleton posture construction.

We believe that our portable single-mmWave-device solution could enable various emerging applications, including
immersive augmented reality or virtual reality, mobile healthcare, and pervasive security monitoring.
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